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Abstract— The increased presence of Electric Vehicles (EVs)
within electricity distribution systems introduces new challenges
to their reliability, since uncoordinated charging of large
numbers of EV can result in overload of distribution lines
or transformers. In order to manage this difficulty, entities
called EV aggregators are introduced whose task is to schedule
charging of the EV fleet while ensuring that network constraints
are respected. In this paper we propose a solution method for
the type of constrained optimization problems such aggregators
must solve. Our method is simple to implement and is guaran-
teed to produce good and feasible solutions, while performing
only lightweight centralized computations which do not require
the use of additional – and often expensive – constrained
optimization solvers. We show that the quality of solutions
produced by our method improves as the number of EVs to
be controlled is increased. In addition, the computation times
remain very short even for large problem instances entailing
several thousands EVs.

I. INTRODUCTION

A major new source of demand for future electricity dis-
tribution systems is the is the increasing use of hybrid or
fully electric vehicles (EVs). Recent studies project EVs sales
to constitute between 18% and 45% of total car sales in
the US by 2020 [3]. This transition will cause a substantial
change in the aggregated electric load profiles, with serious
repercussions on the distribution networks, as highlighted by
several studies [8], [16].

In order to ensure the ongoing reliable operation of electricity
distribution networks, control mechanisms must be put in
place to manage charging of electric vehicles. To achieve this
using a centralized control architecture, a distribution system
operator (DSO) would have to handle a potentially massive
number of EVs. To avoid this difficulty, the control structure
that is expected to prevail is a hierarchical one [7], [15]. In
this setting so-called aggregators will provide the necessary
interface, acting as virtual power plants from the perspective
of the DSO or, generically, towards the higher levels of the
control hierarchy, while managing the load fleet under their
jurisdiction. In such a control architecture, the DSO will
provide the limits on the available network resources that
the aggregator can use to charge its fleet. These limits must
be determined so as to ensure that network equipment is not
damaged. In turn, the aggregator must decide on a charging
schedule for its fleet that is compatible with these constraints.
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In this paper we are concerned with the computations to
be carried out at the aggregator level. One option to fulfil
the above needs is to use computational methods based
on mathematical optimization. Optimization can incorporate
the diverse charging requirements of each individual EV,
while ensuring that, in aggregation, the network limits are
satisfied. In such a framework it is furthermore possible
to define an objective function that will determine the best
charging schedule among all possible schedules that satisfy
the aforementioned local (EV level) and global (network
level) constraints. We describe the type of optimization
programs an aggregator has to solve. Owing to fixed charge
rate requirements, integer variable will be used in the model,
leading to a mixed-integer optimization problem formulation;
such models have already appeared in the literature [9], [14].
We will show that, despite the non-convex nature of this
formulation, we can get approximate solutions at very low
computational cost.

In particular, drawing from theoretical results obtained in
[17], we provide a solution method for the aforementioned
aggregator optimization problem. We propose a distributed
method for computing near optimal solutions without re-
course to any external constrained optimization solver (e.g.
linear or quadratic program solvers). The solutions recovered
are guaranteed to be feasible with respect to the local and
global constraints. We also provide explicit bounds on their
suboptimality, and show that the quality of the solutions
produced improves as the size of the optimization programs
considered (the number of controlled EV) increases, making
it particularly useful for the larger instances comprising
hundreds or thousands EVs. In our simulation results we
show that the computation times on a normal PC, even for
these larger instances, are very fast (≤ 10 sec). Furthermore,
depending on the availability of computational power on the
EV, it is optionally possible to carry the bulk of the required
computations distributedly.

The paper is organized as follows. In Section II we define the
aggregator’s control task and describe a prototypical use case.
We then model this control task as an optimization problem.
In Section III we report our proposed solution method, while
in Section IV we describe how it is to be applied to the
particular case of the EV charging coordination problem.
We also present simulation results, showing the performance
of our method. In Section V we make some concluding
remarks.
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Fig. 1. Schematic representation of the distribution system.

