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Abstract—We propose an iterative method for efficiently ap-
proximating the capacity of discrete memoryless channels, possi-
bly having additional constraints on the input distribution. Based
on duality of convex programming, we derive explicit upper and
lower bounds for the capacity. To find an ε-approximation of the
capacity, in case of no additional input constraints, the presented
method has a computational complexity O( 1

ε
M2N

√
logN),

where N and M denote the input and output alphabet size,
and a single iteration has a complexity O(MN).

I. INTRODUCTION

Shannon proved in his seminal 1948 paper [1] that the
channel capacity for any discrete memoryless channel (DMC)
consisting of a finite input alphabet X = {1, 2, . . . , N}, a
finite output alphabet Y = {1, 2, . . . ,M}, and a conditional
probability mass function PY |X(y|x) denoted by W (y|x)
expressing the probability of observing the output symbol y
given the input symbol x, is

C(W ) = max
p∈∆N

I(p,W ) ,

where ∆N := {x ∈ RN : x ≥ 0,
∑N
i=1 xi = 1}

denotes the N -simplex and the mutual information is denoted
by I(p,W ) :=

∑
x∈X p(x)D(W (·|x)||(pW )(·)). W (y|x) =

P[Y = y|X = x] describes the channel law, (pW )(·) is the
probability distribution of the channel output induced by p
and W , i.e., (pW )(y) :=

∑
x∈X p(x)W (y|x). D(·||·) denotes

the relative entropy that is defined as D(W (·|x)||(pW )(·)) :=∑
y∈YW (y|x) log W (y|x)

(pW )(y) . Shannon also showed that if there
is an additional cost constraint on the input distribution of the
form E[s(X)] ≤ S, the capacity is given by

CS(W ) = max
p∈∆N

{I(p,W ) : E[s(X)] ≤ S}. (1)

For a few DMCs it is known that the capacity can be
computed analytically, however in general there is no closed-
form solution. It is therefore of interest to have an algorithm
that solves (1) efficiently. Since for a fixed channel the
mutual information is known to be a concave function in p,
the optimization problem (1) is a finite dimensional convex
optimization problem. Solving (1) with convex programming
solvers, however, turned out to be computationally inefficient
even for small alphabet sizes [2].

Previous Work and Contributions.— Historically one of the
first attempts to numerically solve (1) is the so-called Blahut-
Arimoto algorithm [2], [3]. It exploits the special structure

of the mutual information and approximates iteratively the
capacity of any DMC. Each iteration step has a computational
complexity O(MN2). It was shown that this algorithm, in
case of no additional input constraints has an explicit er-
ror bound (also called a priori error bound) of the form
|C(W ) − C(n)

approx(W )| ≤ logN
n , where n denotes the number

of iterations [3, Corollary 1]. Hence, the overall computational
complexity to find an ε-solution is given by O( 1

εMN2 logN).
As such the computational cost required for an acceptable
accuracy for channels with large input alphabets can be
computationally hard. This undesirable property prevents the
algorithm from being useful for a large class of channels,
e.g., a Rayleigh channel with a discrete input alphabet [4].
There have been several improvements of the Blahut-Arimoto
algorithm [5], [6], [7], which achieve a better convergence
for certain channels. However, since they all rely on the
original Blahut-Arimoto algorithm they inherit its complexity
per iteration step. Therefore, even with improved Blahut-
Arimoto algorithms, computing the capacity for channels
without favorable structure having large input alphabets is
computationally expensive.

Mung and Boyd [8] presented an efficient method to derive
upper bounds on the channel capacity problem, based on
geometric programming. A totally different approach to solve
(1) was taken by Huang and Meyn [9]. Their approach is based
on cutting plane methods, where the mutual information is
iteratively approximated by linear functionals. In each iteration
step, a finite dimensional linear program has to be solved. It
has been shown that their method converges to the optimal
value, however no explicit error bound is provided.

