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Abstract— This paper considers discrete-time constrained
Markov control processes (MCPs) under the long-run ex-
pected average cost optimality criterion. For Borel state and
action spaces a two-step method is presented to numerically
approximate the optimal value of this constrained MCPs.
The proposed method employs the infinite-dimensional linear
programming (LP) representation of the constrained MCPs. In
particular, we establish a bridge from the infinite-dimensional
LP characterization to a finite LP consisting of a first asymptotic
step and a second step that provides explicit bounds on the
approximation error. Finally, the applicability and performance
of the theoretical results are demonstrated on an LQG example.

I. INTRODUCTION

Discrete-time Markov control processes (MCPs) are a
class of stochastic control problems that appear in many
fields, for example engineering, economics, operations re-
search, etc. Oftentimes it is impossible to obtain an explicit
solution of such MCP problems, which motivates the task of
finding tractable approximations leading to explicit solutions.
Such approximation schemes are the core of a methodology
known as approximate dynamic programming [1], which
has been extensively studied in the literature from different
perspectives [2], [3], [4]; see [5] for a comprehensive survey
on this field.

Most MCPs (discrete or continuous time, finite or infinite
space, constrained or unconstrained and finite or infinite
horizon) can be recast as abstract “static” optimization
problems over a closed convex set of measures and become
infinite-dimensional convex programs, see for example [6],
[7]. Hernández-Lerma and Lasserre investigate the linear
programming (LP) approach [8], [9], [10] to discrete-time
MCPs with Borel state and control spaces for infinite-horizon
expected average and discounted costs. This reformulation
allows the use of tools from the well-established field of
mathematical programming to tackle MCPs. Furthermore,
representing an MCP by means of an infinite-dimensional
linear program is particularly appealing from the perspective
of dealing with unconventional MCPs involving additional
constrains or secondary costs, where traditional dynamic
programming techniques are not applicable [11], [12], [13].
It is therefore desirable to derive an approximation scheme
for such infinite-dimensional LPs that is computationally
tractable while providing a performance bound on the ap-
proximation error.
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In the literature, to the best of our knowledge, there are
two approximation schemes to tackle such infinite LPs. The
first method [9], [14] is based on approximating the infinite-
dimensional LPs by finite LPs and provides asymptotic con-
vergence guarantees. The main difficulty in practically using
this scheme is that the convergence proof is an existence
proof and is not constructive. Furthermore, there are no
explicit error bounds available. The second, quite recent
method [12] is based on approximating a probability mea-
sure that underlies the random transitions of the dynamics
of the system using a discretization procedure, known as
quantization. While the method [12] can provide explicit
error bounds, it is based on solving non-convex optimization
problems, which in general are NP-hard.

The objective here is to build an approximation method for
the linear programming formulation of constrained Markov
control problems with special emphasis on its computational
efficiency. Our approach consists of two steps: First, we
show how to build a semi-infinite relaxation of the original
infinite linear program. This step is specifically designed to
lead to linear programs with a particular structure which is
numerically desirable for the successive step. Then, the semi-
infinite relaxation is approximated in a second step by finite
linear programs. For this second step we propose two inde-
pendent methods, one based on probabilistic approximation
techniques for robust convex programs and the other on an
adaptive cutting plane algorithm.

The layout of this paper is as follows: Section II introduces
the notation and general framework of MCPs on Borel
spaces. In Section III we present the problem statement,
namely the infinite-dimensional linear program character-
izing the constrained average cost MCPs. The two stage
approximation scheme for those LPs is introduced in Sec-
tions IV-A and IV-B. To illustrate the proposed methodology,
in Section V, the theoretical results are applied to an infinite-
horizon average cost LQG problem and compared with the
explicit optimal solution. We conclude in Section VI with a
summary of our work and comment on possible subjects of
further research.