II. PROBLEM FORMULATION AND MATHEMATICAL
MODELLING

In this section we first describe our control problem from
an aggregator viewpoint. We then propose to tackle this
control task using mathematical optimization, proposing an
appropriate model to this end.

A. Scenario and Control Task Description

We take the perspective of a load aggregator responsible for
the electric vechicles (EVs) connected to a particular section
of a radial distribution network, as depicted in Figure 1. Most
of the EV charging occurs overnight, but left uncontrolled it
typically happens as soon as the EVs are connected to the
network. Since EVs are relatively large loads this may cause
load spikes which, in the worst case, can cause a partial
blackout of the distribution system [8].

Our control task is to determine a charging schedule for each
individual EV, such that the aggregated EV load is more
evenly distributed over the entire night period. Additionally,
the flows through a particular branch of the network under
control must be kept within some limits. This may be for
instance necessary to prevent an excessive voltage drop
within the branch.

We assume that EV charging stations draw power at fixed
rates, which is usually the case in practice [9]. Charging can
be interrupted and resumed, but in order to avoid excessive
switching, once charging starts it must continue for at least
20 minutes. This is a reasonable way of charging Lithium-
Ion batteries, which are the most common in EVs, because

they do not present memory effects and thus charging in-
terruption does not cause any appreciable degradation [13].
Non-interruptible charging is not discussed in this paper as
it is uncommon in practice. However, those applications for
which this is necessary (e.g., Nickel-Cadmium batteries) can
be readily incorporated in our proposed framework with an
appropriate design of the local constraints.

We therefore split the overnight period into intervals of 20
minutes each, and assume that the aggregator has the au-
thority to flag, for each individual EV, the available charging
time slots.

The information to be communicated between each EV and
the aggregator depends on the mode in which our proposed
method is implemented. We elaborate on this in Section
IV. For the moment, let us assume that when the EV is
connected, it transmits all its charging requirements to the
aggregator, i.e., the initial state of charge (SOC), a desired
minimum final SOC and the time when the EV is planned
to be disconnected. The initial SOC is directly measured by
the EV, while the other two parameters can be set to some
default values, so that the EV user does not need to manually
enter this information every time.

For the sake of simplicity, we also assume that all the EVs
are connected at the time when the charging schedule is es-
tablished. This assumption can be easily relaxed by buffering
newly connected EVs, and recomputing every 20 minutes a
charging schedule with the new population information.

B. Optimization Problem Model

We begin by encoding the control task described in the
previous subsection as an optimization problem. Generally,
such a model will comprise a large number of subsystems,
with a global objective and in the presence of some coupling
constraints. Owing to the hierarchical structure discussed in
Section I, the aggregator is responsible only for a limited
number of network constraints. Thus, the number of coupling
constraints is typically significantly smaller than the number
of the subsystems under control.

The optimization problem model we propose in this paper is
as follows:

• Decision Variables. The binary variables ui[k] ∈ {0, 1}
are the decision variables representing the flag that the
aggregator assigns to time-slot k for the electric vehicle
i. When ui[k] = 1, the EV is allowed to charge during
the k-th time slot and, vice versa, when ui[k] = 0
charging cannot occur.

• Objective Function. We model the requirement of
evenly distributing load throughout the night as a ref-
erence tracking objective, in which the reference signal
P ref is chosen so as to achieve the desired “valley fill”:

minimize
ui

N−1∑
k=0

∣∣∣∣∑
i∈I

Piui[k]− P ref [k]

∣∣∣∣ , (1)



where Pi is the power consumption of the i-th EV when
charging. Alternatively, one can write (1) as

minimize
ui,r

N−1∑
k=0

r[k], (2)

together with the additional constraint

−r[k] ≤
∑
i∈I

Piui[k]− P ref [k] ≤ r[k] k ∈ N[0,N−1] (3)

• Coupling Constraints. In addition to (3), coupling
constraints arise from the limits on the flows through
the critical branch. We model these as hard constraints
on the consumption of the electric vehicles i ∈ Icr ⊆ I
belonging to that critical branch,∑

i∈Icr

Piui[k] ≤ Pmax[k] k ∈ N[0,N−1]. (4)