In this article, we present a new approach to solve (1)
that is based on its dual formulation. It turns out that the
dual problem of (1) has a particular structure that allows
us to use Nesterov’s smoothing method [10]. For no input
cost constraint, this leads to an explicit error bound of the
order |C(W ) − C

(n)
approx(W )| ≤ O(M

√
logN
n ), where n de-

notes the number of iterations and each iteration step has
a computational complexity of O(NM). Thus, the overall
computational complexity of finding an ε-solution is given
by O( 1

εM
2N
√

logN). In particular for large input alphabets
our method gives a considerable computational efficiency
improvement compared to the Blahut-Arimoto algorithm. In
addition, the novel method provides us with an a posteriori



error which, after having run a number of iterations, states how
far the approximated solution is away from the optimal value.
This is desirable as often a priori error bounds are conservative
in practice.

Structure.— The remainder of this article is structured as
follows. In Section II we reformulate the capacity problem
(1) which then helps to derive its dual program in Section III.
We then show how to efficiently approximate the capacity by
applying smoothing techniques to the dual problem. Section IV
comments on the scenario where we do not have an additional
input cost constraint. We demonstrate the performance of the
new method in Section V for two DMCs having large input and
output alphabets. We conclude in Section VI with a summary
of our work.

Notation.— All the logarithms in this article are with respect
to the basis 2. We consider DMCs having a finite input
alphabet X = {1, 2, . . . , N} and a finite output alphabet
Y = {1, 2, . . . ,M}. The channel law is summarized in a
matrix W ∈ RN×M , where Wij := P[Y = j|X = i] =
W (j|i). The input and output probability mass functions are
denoted by the vectors p ∈ RN and q ∈ RM . The input
cost constraint can be written as E[s(X)] = p>s ≤ S,
where s ∈ RN denotes the cost vector and S ∈ R≥0 is
the given total cost. We define the standard n−simplex as
∆N := {x ∈ RN : x ≥ 0,

∑N
i=1 xi = 1}. For a

probability mass function p ∈ ∆N we denote its entropy
by H(p) :=

∑N
i=1−pi log pi. It is convenient to introduce

an additional variable for the conditional entropy of Y given
{X = i} as r ∈ RN , where ri = −

∑M
j=1 Wij logWij .

For two vectors x, y ∈ Rn the canonical inner product is
〈x, y〉 := x>y. We denote the maximum between a and b
by a ∨ b.

II. PRELIMINARIES

We start by reformulating problem (1). To keep notation
simple we consider a single average-input cost constraint. The
extension to multiple average-input cost constraints is straight-
forward. In a first step, we introduce the output distribution
q ∈ ∆M as an additional decision variable, as done in [11],
[8], [12].

Lemma 1. Let F := arg maxp∈∆N
I(p,W ) and Smax :=

minp∈F s
>p. If S ≥ Smax the optimization problem (1) is

equivalent to

P :


max
p,q

−r>p+H(q)

s. t. W>p = q
p ∈ ∆N , q ∈ ∆M .

If S < Smax the optimization problem (1) is equivalent to

P :


max
p,q

−r>p+H(q)

s. t. W>p = q
s>p = S
p ∈ ∆N , q ∈ ∆M .

(2)

Proof: The proof given in Appendix A.

We tackle this optimization problem with an approach that is
based on its Lagrangian dual problem. The dual function turns
out to be a non-smooth function. As such, it is known that the
efficiency estimate of a black-box first-order method is of the
order O

(
1
ε2

)
if no specific problem structure is used, where

ε is the desired abolute accuracy of the approximate solution
in function value [13]. Our problem, has a certain structure
that allows us to use Nesterov’s approach of approximating
non-smooth problems with smooth ones [10]. This leads to
a significant efficiency improvement in the estimate of the
original (non-smooth) problem, i.e., an efficiency estimate of
the order O

(
1
ε

)
. This, together with the low complexity of

each iteration step in the approximation scheme that uses a fast
gradient method, leads to a numerical method for the channel
capacity problem that has a very attractive computational
complexity.