II. PRELIMINARIES AND NOTATION

We briefly recall standard definitions below and refer
interested readers to [8], [11], [15], [16] for further details.
A constrained Markov control model is the tuple

(X,A, {A(x)|x ∈ X}, Q, c, d, `) ,

where X (resp. A) is a Borel space, i.e., a Borel subset of a
complete and separable metric space called the state space



(resp. action or control space). {A(x)|x ∈ X} is a family of
nonempty measurable subsets of A, where A(x) denotes the
set of feasible actions when the system is in state x ∈ X .
The transition law is a stochastic kernel Q on X given the
feasible state-action pairs K := {(x, a)|x ∈ X, a ∈ A(x)}.
A stochastic kernel acts on measurable functions u from the
left as

Qu(x, a) :=

∫
X

u(y)Q( dy|x, a), ∀(x, a) ∈ K

and on probability measures µ on K from the right as

µQ(B) :=

∫
K
Q(B|x, a)µ( d(x, a)), ∀B ∈ B(X) .

Finally c, d : K → R≥0 denote measurable functions,
where c is called the one-stage cost function and ` ∈ R
is a constant. The admissible history spaces are defined
recursively as H0 := X and Ht := Ht−1 ×K for t ∈ N and
the canonical sample space is defined as Ω := (X × A)∞.
These spaces are endowed with their respective product
topologies and are therefore Borel spaces. A generic element
ω ∈ Ω is of the form ω = (x0, a0, x1, a1, . . .), xi ∈
X , ai ∈ A; all random variables will be defined on the
measurable space (Ω,B(Ω)). The projections xt and at
from Ω to the sets X and A are called state and action
variables, respectively. An admissible policy is a sequence
π = (πt)t∈N0

of stochastic kernels πt on A given Ht,
satisfying the constraints πt(A(xt)|ht) = 1, xt ∈ X and
ht ∈ Ht. The set of admissible policies will be denoted by
Π. Given a probability measure ν ∈ P(X) and π ∈ Π, there
exists a unique probability measure Pπν on (Ω,B(Ω)) such
that for all B ∈ B(X), C ∈ B(A) and ht ∈ Ht, t ∈ N0

Pπν
(
x0 ∈ B

)
= ν(B)

Pπν
(
at ∈ C|ht

)
= πt(C|ht)

Pπν
(
xt+1 ∈ B|ht, at

)
= Q(B|xt, at).

The expectation operator with respect to Pπν is denoted by
Eπν .

Definition 1: The stochastic process (Ω,B(Ω) ,Pπν ,
{xt}t∈N0

) is called a discrete-time Markov control process.

Let P(X) denote the space of all probability measures on X .
In the following we focus on constrained long-run average
cost problems, i.e.,

ρmin = inf
ν,π
{Jc(π, ν) : (π, ν) ∈ ∆}, (1)

where ∆ := {(π, ν) ∈ Π × P(X) : Jc(π, ν) < ∞ and
Jd(π, ν) ≤ `} and

Jc(π, ν) := lim sup
n→∞

1

n
Eπν

(
n−1∑
t=0

c(xt, at)

)

Jd(π, ν) := lim sup
n→∞

1

n
Eπν

(
n−1∑
t=0

d(xt, at)

)
.

Let S be a Borel space with Borel σ-algebra B(S). We
denote by M(S) the vector space of finite signed measures on

B(S) and by B(S) the vector space of real-valued measurable
functions on S. Let

〈
·, ·
〉

be a bilinear form on M(S)×B(S)
defined by

〈
µ, f

〉
:=
∫
S
f(x) dµ(x). Define Pc

(
S
)

as the set
of probability measures µ on S such that

〈
µ, c
〉
< ∞ for

some c ∈ B(S). The space of continuous bounded functions
(with respect to the sup-norm) is denoted by Cb(S) and C0(S)
denotes the continuous functions vanishing at infinity.

III. INFINITE LP CHARACTERIZATION

We start by stating all the assumptions imposed on the
control model which hold throughout the paper.

Assumption 2:

(i) The set ∆ is nonempty.

(ii) The cost function c is lower semicontinuous and inf-
compact, i.e., for each r ∈ R the set {(x, a) ∈
K | c(x, a) ≤ r} is compact.

(iii) The cost function c is strictly unbounded (coercive),
i.e., there is a nondecreasing sequence of compact sets
Kn ↑ K such that

lim inf
n→∞

{c(x, a)|(x, a) /∈ Kn} =∞.