• Subsystems Model. The subsystems in this application
are the EVs batteries that are to be charged. We denote
by ei[k] the charge level of the i-th battery. The initial
state of charge is Einit

i , and we require that the state
of charge reaches Eref

i by Ni ≤ N , the time when
the vehicle is planned to be unplugged. The charging
conversion efficiency is ζi < 1, and the battery’s
maximum capacity is Emax

i . Loss of charge when not
in use is neglected, as it is typically a small quantity
[13]. Subsystems are then modeled as follows:

ei[0] = Einit
i

ei[k + 1] = ei[k] + (Pi∆Tζi)ui[k] k ∈ N[0,N−1]

ei[Ni] ≥ Eref
i

ei[k] ≤ Emax
i k ∈ N[0,N ]

ui ∈ {0, 1}N .

The optimization problem that is to be solved at the aggre-
gator level amounts then to

minimize
r,ei,ui

reference tracking error (2)

subject to tracking error definition (3)
critical branch flow constraint (4)
(ei, ui) ∈ Xi,

(6)

in which

Xi =


[
ei
ui

]
∈ (R× Z)N

∣∣∣∣∣∣∣∣∣∣
ei[k] = Einit

i +
k∑
t=0

Biui[t]

ei ≤ Emax
i

ei[Ni] ≥ Eref
i

0 ≤ ui ≤ 1

 (7)

where Bi
.
= Pi∆Tζi.

III. PROPOSED SOLUTION METHOD

The optimization problem model (6) expresses the typical
structure we are interested in as aggregators. Generically,

we want to solve problems of the form
minimize

x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b

xi ∈ Xi ∀i ∈ I,

(P)

in which a number of subsystems, described by the model
Xi,

Xi =
{
x ∈ Rri × Zzi

∣∣ Aix � di} ,
is coupled through the global constraints defined by the
matrix H

.
= [H1, . . . ,H|I|] and the resource vector b.

In the EV application these are for instance branch flow
constraints (4), and the resource is the power line capacity.
The subsystems are the EV batteries, and the local model
Xi is the charging model (7).

Note that the local models Xi we are interested in may
entail integer variables. In the EV aggregator application,
these arise due to fixed rate charging. In other smart grid
applications, integer variables can be used to model on/off
devices such as thermostastically controlled loads [7].

In this Section we summarize the solution method for prob-
lems structured as P which is proposed in [17]. In Section
IV we will apply this method to the EV aggregator problem
(6).

The method is based on the lagrangian duality framework
for mixed integer optimization problems. Roughly speaking,
while duality is able to produce optimal solutions for convex
programs, in the discrete case duality is weaker and is
generally unable to provide even feasible solutions to the
primal problem. However, it is known that the duality gap
of programs structured as P decreases, in relative terms, as
their size increases, i.e., when the number of subsystems Xi

considered grows with respect to the number of coupling
constraints [2], [5], [4]. This means that, as they become
larger, these programs resemble more and more convex prob-
lems. This allows one to derive good and feasible solutions
from their dual. We indicate how in the next subsection.

A. Duality for the Problem Structure of P

Duality for the specific problem structure P has been studied
previously [5], [4]. In this framework we dualize the coupling
constraints by relaxing them in the objective, leading to the
dual function

d(λ)
.
= min

x∈X

(∑
i∈I

c>i xi + λ>(
∑
i∈I

Hixi − b)
)
. (8)

It is known that, for any λ ≥ 0, the dual function d(λ)
provides a lower bound to the optimal objective of P . It is
thus natural to ask for the best (i.e., greatest) lower bound
duality can provide, and hence formulate the following dual
problem{

sup
λ
−λ>b+

∑
i∈I

min
xi∈Xi

(
c>i xi + λ>Hixi

)
s.t. λ � 0.