Some preliminaries are needed in order to present our ap-
proximation scheme. We begin with the following optimization
problem, that has an analytical solution

max
p

J(p) := H(p)− c>p
s.t. s>p = S

p ∈ ∆N .

(3)

Lemma 2. Let p∗ = [p∗1, . . . , p
∗
N ] with p∗i = 2µ1−ci+µ2si ,

where µ1 and µ2 are chosen such that p∗ satisfies the
constraints in (3). Then p∗ uniquely solves (3).

Proof: See Appendix B.
For the channel law matrix W ∈ RN×M we consider the

norm

‖W‖ := max
λ∈RM , p∈RN

{〈
Wλ, p

〉
: ‖λ‖2 = 1, ‖p‖1 = 1

}
,

and note that an upper bound is given by

‖W‖ = max
‖p‖1=1

max
‖λ‖2=1

λ>W>p ≤ max
‖p‖1=1

‖W>p‖2

≤ max
‖p‖1=1

‖W>p‖1 = max
‖p‖1=1

‖p‖1 = 1. (4)

III. DUAL SMOOTH REFORMUALTION

Consider the convex optimizaton problem (2), whose opti-
mal value, according to Lemma 1 is the capacity CS . Our ap-
proach, having special emphasis on keeping the computational
complexity low, strongly exploits the specific structure of the
mentioned optimization problem and tries to proceed with
analytical steps as far as possible. The Lagrange dual function
for (2) is given by G(λ) + F (λ), where F,G : RM → R are

G(λ) =


max
p

−r>p+ λ>W>p

s.t. s>p = S
p ∈ ∆N

and

F (λ) = max
q∈∆M

{H(q)− λ>q}.

Note that G(λ) is a convex and piecewise linear function and
non-smooth in general. F (λ) can be shown to be a smooth



function and has a closed form expression (6). The Lagrange
dual program to (2) is

D : min
λ

{
G(λ) + F (λ) : λ ∈ RM

}
. (5)

Note that since the coupling constraint W>p = q in the primal
program (2) is affine, the set of optimal solutions to the dual
program (5) is nonempty [14, Proposition 5.3.1] and as such
the optimum is attained. In order to assure that the set of
dual optimizers is compact and to precisely characterize its
size (with respect to the one-norm), we need to impose the
following assumption on the channel matrix W, that we will
maintain for the remainder of this article.

Assumption 1. γ := min
i,j

Wij > 0

Since for a fixed input distribution the mutual information
is a convex function in the channel law and since we are in a
finite dimensional setup, this implies that it is continuous in
the channel law in its relative interior [15]. Hence, in case of
a channel matrix having zero entries we can slightly perturb
these entries without considerably changing the capacity.

Lemma 3. Under Assumption 1, the dual program (5) is
equivalent to

min
λ
{G(λ) + F (λ) : λ ∈ Q} ,

where Q :=
{
λ ∈ RM : ‖λ‖2 ≤

M
2

(
log(γ−1) ∨ 1

)}
.

Proof: See Appendix C.
For later use, we define the function Q 3 λ 7→ d1(λ) :=

1
2 ‖λ‖

2
2 ∈ R and the number D1 := max

λ
{d1(λ) : λ ∈ Q},

which gives D1 = 1
2

(
M
2

(
log(γ−1) ∨ 1

))2
.

Lemma 4. Strong duality holds between (2) and (5).

Proof: The primal program (2) clearly satisfies Slater’s
condition. Since it is a convex optimization problem, this
implies strong duality.

The goal is to efficiently approximate the dual program (5),
while quantifying the approximation error explicitly. Note that
the optimization problem defining F (λ) is of the form given
in (3), i.e., according to Lemma 2, F (λ) admits a unique
optimizer q∗ with components q∗j = 2µ−λj , where µ ∈ R
needs to be chosen such that q∗ ∈ ∆M , which gives

µ = − log

(
M∑
i=1

2−λi

)
.