(iv) The transition law Q is weakly continuous, i.e., Qu ∈
Cb(K) for any u ∈ Cb(X)

(v) d(·) is lower semicontinuous and bounded.

If K is a compact set, Assumption (iii) readily holds, see
[9, Remark 11.4.2]. Note that C0(X) is a separable Banach
space [9, p. 207] and let C(X) := {uk}k∈N be a countable
dense subset of C0(X). Consider the (infinite) linear program

P :


min
µ

〈
µ, c
〉

s.t.
〈
Lµ, u

〉
= 0 ∀u ∈ C(X)〈

µ, d
〉
≤ `

µ ∈ Pc
(
K
)
,

(2)

where L : M(K) → M(X) denotes a linear, weakly
continuous operator defined as [9]

Lµ(B) := µ(B ×A)− µQ(B) ∀B ∈ B(X) .

We denote the optimal solution (that exists [9, Theo-
rem 12.3.3]) and optimum value to (2), respectively, by
µ? and J?. The linear programming formulation (2) is an
alternative characterization of the problem (1) in the sense
of the following theorem.

Theorem 3: Under Assumption 2, ρmin = J?.

Proof: The proof follows directly by combining [9,
Lemma 12.5.2], [9, Theorem 12.3.3] and [11, Lemma 3.5].

The focus of our study is on providing an approximation
scheme for the linear program (2). The proposed method
consists of two steps: First P is relaxed by a semi-infinite
linear program, which then in the second step is approxi-
mated by a finite linear program.



IV. FINITE LP APPROXIMATION

A. Step (I): From infinite to semi-infinite LP

For each k ∈ N and λ ∈ R≥0 we consider the relaxed,
semi-infinite linear program

P(k)(λ) :


min
µ,η

〈
µ, c
〉

+ λη

s.t.
∣∣〈Lµ, ui〉∣∣ ≤ η ∀i ≤ k〈
µ, d
〉
≤ `+ η

µ ∈ Pc
(
K
)
, η ∈ R≥0,

(3)

where Ck := {u1, . . . , uk} denotes an increasing sequence
such that

⋃
k∈N Ck = C(X). We denote the optimal solution

and optimum value, respectively, by (µ?k(λ), η?k(λ)) and
J?k (λ). The penalization term λη in the cost function of the
relaxed program (3) allows us to provide a priori bounds for
the dual variables associated with the constraints in (3). This
property is of particular interest for the next step, which will
be elaborated in Section IV-B.

The following result, Theorem 4, establishes an asymptotic
link from the infinite linear program P to the semi-infinite
relaxation P(k)(λ).

Theorem 4: Under Assumption 2, we have

1) P(k)(λ) is solvable for every k ∈ N and λ ∈ R≥0, i.e.,
the minimum in (3) exists.

2) Let (µ?k(λ), η?k(λ)) be an optimizer of P(k)(λ) and
denote J?k (λ) :=

〈
µ?k(λ), c

〉
+ λη?k(λ). Then, the se-

quence {J?k (λ)}k∈N, λ∈R≥0
is monotonically increasing

in (k, λ). Furthermore,

lim
k,λ→∞

J?k (λ) = J?.

Proof: The proof effectively follows the same lines as
in [14, Theorem 12.5.3] with an extension to allow for a
penalization term as well as the constraint MCP setting. We
refer to Appendix I for further details.

Preparatory to the second step toward our approximation
scheme, we dualize the problem P(k)(λ). As shown in
Appendix II with a detailed derivation, the dual of the linear
program (3) is given by

D(k)(λ) :


max
ρ,γ,α,β

ρ− γ`

s.t. ρ+
∑k
i=1(αi − βi)L

?ui(x, a)
≤ γd(x, a) + c(x, a) ∀(x, a) ∈ K

γ +
∑k
i=1(αi + βi) ≤ λ

ρ ∈ R, γ ∈ R≥0, α, β ∈ Rk≥0,

where L? : B(X) → B(K) is the adjoint operator of L
given by (L?u)(x, a) := u(x)−Qu(x, a). The optimization
problem D(k)(λ) is a standard robust linear program [17]. As
mentioned before, by looking at the optimization problem
D(k)(λ), the constraint γ +

∑k
i=1(αi + βi) ≤ λ provides

an a priori bound for the optimzation variables γ, α and β.
Furthermore, the optimal value of D(k)(λ) is upper bounded
by J?, as shown in Lemma 5 below. This implies that all the

optimization variables of the robust linear program D(k)(λ)
are bounded, which is a desirable property for both numerical
solvers as well as our second approximation step presented
in the subsequent section.