(D)



The minimization in D is referred to as the inner problem.
Note that, in contrast to the original coupled system P ,
the inner problem is separated in |I| decoupled, lower
dimensional optimization problems. Therefore it is generally
much easier to solve. For a given λ, we denote by X (λ) the
set of minimizers to the inner problem, and when we say
that we recover a primal solution from a dual one, we mean
that we perform an arbitrary selection of an element from
X (λ), and we denote it by x(λ) ∈ X (λ). These solutions
are the central object of this paper. For generic mixed integer
programs, even at an optimal dual solution λ?, a solution
x(λ?) ∈ X (λ?) is typically suboptimal or even infeasible,
see [6, Example 4.4]. However, inner solutions of programs
structured as P do acquire some useful properties that can
be exploited to devise a solution method.

To get this result, we first introduce the following convexified
version of P:

minimize
x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b

xi ∈ conv(Xi) ∀i ∈ I.

(PLP)

Note that PLP is a linear program, but it does not coincide
with the standard relaxation in which the integrality condi-
tions in (7) are just dropped. It is fact generally tighter [10].
Notice further that we usually don’t have access to this LP
because we generally don’t have an explicit description of
the convex hulls conv(Xi).

One of the most important results in duality for mixed integer
programs is that the optimal objective of the convexified
problem PLP coincides with the optimal dual objective, i.e.,
J?PLP

= J?D [6], [10]. In [17] we show that the relation
between PLP and D goes beyond their objectives, and also
concerns their optimizers. We obtain this under the following
assumption.

Assumption 1: The optimization problem PLP and D have,
respectively, unique solutions x?LP and λ?.

This assumption concerns linear programs (see [17, A.2] for
the explicit LP version of D). Uniqueness of solutions in
this setting is discussed in [11]. The degenerate circumstance
in which this assumption fails can always be avoided by
introducing negigible perturbations to the cost c and the
resource vector b [11].

In the next Theorem we assert that the solutions x?LP and
x(λ?) differ in at most rank(H) ≤ m subproblem com-
ponents, for any selection x(λ?) ∈ X (λ?), where H

.
=

[H1, . . . ,H|I|].

Theorem 1: Under Assumption 1, for all x(λ?) ∈ X (λ?)
there exists I1 ⊆ I , with |I1| ≥ |I| − rank(H), such that
xi(λ

?) = (x?LP)i for all i ∈ I1.

Proof: See [17], Appendix A.2. The key theoretical
result used is the Shapley–Folkman–Starr theorem [4, Prop.
5.7.1].

This result is interesting from a practical point of view. Note
in fact that inner solutions x(λ?) always satisfy the local
technical constraints (including integrality), i.e., xi(λ?) ∈ Xi

by construction. However, they usually violate the coupling
constraints [6, Example 4.4]. In contrast, an optimizer to PLP

always satisfies the coupling constraints by definition, but
may violate the local integrality conditions in Xi, due to the
convexification operation. The fact that these two optimizers
are “close”, as specified in Theorem 1, implies that we only
need a relatively limited amount of compensation to make
x(λ?) feasible with respect to the coupling constraints. In the
next subsection we propose a method to achieve this using
a constraint tightening approach.

B. A Distributed Method based on Resource Contraction

Consider the following contracted version of P:
minimize

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b̄

xi ∈ Xi ∀i ∈ I,

(P)

in which the resource vector b has been contracted to b̄
.
=

b − ρ, and where the k-th entry of the contraction vector
ρ ∈ Rm is given by

ρk = rank(H) ·max
i∈I

(
max
xi∈Xi

Hk
i xi − min

xi∈Xi

Hk
i xi

)
, (9)

where Hk
i is the k-th row of Hi. In the following Theorem

we establish that any solution recovered from the dual of the
contracted P is feasible for the original problem P . We also
provide a performance bound for the solutions recovered. In
order to obtain an explicit bound, however, we need to make
the following assumption.