Therefore,

F (λ) =

M∑
i=1

(−q∗i log q∗i − λiq∗i ) = −
M∑
i=1

µ 2µ−λi

= −µ 2µ
M∑
i=1

2−λi = log

(
M∑
i=1

2−λi

)
, (6)

which clearly is a smooth function. We will later use its
gradient that is given by the closed form expression

(∇F (λ))i =
−2−λi∑M
j=1 2−λj

. (7)

The main difficulty in solving (5) efficiently is that G(·) is
non-smooth. It however is in a particular favourable structure,
which allows to use Nesterov’s smoothing technique [10]. This
method is based on approximating G(·) by a function with a
Lipschitz continuous gradient and an explicitly given Lipschitz
constant. The smoothing step is computationally cheap due to
the particular structure of (5). The approximating function can
then be minimized with a rate of convergence O

(
1
n2

)
, where

n denotes the number of iterations. This finally leads to a
rate of convergence of the original (non-smooth) problem of
O
(

1
n

)
. In the light of [10] consider

Gν(λ) =


max
p

〈
Wλ, p

〉
− r>p+ νH(p)− ν logN

s.t. s>p = S
p ∈ ∆N ,

(8)

with smoothing parameter ν ∈ R>0 and denote by pν(λ) the
optimal solution. Note that pν(λ) is unique since the objective
function is strictly concave. Clearly for any p ∈ ∆N , Gν(λ)
is a uniform approximation of the non-smooth function G(λ),
since Gν(λ) ≤ G(λ) ≤ Gν(λ) + νD2 with D2 := log(N).
Similarly as above, by using Lemma 2 an analytical optimizer
pν(λ) to (8) is given by

pν(λ, µ)i = 2µ1+
1
ν (Wλ− r)i+µ2si , (9)

where µ1, µ2 ∈ R have to be chosen such that s>pν(λ, µ) = S
and pν(λ, µ) ∈ ∆N . Having chosen µ1, µ2 ∈ R as described,
we call the solution pν(λ).

Remark 1. In case of no input constraints, the unique opti-
mizer to (8) is given by

pν(λ)i =
2

1
ν (Wλ−r)i∑N

i=1 2
1
ν (Wλ−r)i

,

whose straightforward evaluation is numerically difficult for
small ν. We present a numerically stable method for this
evaluation. Define K ∈ RN , by its components

Ki = ν log (pν(λ)i)

= (Wλ− r)i − ν log

(
N∑
i=1

2
1
ν (Wλ−r)i

)
,

which can be computed numerically stable using the technique

in [10, p. 148]. Finally, pν(λ)i = 2
Ki
ν .

Remark 2. In case of an additional input constraint, we need
an efficient method to find the coefficients µ1 and µ2 in (9).
In particular if there are multiple input constraints (which will
lead to multiple µi) the efficiency of the method computing
them becomes important. Instead of solving a system of non-
linear equations, it turns out that the µi can be found by



solving the following convex optimization problem [16, p. 257
ff.]

sup
µ∈R2

{〈
y, µ
〉
−

N∑
i=1

pν(λ, µ)i

}
, (10)

where y := (1, S). Note that (10) is an unconstrained maxi-
mization of a concave function, whose gradient and Hessian
can be easily computed, which would allow us to use second-
order methods, e.g., Newton’s method.

Finally, we can show that the uniform approximation Gν(λ)
is smooth and has a Lipschitz continuous gradient, with known
Lipschitz constant.

Proposition 5. Gν(λ) is well defined and continuously differ-
entiable at any λ ∈ Q. Moreover, this function is convex and
its gradient ∇Gν(λ) = W>pν(λ) is Lipschitz continuous with
constant L̃ν ≤ 1

ν .

Proof: The proof follows directly from the proof of
Theorem 1 and Lemma 3 in [10] together with (4).

We consider the smooth, convex optimization problem

Dν : min
λ∈Q
{F (λ) +Gν(λ)}, (11)

whose solution can be approximated with Nesterov’s optimal
scheme for smooth optimization [10]. Consider the following
algorithm where πQ(x) denotes the projection operator of the
set Q, defined in Lemma 3, with R := M

2

(
log(γ−1) ∨ 1

)
πQ(x) :=

{
R x
‖x‖2

, ‖x‖2 > R

x, otherwise.