Lemma 5: Under Assumption 2 and for any λ ∈ R≥0
there is no duality gap between P(k)(λ) and D(k)(λ).

Proof: As P(k)(λ) has a min-max problem structure,
it can be seen that there is pair (µ0, η0) ∈ Pc

(
K
)
× R≥0

such that max
i=1,...,k

∣∣〈Lµ0, ui
〉∣∣ < η0. According to Theorem 4

P(k)(λ) has a finite optimal value for any λ ∈ R≥0. Hence,
according to [18, Theorem 3.13] there is no duality gap.

B. Step (II): From semi-infinite to finite LP

The second approximation step establishes a link from the
relaxation of the preceding step to a finite linear program. To
this end, we propose two approaches. One relies on (random)
sampling techniques whose performance is quantified based
on the relation between the robust convex program and its
corresponding scenario convex program, as recently derived
in [19]. The second is a (deterministic) adaptive method,
based on a cutting plane iteration scheme. Both methods
lead to explicit bounds on the approximation error.

1) Scenario Based Approximation Scheme: In this subsec-
tion we provide a tractable approximation to the semi-infinite
linear programs of the form D(k)(λ), that are in general
known to be computationally intractable — NP-hard [17,
p. 16]. We propose an approximation by using the scenario
approach which is based on sampling techniques. To this
end, we endow the set K with its Borel σ-algebra B(K)
and consider a probability measure P on (K,B(K)). Suppose
{(xi, ai)}Ni=1 are N independent and identically distributed
(i.i.d.) samples extracted according to the probability mea-
sure P. We introduce the following random (scenario) linear
program

D
(k)
N (λ) :



max
ρ,γ,α,β

ρ− γ`

s.t. ρ+
∑k
j=1(αj − βj)L

?uj(xi, ai)
≤ γd(xi, ai) + c(xi, ai) ∀i ≤ N

γ +
∑M
j=1(αj + βj) ≤ λ

ρ ∈ R, γ ∈ R≥0, α, β ∈ Rk≥0,
(4)

where the optimal solution and optimum value are denoted,
respectively, by (ρ?k,N (λ), γ?k,N (λ), α?k,N (λ), β?k,N (λ)) and
J?k,N (λ). We introduce the following technical assumption.

Assumption 6: The problem D
(k)
N (λ) admits unique and

measurable optimizers.

See [19, p. 6] how one may rigorously address this issue
without any assumption. The optimization program D

(k)
N (λ)

in (4) is a standard linear program, and hence tractable for
large number of constraints and decision variables. A natural
question is whether there exist theoretical links from D

(k)
N (λ)



to D(k)(λ) in terms of objective performance. The answer
requires the following definition.

Definition 7 ([19]): The tail probability of the worst-case
violation is the function p : R≥0×RM×RM×R≥0 → [0, 1]
defined as

p(γ, α, β, δ) := P
[

sup
(x̃,ã)∈K

{ k∑
j=1

(αj − βj)L?uj(x̃, ã)−

γd(x̃, ã)− c(x̃, ã)
}
− δ <

k∑
j=1

(αj − βj)L?uj(x, a)

− γd(x, a)− c(x, a)
]
.

We call h : [0, 1] → R≥0 a uniform level-set bound (ULB)
of p if for all ε ∈ [0, 1]

h(ε) ≥ sup
{
δ ∈ R≥0

∣∣ min
α,β,γ

‖(α,β,γ)‖∞≤λ

p(γ, α, β, δ) ≤ ε
}
.

A ULB can be used to derive a probabilistic bound on the
quality of D(k)

N (λ) as an approximation to D(k)(λ) as shown
in the following theorem.