Assumption 2: Problem PLP has a Slater point with increas-
ing slack, i.e., there exists η > 0 and x̂i ∈ conv(Xi) for all
i ∈ I such that ∑

i∈I
Hix̂i ≤ b̄− η|I|1. (10)

Theorem 2: If Assumption 1 holds for the programs PLP

and D associated to the contracted primal problem P , then
any solution x(λ̄?) ∈ X (λ̄?) is feasible for the original,
uncontracted, P . Additionally, if Assumption 2 holds, then
the recovered solution satisfies the following performance
bound

JP(x(λ̄?))− J?P ≤

(rank(H) + ‖ρ‖∞
η ) ·max

i∈I

(
max
xi∈Xi

cixi − min
xi∈Xi

cixi

)
.

(11)

Proof: See [17], Appendix A.3 and A.4.

Observe that the bound given in (11) indicates that, if the
sets Xi are uniformly bounded and J?P grows linearly with
increasing |I|, then

J(x(λ̄?))− J?P
J?P

→ 0 as |I| → ∞. (12)



This shows one of the main attractive aspects of our proposed
method: the quality of the solutions produced improves with
increasing problem’s size. This behaviour can be expected
also without Assumption 2, but the analysis is more compli-
cated, see [17, Theorem 3.9].

Note further that the constraint tightening approach always
results in increased optimal dual multipliers, i.e., λ̄? ≥ λ?.
When dual multipliers are seen as “shadow prices”, we can
interpret the contraction method as a way to establish an
appropriate price-uplift, which ensures that the population
participating in the control converges to an equilibrium which
satisfies the global constraints despite the presence of local
non-convexities.

IV. APPLICATION TO EVS AGGREGATOR

We now describe how to apply the method presented in
Section III to the aggregator’s optimization problem of
Section II. We also highlight several important practicalities.

A. Implementation and Practical Remarks

To make the description easier to follow, we have divided it
in a number of separate steps.

Step 1 (resource contraction). The number of coupling
constraints in (6) is 3N . However, one may observe that
in view of the box constraints (3), rank(H) clearly drops
to 2N . Using an argument based on simplex tableaus, it is
furthermore possible to show that this number does not need
to be increased if other critical branches are added to the
problem model, ensuring that the necessary contraction does
not grow excessively; we omit the technical details here, and
refer the interested readers to [17, App. A.2].

Moreover, note that for any solution x(λ) the feasibility
of the coupling constraints (3) is guaranteed by increasing
the value r, ensuring that these constraint need not to be
contracted. Constraints on the flows through the critical
branch are true hard constraints whose feasibility is the main
objective of the tightening procedure (9) proposed in this
paper. This leads to∑

i∈Icr

Piui[k] ≤ P̄max[k]
.
= Pmax[k]− ρ, (13)

where

ρ = 2N ·max
i∈I

Pi. (14)

Remark 1: The interpretation of this result is that in the un-
contracted solution x(λ?) at most 2N EVs can be responsible
for hard constraint violations which, in the worst case, occur
all at the same time step.

Step 2 (perturbation). In our simulations, reported in the
next subsection, we have observed that adding small pertur-
bations to the cost vector, as in

minimize
ui,r

N−1∑
k=0

(
r[k] +

∑
i∈I

δi[k](Piui[k])

)
(15)

with small δi, significantly enhances dual convergence; we
recommend to always implement this. Intuitively speaking,
the reason why this helps is that the master problem intends
to achieve coordination by issuing the “prices” λ, but each
individual EV “sees” the same price without perturbation
term. When the diversity of the subsystems Xi is limited,
i.e., the EVs have similar dynamics, their reaction to price
profiles is also similar. Consequently, as the price profile is
adjusted, they all respond similarly, leading to an oscillatory
behaviour which is solved only if the dual solution λ? is
found with very high precision. The perturbation term in
(15) artificially changes the price received by each individual
EV, neutralizing oscillations earlier and hence leading to
substantially faster convergence rates when solving the dual.