Algorithm 1: Optimal scheme for smooth optimization

For k ≥ 0 do
Step 1: Compute ∇F (xk) +∇Gν(xk)
Step 2: yk = πQ

(
− 1
Lν

(∇F (xk) +∇Gν(xk)) + xk

)
Step 3: zk = πQ

(
− 1
Lν

∑k
i=0

i+1
2

(∇F (xi) +∇Gν(xi))
)

Step 4: xk+1 = 2
k+3

zk + k+1
k+3

yk

Assume that the smooth function F has a Lipschitz continuous
gradient with constant K ≥ 0. It can be directly seen by (7)
that K ≤ 1 and as such by invoking Proposition 5 Lν ≤ 1+ 1

ν .
The following theorem provides explicit error bounds for the
solution of the above algorithm after n iterations. Recall that
D1 = 1

2 (M2 log(γ−1) ∨ 1)2 and D2 = logN .

Theorem 6 ([10]). For n ∈ N consider a smoothing parameter
ν = ν(n) = 2

n+1

√
D1

D2
. Then after n iterations we can

generate the approximate solutions to the problems (5) and
(1), namely,

λ̂ = yn ∈ Q, p̂ =

n∑
i=0

2(i+ 1)

(n+ 1)(n+ 2)
pν(λi) ∈ ∆N , (12)

which satisfy the following inequality:

0 ≤ F (λ̂) +G(λ̂)− I(p̂,W )

≤ 4

n+ 1

√
D1D2 +

4D1

(n+ 1)2
. (13)

Thus, the complexity of finding an ε-solution to the problems
(5) and (1) by the smoothing technique does not exceed

4
√
D1D2

1

ε
+ 2

√
D1

ε
.

Note that Theorem 6 provides an explicit error bound given
in (13), also called a priori error. In addition this theorem
predicts an approximation to the optimal input distribution
(12), i.e., the optimizer of the primal problem. Thus, by
comparing the values of the primal and the dual optimization
problem Theorem 6 enables us to compute an a posteriori
error which is the difference of the dual and the primal
problem, namely F (λ̂) +G(λ̂)− I(p̂,W ).

IV. NO INPUT COST CONSTRAINTS

In the special case of no input cost constraints, one can
derive an analytical expression for Gν(λ) and its gradient as

Gν(λ) = ν log

(
N∑
i=1

2
1
ν (Wλ− r)i

)
− ν logN

∇Gν(λ) =
1

S(λ)

N∑
i=1

2
1
ν (Wλ− r)iWi,·, (14)

where S(λ) :=
∑N
i=1 2

1
ν (Wλ− r)i . In order to achieve an ε-

precise solution the smoothing factor ν has to be chosen in
the order of ε, according to Theorem 6. A straightforward
computation of ∇Gν(λ) via (14) for a small enough ν is
numerically difficult. In the light of [10, p. 148], we present
a numerically stable technique for computing ∇Gν(λ). By
considering the functions RM 3 λ 7→ f(λ) = Wλ − r ∈ RN

and RN 3 x 7→ Rν(x) = ν log
(∑N

i=1 2
xi
ν

)
∈ R it is

clear that ∇λRν(f(λ)) = ∇Gν(λ). The basic idea is to
define f̄(λ) := max1≤i≤N fi(λ) and then consider a function
g : RM → RN given by gi(λ) = fi(λ) − f̄(λ), such that all
components of g(λ) are non-positive. One can show that

∇λRν(f(λ)) = ∇λRν(g(λ)) +∇f̄(λ),

where the term on the right-hand side can be computed with
a small numerical error.

V. SIMULATION RESULTS

This section presents two examples to illustrate the theo-
retical results developed in the preceding sections and their
performance. All the simulations in this section are performed
on a 2.3 GHz Intel Core i7 processor with 8 GB RAM.