Theorem 8: Consider the programs D(k)(λ) and D
(k)
N (λ)

with the associated optimum values J?k (λ) and J?k,N (λ),
respectively. Assume that Assumption 6 holds and let h be
a ULB as introduced in Definition 7. Given ε, β in [0, 1], for
all N ≥ N(ε, β), where

N(ε, β) := min

{
N ∈ N

∣∣∣ n−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
,

we have

PN
[
J?k,N (λ)− J?k (λ) ∈

[
0, h(ε)

]]
≥ 1− β. (5)

Proof: The proof follows by the proof of Theorem 3.5
in [19] and by observing that problem D(k)(λ) is a min-max
problem (see [19, Remark 3.8]).

Remark 9 (ULB candidate): If K is a compact set, a
uniform level-set bound can be proposed under some mild
assumption on P, where h(ε) converges to zero as ε → 0,
[19, Proposition 3.8].

2) Adaptive Approximation Scheme: The idea of the
second method basically relies on a finite linear pro-
gram with “important” sample constraints, as opposed to
the random ones in the first method. For this purpose
we propose an (adaptive) iterative scheme in which at
each iteration an active constraint is added. For Km :=
{(x1, a1), . . . , (xm, am)}, consider the finite linear program

D
(k)
Km

(λ) :



max
ρ,γ,α,β

ρ− γ`

s.t. ρ+
∑k
j=1(αj − βj)L

?uj(xi, ai)
≤ γd(xi, ai) + c(xi, ai) ∀i ≤ m

γ +
∑M
j=1(αj + βj) ≤ λ

ρ ∈ R, γ ∈ R≥0, α, β ∈ Rk≥0

and denote its optimal value by J?k,m(λ). Define

δ(ρ, γ, α, β) := sup
(x,a)∈K

{
ρ+

k∑
j=1

(αj − βj)L?uj(x, a)

− γd(x, a)− c(x, a)

}
.

The constraints of the approximating linear program
D

(k)
Km

(λ), given by Km, are constructed iteratively via a basic
cutting plane algorithm that is described in Algorithm 1.

Algorithm 1: Cutting Plane Method

Step 1: Set m = s > 0, Km := {(x1, a1), . . . , (xm, am)},
ε ∈ R≥0 arbitrary small

Step 2: Solve D
(k)
Km

(λ), denote by (ρm, γm, αm, βm) its optimizer
Step 3: Calculate δ(ρm, γm, αm, βm) and denote its maximizer

by (xm+1, am+1)
Step 4: If δ(ρm, γm, αm, βm) < ε, stop and output ρm − γm`

as the solution
Step 5: Set Km+1 := Km ∪ {(xm+1, am+1)},

update m := m+ 1, then go to Step 2

Lemma 10: Let (ρm, γm, αm, βm) be an optimal solution
for problem D

(k)
Km

(λ). Then

J?k,m(λ)− J?k (λ) ≤ δ(ρm, γm, αm, βm).

Proof: The proof is based on the fact that under the
strong duality condition the so-called perturbation function of
convex optimization problems, is Lipschitz continuous (see
[20, p. 250] for the proof and [21, Section 28] for more
details in this direction). By the particular min-max structure
of problem D

(k)
Km

(λ) one can see that the Lipschitz constant
is given by 1 [19, Remark 3.5], which concludes the proof.

Thanks to the boundedness of the decision variables of
D(k)(λ), which is inherited from the penalization term in
the first approximation step, one can deduce the convergence
behaviour of the adaptive scheme as follows.

Remark 11: Under the assumption of compactness of state
and action space, and continuity of the cost-functions c and
d one can prove that δ(ρm, γm, αm, βm) → 0 as m → ∞,
where (ρm, γm, αm, βm) is obtained by Algorithm 1. See
[22, Lemma 2.2] and [23] for further details.

We conclude the presentation of the second step of the
approximation scheme with a short remark on its compu-
tational tractability. The randomized approximation scheme
is attractive since it only requires to solve one LP, which
can be done efficiently in practice for a very large number
of constraints and decision variables. Its downside, however,
is the number of samples required to achieve an ε-precise
solution which may grow exponentially in the dimension
of K [19, Remark 3.9]. The adaptive approach, as simu-
lation results in the subsequent section reveal, often requires
considerably less constraints. This, however, comes at the
cost of solving a non-convex optimization problem in each



iteration step, namely in Step 3 of Algorithm 1, which
might be computationally expensive. As another important
difference, in the adaptive scheme, the explicit error bound
is an a posteriori bound, in the sense that one cannot predict
the number of iteration steps (in Algorithm 1) needed to
achieve a certain precision. In contrast, the scenario-based
approximation method provides an a priori error bound.