Step 3 (setup and solve dual problem). Dualizing the
coupling constraints in (6) leads to the dual function

d(λ, µ) =
∑
i∈I

min
xi∈Xi

Piu
>
i (δi + λ1 − λ2 + λ3 · Icr(i))

+ min
r
r>(1− λ1 − λ2)

−(λ1 − λ2)>P ref − λ>3 P̄max,

in which λ1 and λ2 are the dual multipliers associated with
(3), while λ3 is related to the dualization of (4), and

Icr(i) =

{
1 if i ∈ Icr

0 otherwise.
(16)

Since the variable r is unbounded, the dual function remains
bounded only for λ ∈ Λ, where

Λ =
{

(λ1, λ2, λ3) ∈ R3N |λ1 + λ2 = 1, λ ≥ 0
}
. (17)

Given an initialization point λ[1], the corresponding dual
problem, as defined in D, can be solved by deploying the
projected subgradient method [1], i.e.,

λ[n+1] = PΛ

(
λ[n] + s[n] · γ[n]

)
, (18)

in which γ[n] =
∑
i∈I Hix(λ[n])− b is a valid subgradient,

and s[n] is the chosen stepsize rule. Several rules exist which
will guarantee the convergence λ[n] → λ? ∈ Λ?, see [1, Thm.
2]. Let us remark that the iterative update rule (18) involves
a projection operation onto Λ at each step, whose analytical
solution is available. That is, letting λ+ .

= max(0, λ), where
the maximum is component-wise, then

PΛ(λ) =


λ+
1

λ+
1 +λ+

2

λ+
2

λ+
1 +λ+

2

λ+
3

 . (19)

Step 4 (inner problem). At each iteration of the subgradient
method, we need to compute a solution to the inner problem
x(λ[n]) in order to determine a valid subgradient γ[n]. The
inner problem consists of |I| decoupled local optimization
programs of the form

min
(ui,ei)∈Xi

Piu
>
i (δi + λ1 − λ2 + λ3 · Icr(i)). (20)



Tracking Error θ (%) Solve time† (sec)

# PEVs Min Avg Max Min Avg Max

50 3.37 5.03 6.26 0.05 0.05 0.06
100 2.49 3.36 4.40 0.10 0.10 0.11
500 1.85 2.03 2.28 0.52 0.54 0.55
1000 0.29 0.56 0.72 1.05 1.08 1.09
2000 0.24 0.39 0.51 2.12 2.18 2.29
5000 0.21 0.27 0.30 4.34 4.42 4.50
10000 0.16 0.20 0.24 7.93 8.13 8.62
†sum of the time spent solving the dual iterations.

TABLE I
COMPUTATIONAL RESULTS.

The method proposed in this paper is most useful when
these minimizations are simple. This is the case for the EV
aggregator application. In fact, for any given dual multiplier
λ ∈ Λ, the solution to (20) – the optimal local charging
policy u?i (λ) – is greedy. As we illustrate in Appendix
VI, due to this greedy subproblem structure, the required
local computation amounts to a single vector sort, which is
computationally extremely lightweight.

Note that these computations do not need to be executed by
the aggregator itself. If computational power is available on
the EVs to calculate solutions to (20), then the computational
burden can be distributed. The advantage is that when the
optimization problem is solved in this fashion, a higher
degree of privacy results, as the EVs do not need to provide
any local data to the aggregator (i.e., any of the parameters
describing Xi), but only their planned consumption for a
given price profile. The drawback is that such an iterative
process will require more communication rounds to converge
to a solution, instead of transmitting information only once.

B. Simulation Results

We have implemented this method on a set of instances of
problem (6), which are generated according to the parameters
in Table II. These reflect reasonable values for an aggregator
managing a section of the distribution system containing
50′000 households, and with a population of controlled EVs
which we increase from |I| = 50 to |I| = 10′000. For each
population size, we have generated and solved 10 instances.
Computations are done on a Laptop with a 2.7GHz CPU and
4GB of RAM using MATLAB.