Example 1. Consider a DMC with a channel matrix W ∈
RN×M , where N = 10000 and M = 100, such that
Wij =

Vij∑M
j=1 Vij

, and Vij is chosen i.i.d. according to a
uniform distribution having support [0, 1] for all 1 ≤ i ≤ N ,



1 ≤ j ≤M . Table I compares the performance of the Blahut-
Arimoto algorithm with the algorithm introduced in this paper,
which has the following a priori error bound as predicted by
Theorem 6

CUB − C ≤
4

n+ 1

√
D1D2 +

4D1

(n+ 1)2
,

where n denotes the number of iterations, D1 =
1
2 (M2 (log(γ−1) ∨ 1))2, where γ is equal to the smallest entry
in the channel matrix W and D2 = logN . Recall that the
Blahut-Arimoto algorithm has an a priori error bound of
the form C − CLB ≤ logN

n [3, Corollary 1]. As explained
after Theorem 6, the new method provides additionally an a
posteriori error.

TABLE I
CAPACITY OF A DMC GIVEN IN EXAMPLE 1 WITH PARAMETERS
D1 = 8.7597 · 105 AND D2 = log 10000. THE A PRIORI AND A

POSTERIORI ERRORS ARE DENOTED BY eapriori AND eapost. .

Blahut-Arimoto Algorithm Fast-Gradient Method

Iterations 10 102 103 104 103 104 105 106

Time [s] 5.3 52 528 5359 4.0 40 406 4263
CUB — — — — 0.443 0.443 0.415 0.409
CLB 0.288 0.391 0.409 0.409 0.279 0.300 0.405 0.409
eapriori 1.329 0.133 0.013 0.001 17.13 1.400 0.137 0.001
eapost. — — — — 0.164 0.143 0.010 5.5·10−4

Example 2. Consider a DMC with a channel matrix W ∈
RN×M , where N = 100000 and M = 10, such that
Wij =

Vij∑M
j=1 Vij

, and Vij is chosen i.i.d. according to a
uniform distribution having support [0, 1] for all 1 ≤ i ≤ N
and 1 ≤ j ≤ M . Table II shows the performance of the
algorithm introduced in this article, which has the following
a priori error bound as predicted by Theorem 6

CUB − C ≤
4

n+ 1

√
D1D2 +

4D1

(n+ 1)2
,

where n denotes the number of iterations, D1 =
1
2 (M2 (log(γ−1) ∨ 1))2, where γ is equal to the smallest entry
in the channel matrix W and D2 = logN . Note that for the
Blahut-Arimoto algorithm we were not able to do a single
iteration as we run out of memory.

TABLE II
PERFORMANCE OF THE NEW METHOD FOR A DMC GIVEN IN EXAMPLE 2

WITH PARAMETERS D1 = 5.7034 · 103 AND D2 = log 100000. THE A
PRIORI AND A POSTERIORI ERRORS ARE DENOTED BY eapriori AND eapost. .

Iterations 10 102 103 104 105 106

Time [s] 0.3 1.9 18.3 184 1394 14025
CUB 1.271 1.270 1.112 1.055 1.052 1.051
CLB 0.273 0.302 0.959 1.051 1.051 1.051
eapriori 300.5 14.43 1.252 0.123 0.012 0.001
eapost. 0.994 0.968 0.154 3.91·10−3 3.15·10−4 2.98·10−5

VI. CONCLUSION

We introduced a new approach to approximate the capacity
of DMCs possibly having constraints on the input distribution.
The dual problem of Shannon’s capacity formula turns out to

have a particular structure such that the Lagrange dual function
admits a closed form solution. Applying smoothing techniques
to the non-smooth dual function allows us to finally solve the
dual problem efficiently. This new approach, in the case of
no constraints on the input distribution, has a computational
complexity per iteration step of O(MN). In comparison,
the Blahut-Arimoto algorithm has a computational cost of
O(MN2) per iteration step. More precisely for no input
power constraint, the total computational cost to find an ε-
close solution is O( 1

εM
2N
√

logN) for the algorithm devel-
oped in this article, whereas the Blahut-Arimoto algorithm
requires O( 1

εMN2 logN). We would like to emphasize that
the computational cost of the smallest unit, i.e., the cost of
one iteration is strictly better for the algorithm introduced
in this article. As highlighted by Example 2, this can make
a substantial difference especially for large input alphabets.
Another strength of the new approach is that it provides an
a posteriori error, i.e., after having run a certain number of
iterations we can precisely estimate the actual error.