V. NUMERICAL EXAMPLE — LQG PROBLEM

The standard LQG problem consists of a linear system
and a quadratic one-stage cost which emerges in many ap-
plications ranging from control engineering to mathematical
finance. To illustrate our results we consider the simplest
version of this problem, where state and input are scalar.
Consider the linear system

xt+1 = θxt + ρat + ξt, t = 0, 1, . . . , (6)

with one-stage cost c(x, a) = qx2 + ra2, where q ≥ 0 and
r > 0 are given constants. The disturbances ξt are i.i.d.
random Gaussian variables, independent of the initial state
x0, with zero mean and finite variance σ2. We assume that
X = A = R, that θ, ρ ∈ R are given constants, that the
function d and the constant ` are both 0 and that A(x) =
A for all x ∈ X . The transition kernel Q has a density
function q(y|x, a), i.e., Q(B|x, a) =

∫
B
q(y|x, a) dy for all

B ∈ B(X), that is given by

q(y|x, a) =
1√
2πσ

exp

(
− (y − θx− ρa)2

2σ2

)
.

It is well known that the solution of the above LQG
problem can be obtained via the algebraic Riccati equation
[24, p. 372]. This value is depicted by the solid line in
all the plots in Fig. 2. To validate our theoretical results,
due to numerical purposes, we restrict our computations in
the first approximation step, in Section IV-A, to a compact
set [−L,L], where L is chosen large enough. On the space
Cb([−L,L]), we consider the Fourier basis

C2k+1 := {u0, u1, . . . , u2k},

where u0(x) := 1, u2k−1(x) := cos
(
kπx
L

)
, and u2k(x) :=

sin
(
kπx
L

)
.

For the second approximation step in Section IV-B we
verify the two presented methods. Regarding the scenario
based approximation method, in Section IV-B.1, suppose that
{(xi, ai)}Ni=1 are N independent and identically distributed
(i.i.d.) samples according to the uniform distribution on
[−L,L]2. Then, we solve the respective scenario linear
program D

(k)
N (λ), given in (4).

The numerical simulations of the resulting finite LP are
depicted in Fig. 2(a) and 2(b) (respectively Fig. 2(c) and
2(d)) when the number of the basis functions in the first
step is k = 7 (respectively k = 11). The corresponding
results of the adaptive method described by Algorithm 1 are
shown in Fig. 1(e) to 1(h). Let us remark that the finite
number k, which corresponds to the first step relaxation,
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Fig. 1. Numerical results for parameters θ = 0.8, ρ = 0.5, q = 1,
r = 0.2, σ = 1, with different number of basis functions k and
comparing the scenario based approximation scheme (SBAS), shown for
5 experiments, with the adaptive approximation scheme (AAS). The solid
black line represents the exact solution obtained via the Riccati equation
(J? = 1.3187).

influences the “steady state” level of the finite LPs coming
out from the second step. As expected and also confirmed by
simulation results in Fig. 2, the scenario approach requires
significantly more samples in comparison with the adaptive
approach proposed as the second method in this step. It,
however, should be highlighted that this improvement comes
at the cost of solving a static non-convex program at Step
3 in Algorithm 1. This is of course not a problem in this
low dimensional example, but can become critical as the



dimension of the problem increases.

VI. CONCLUSIONS

In this paper we presented a two-step approximation
scheme for the linear programming formulation of discrete-
time MCPs with Borel state and action spaces under the long-
run average cost optimality criterion. The first approximation
step bridges the infinite-dimensional LP characterization of
MCPs to a semi-infinite relaxed LP. The second step trans-
forms the latter problem to a finite LP through two different
approaches: a randomized method based on the so-called
scenario approach, and an adaptive method employing a
cutting plane approach. Both methods lead to explicit bounds
on the approximation error in the second step of the proposed
scheme.

For future work, in light of the first part of our proposed
two-stage approximation scheme, we aim to study the deriva-
tion of an explicit error bound. This, together with the second
step presented here, would then lead to an explicit bound
on the approximation error for the infinite-dimensional LP
(2) and therefore for the average-cost MCP. Another open
question is, given such an approximating scheme, how to find
ε-approximating policies, i.e., policies whose corresponding
cost is ε away from the optimal value.

APPENDIX I
PROOF OF THEOREM 4

Before proving the Theorem 4 we state a preliminary
lemma.

Lemma 12 ([14]): Let the sequence {µn}n∈N ⊂ Pc
(
K
)

converge weakly to µ and let c be a nonnegative lower
semicontinuous function on K. Then,

lim inf
n→∞

〈
µn, c

〉
≥
〈
µ, c
〉
.

Proof: [Proof of Theorem 4] Since for any positive λ
and for any k ∈ N, P(k)

(
λ
)

is a relaxation of P

0 ≤ inf P(k)
(
λ
)
≤ minP ∀λ ∈ R≥0, (7)

where solvability of P (Assumption 2(i)) and the fact that
c(·, ·) is nonnegative were used. In a first step we assume
that there exists a finite real positive number M such that
η ∈ [0,M ]. This is without loss of generality; suppose there
does not exist such a number, i.e., consider η = ∞. This,
however, contradicts the fact that inf P(k)

(
λ
)

is finite for all
λ according to (7). Fix λ and consider a minimizing sequence
{(µn, ηn)}n∈N for P(k)

(
λ
)
, that is, each µn and ηn satisfy

µn ∈ Pc
(
K
)
, ηn ∈ R≥0, |

〈
Lµn, ui

〉
| ≤ ηn for all i =

1, . . . , k,
〈
µn, d

〉
≤ ` and〈
µn, c

〉
+ ληn ↓ inf P(k)

(
λ
)
.

Since λ, ηn ∈ R≥0, according to (7) there exists M,N
such that

〈
µn, c

〉
≤ M for all n ≥ N . Therefore in-

voking Assumptions 2(ii), (iii) and Theorem 12.2.15 in
[9, p. 216] the family {µn}n≥N is tight. According to

Prohorov’s Theorem there exists a subsequence {µm} of
{µn} and a probability measure µ on K such that

〈
µm, v

〉
→〈

µ, v
〉

for all v ∈ Cb(K). Since c(·, ·) is nonnegative and
lower semicontinuous by Assumption 2(ii), Lemma 12 states
lim infm→∞

〈
µm, c

〉
≥
〈
µ, c
〉
. Consider the subsequence

{ηm}m∈N ⊂ [0,M ], by compactness there is a subsequence
{ηj} of {ηm} such that ηj → η as j → ∞. Obviously〈
µj , v

〉
→
〈
µ, v
〉

for all v ∈ Cb(K) which gives

lim inf
j→∞

〈
µj , c

〉
+ ληj ≥

〈
µ, c
〉

+ λη (8)

Hence, it remains to show that the pair (µ, η) is feasible
for P(k)

(
λ
)
. First note that

〈
µ, c
〉
< ∞ which implies that

µ ∈ Pc
(
K
)
. Second η ≥ 0 is without loss of generality. It

remains to show that |
〈
Lµ, ui

〉
| ≤ η for all i = 1, . . . , k. As

a preliminary step observe that
〈
Lµm, u

〉
→
〈
Lµ, u

〉
for all

u ∈ Cb(X). This is a consequence of µm converging weakly
to µ as

〈
Lµm, u

〉
=
〈
µm, L

?u
〉
→
〈
µ, L?u

〉
=
〈
Lµ, u

〉
,

where we used that L? maps Cb(X) into Cb(K). Therefore,
|
〈
Lµj , u

〉
|−ηj → |

〈
Lµ, u

〉
|−η. Since |

〈
Lµj , ui

〉
|−ηj ≤ 0

for all j ∈ N and for all i = 1, . . . , k we get |
〈
Lµ, ui

〉
| ≤ η.