The method introduced in this article can be extended
to approximate the capacity of memoryless channels having
a continuos input alphabet and a countable discrete output
alphabet, fulfilling a mild assumption on the decay rate of the
channels tail [17].
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APPENDIX A
PROOF OF LEMMA 1

The mutual information I(p,W ) can be expressed as

I(p,W )

=

N∑
i=1

M∑
j=1

Wijpi log

(
Wij∑N

k=1 Wkjpk

)

=

N∑
i=1

M∑
j=1

[
piWij log(Wij)− piWij log

(
N∑
k=1

Wkjpk

)]
.

By adding the constraint
∑N
i=1 piWij = qj for all j =

1, . . . ,M ,

I(p,W ) =

N∑
i=1

M∑
j=1

[piWij log(Wij)− piWij log(qj)]

=

N∑
i=1

M∑
j=1

piWij log(Wij)−
M∑
j=1

qj log(qj)

= −r>p+H(q),



where p ∈ ∆N . Since q = W>p and W> is a stochastic matrix,
this implies q ∈ ∆M . By definition of Smax it is obvious
that the input cost constraint s>p ≤ S is inactive for S ≥
Smax, leading to the first optimization problem in Lemma 1.
It remains to show that for S < Smax, the input constraint can
be written with equality, leading to the second optimization
problem in Lemma 1. In oder to keep the notation simple we
define C(S) := CS(W ) for a fixed channel W . We show that
C(S) is concave in S for S ∈ [0, Smax]. Let S(1), S(2) ∈
[0, Smax], 0 ≤ λ ≤ 1 and p(i) probability mass functions that
achieve C(S(i)) for i ∈ {1, 2}. Consider the probability mass
function p(λ) = λp(1) + (1− λ)p(2). We can write

s>p(λ) = λs>p(1) + (1− λ)s>p(2)

≤ λS(1) + (1− λ)S(2)

=: S(λ) ∈ [0, Smax]. (15)

Using the concavity of the mutual information in the input
distribution, we obtain

λC(S(1)) + (1− λ)C(S(2))

= λI
(
p(1),W

)
+ (1− λ)I

(
p(2),W

)
≤ I
(
p(λ),W

)
≤ C(S(λ)),

where the final inequality follows by Shannon’s formula for
the capacity given in (1). C(S) clearly is non-decreasing
in S since enlarging S relaxes the input cost constraint.
Furthermore, we show that

C(Smax − ε) < C(Smax), for all ε > 0. (16)

Suppose C(Smax − ε) = C(Smax) and denote C? :=
max
p∈∆N

I(p,W ). This then implies that there exists p̄ ∈ ∆N such

that I(p̄,W ) = C? and s>p̄ = Smax − ε, which contradicts
the definition of Smax. Hence, the concavity of C(S) together
with the non-decreasing property and (16) imply that C(S)
is strictly increasing in S. Assume that C(S) is achieved for
some p? such that s>p? = S̃ < S. Then,

C(S̃) := max
p:s>p≤S̃

I(p,W ) ≥ I(p?,W ) = C(S),

which is a contradiction since C(S) is strictly increasing in S
for S ∈ [0, Smax].