Finally by Assumption 2(v) and Lemma 12 we get
〈
µ, d
〉
≤

`. This settles the assertion (1).

In order to show (2), for any k = 1, 2, . . . , let (µk, ηk)
be an optimal solution for P(k)

(
λ
)
, where {λk}k∈N is an

arbitrary increasing sequence. Clearly
〈
µk, c

〉
+ λkηk is

nondecreasing. Therefore, combined with (7), there is a
number ρ such that

〈
µk, c

〉
+ λkηk ↑ ρ, where ρ ≤ minP.

Following the same argumentation as in the proof of assertion
(1) there is a subsequence {µj} of {µk} and a subsequence
{ηj} of {ηk} and a probability measure µ on K such that
µj ⇀ µ and an η ≥ 0 such that ηj → η. Also

lim inf
j→∞

〈
µj , c

〉
+ λjηj ≥

〈
µ, c
〉

+ lim
j→∞

λjηj . (9)

We claim that η = 0. Suppose not, i.e., η > 0, take λk ↑ ∞
and recall that

〈
µk, c

〉
≥ 0. This, however, contradicts

boundedness of P(k)
(
λ
)

(7). Having (9) it remains to show
that the pair (µ, η) is feasible for P. First note that

〈
µ, c
〉
<

∞ and therefore µ ∈ Pc
(
K
)
, which follows directly from

(7). To show that
〈
Lµj , u

〉
= 0 ∀u ∈ C(X), note that

C(X) =
⋃∞
i=1{ui}. Therefore, if u ∈ C(X), then there

exists N such that u ∈
⋃k
i=1{ui} ∀k ≥ N and as such

|
〈
Lµj , u

〉
| ≤ ηj ∀j ≥ N since (µj , ηj) is feasible for

P(j)(λj). As in the proof of (1) we have |
〈
Lµj , u

〉
| →

|
〈
Lµ, u

〉
| and hence

〈
Lµ, u

〉
= 0 as well as

〈
µ, d
〉
≤ `.

Therefore µ is feasible for P. This together with (9) leads to

minP ≥ lim inf
j→∞

〈
µj , c

〉
+ λjηj ≥

〈
µ, c
〉

+ lim
j→∞

λjηj

≥ minP + lim
j→∞

λjηj ,

where λj , ηj ∈ R≥0 for all j ∈ N. Hence,
〈
µk, c

〉
+ λkηk ↑

minP, which settles the Theorem.
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Fig. 2. Numerical results for parameters θ = 0.8, ρ = 0.5, q = 1,
r = 0.2, σ = 1, with different number of basis functions k. The solid
black line represents the exact solution obtained via the Riccati equation
(J? = 1.3187).

APPENDIX II
DUAL OF THE LP (3)

This section shows how to derive the dual program of
the LP (3). As a standard result in the theory of linear
programming in infinite-dimensional spaces [18, p. 38], [25,
p. 162] the dual of the LP (3) is given by

sup
ρ,γ,α,β

ρ− γ`

s.t. c+ γd− ρ−
∑k
i=1(αi − βi)L?ui ∈M(K)?+

γ +
∑k
i=1(αi + βi) ≤ λ

ρ ∈ R, γ ∈ R≥0, α, β ∈ Rk≥0,

where M(K)?+ denotes the dual cone of M(K)+ := {µ ∈
M(K) | µ ≥ 0}, which coincides with the natural positive
cone B(K)+ := {u ∈ B(K)|u ≥ 0}, see [9, p. 212].
L? : B(X) → B(K) is the adjoint operator of L given
by (L?u)(x, a) := u(x) − Qu(x, a). Since in Euclidean
spaces the intersection between a compact and closed set
is compact and since the objective function is continuous
the supremum is attained and therefore the linear program
D(k)(λ) is solvable. Hence the dual LP of (3) has the form

max
ρ,γ,α,β

ρ− γ`

s.t. ρ+
∑k
i=1(αi − βi)L?ui(x, a)
≤ γd(x, a) + c(x, a) ∀(x, a) ∈ K

γ +
∑k
i=1(αi + βi) ≤ λ

ρ ∈ R, γ ∈ R≥0, α, β ∈ Rk≥0.
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