APPENDIX B
PROOF OF LEMMA 2

This proof is similar to the proof given in [18, Theo-
rem 12.1.1]. Let q satisfy the constraints in (3). Then

J(q) = H(q)− c>q

= −
N∑
i=1

qi log qi − c>q

= −
N∑
i=1

qi log

(
qi
p∗i
p∗i

)
− c>q

= −D(q||p∗)−
N∑
i=1

qi log p∗i − c>q

≤ −
N∑
i=1

qi log p∗i − c>q (17)

= −
N∑
i=1

qi (µ1 + µ2si) (18)

= −
N∑
i=1

p∗i (µ1 + µ2si)− c>p∗ + c>p∗ (19)

= −
N∑
i=1

p∗i log p∗i − c>p∗ = J(p∗).

The inequality follows form the non-negativity of the relative
entropy. Equality (18) follows by the definition of p∗ and (19)
uses the fact that both p∗ and q satisfy the constraints in (3).
Note that equality holds in (17) if and only if q = p∗. This
proves the uniqueness.

APPENDIX C
PROOF OF LEMMA 3

Consider the following two convex optimization problems

Pβ :


max
p,q,ε

−r>p+H(q)− βε
s.t. |W>p− q| ≤ ε1

s>p = S
p ∈ ∆N , q ∈ ∆M , ε ∈ R≥0

and

Dβ :


min
λ

F (λ) +G(λ)

s.t. ‖λ‖1 ≤
β
2

λ ∈ RM
,

which are duals of each other and strong duality holds as the
existence of a Slater point is obviously guaranteed. Denote by
ε∗(β) the optimizer of Pβ with the respective optimal value
J∗β . The main idea of the proof is to show that for a sufficiently
large β, which we will quantify in the following, the optimizer
ε∗(β) of Pβ is equal to zero. That is, in light of the duality
relation, the constraint ‖λ‖1 ≤

β
2 in Dβ is inactive and as such



Dβ is equivalent to D. Note that for

J(ε) :=


max
p,q

−r>p+H(q)

s.t. |W>p− q| ≤ ε1
s>p = S
p ∈ ∆N , q ∈ ∆M

, (20)

the mapping ε 7→ J(ε), the so-called perturbation function, is
concave [19, p. 268]. In the next step we write the optimization
problem (20) in another equivalent form

J(ε) =


max
p,v

−r>p+H(W>p+ εv)

s.t. ‖v‖∞ ≤ 1
s>p = S
p ∈ ∆N , v ∈ RM

. (21)

By using Taylor’s theorem, there exists y ∈ [0, ε] such that the
entropy term in the objective function of (21) can be bounded
as

H(W>p+ εv) (22)

= H(W>p)−(log(W>p) + 1)
>
vε−

M∑
j=1

v2
j ε

2∑N
i=1 Wijpi + yvj

≤ H(W>p)− (log(W>p) + 1)
>
vε+

M

γ
ε2. (23)

Thus, the optimal value of problem Pβ can be expressed as

J∗β ≤ max
ε
{J(ε)− βε}

≤ max
ε

{
max
p,v

[
−r>p+H(W>p)− (log(W>p) + 1)

>
vε :

s>p = S] +
M

γ
ε2 − βε

}
(24a)

≤ max
ε

{
max
p,v

[−r>p+H(W>p) : s>p = S]

+(ρ− β)ε+
M

γ
ε2

}
(24b)

= J(0) + max
ε

{
(ρ− β)ε+

M

γ
ε2

}
, (24c)

where ρ = M
(
log(γ−1) ∨ 1

)
. Note that (24a) follows

from (21) and (23). The equation (24b) uses the fact that
− (log(W>p) + 1)

>
v ≤ M

(
log(γ−1) ∨ 1

)
. Thus, for β > ρ

and ε1 = γ
M (ρ − β), we have max

ε≤ε1

{
(ρ− β)ε+ M

γ ε
2
}

= 0.

Therefore, (24c) together with the concavity of the mapping
ε 7→ J(ε) implies that J(0) is the global optimum of J(ε)
and as such ε∗(β) = 0 for β > ρ, indicating that Pβ is
equivalent to P in the sense that J?β = J?0 . By strong duality
this implies that the constraint ‖λ‖1 ≤

β
2 in Dβ is inactive.

Finally, ‖λ‖2 ≤ ‖λ‖1 concludes the proof.
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