The numeric performance determined from these experi-
ments is reported in Table I. Solve times are stable and well
within 10 seconds even for the largest instances. If needed,
these can be further reduced by exploiting parallelism, since
the bulk of the computations consists in determining inner
solutions, or by rewriting the code using a faster language
(e.g., C). Tracking performance is measured by

θ =
∆T‖r(λ[end])− r?‖1

∆T‖P ref‖
· 100, (21)

where r? is the optimal solution, which we computed using
Gurobi [12], and r(λ[end]) is the tracking error of the solution

Parameter Value Units

|I| 50− 10000 PEVs
|Icr| 1/3 · |I| PEVs
Pi [3− 5] kW

Emax
i [8− 16] kWh
Einit

i [0.2− 0.5] · Emax
i kWh

Eref
i [0.2− 0.5] · Emax

i kWh
ζi [0.015− 0.075] –

∆T 20 min
N 24 –
δi [0− 0.03] –

Pmax 4 ·
∑

i∈Icr
Eref

i −Einit
i

N·∆T
kW

TABLE II
PARAMETERS USED IN THE SIMULATIONS. VALUES IN THE BRACKETS

ARE SAMPLED FROM A UNIFORM DISTRIBUTION.

recovered from the last dual iterate λ[end]. This performance
metric represents the achieved energy of the tracking error,
relative to the optimal attainable one, divided by the total
amount of energy drawn by the population.

Figure 2 represents the typical performance plots for the
primal solutions recovered through our contraction scheme,
for an instance with |I| = 5′000 EVs. Figure 2(a) depicts
the reference tracking performance at some intermediate and
the final iteration. The reference signal is tracked well. In
Figure 2(b) we can observe the flow limits through the
critical branch (dotted line), and their tightened counterparts
(dashed). At the final iteration, the solution recovered sat-
isfies the line capacity constraints. Figure 2(c) shows the
resulting “valley fill” achieved through the EVs control.

In Figure 3 we report the typical primal and dual convergence
behaviour. Figure 3(a) depicts the constraint violation of the
primal solutions recovered, with and without the perturbation
terms discussed in Section IV. Convergence with the small
additive perturbations (cf. Table II) is substantially enhanced.

V. CONCLUSION

In this paper we have formulated the control task of an
aggregator of Electric Vehicles as an optimization problem.
Borrowing from recent theoretical results, we have provided
a solution method that is simple to implement, has fast
computation times and is guaranteed to provide feasible
solutions attaining a certain minimum performance bound.
Furthermore, the bulk of the computations required to obtain
a solution can be distributed.

This paper is focused on the control of aggregated EVs.
However, the proposed method is flexible enough to incor-
porate other on/off devices that are important for demand
side management purposes, such thermostatically controlled
loads.
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paper.

VI. APPENDIX

The local problem to be solved is

min Pi
∑N−1
k=0 ui[k]ψi[k]

subject to ei[k] = Einit
i +

∑k
t=0(Pi∆Tζi)ui[k]

ei ≤ Emax
i

ei[Ni] ≥ Eref
i

ui ∈ {0, 1} ,

(22)

in which we have defined the “price profile” seen by EV i
as ψi

.
= δi + λ1 − λ2 + λ3 · I(Icr). We furthermore define
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Fig. 3. Primal and dual convergence.

the minimum and maximum number of charging steps as

Cmin
i

.
=

⌈
Eref
i − Einit

i

Pi∆Tζi

⌉
, Cmax

i
.
=

⌊
Emax
i − Einit

i

Pi∆Tζi

⌋
. (23)

We see that if ψi ≥ 0, then the optimal control strategy is
to activate charging for the least possible number of steps
Cmin
i , and to do so during those times when ψi is lowest.

For a price profile which contains possibly negative values,
we can extend this as follows. We sort the entries of ψi in
ascending order, storing it in ψ↑i , and introduce

C0
i
.
= max

{
k
∣∣∣ψ↑i [k] < 0

}
,

Ci = max
{
Cmin
i ,min

{
C0
i (ψ↑i ), Cmax

i

}}
.

Then,

u?i [k] =

{
1 ψi[k] ≤ ψ↑i [Ci]
0 otherwise.

(24)

The most expensive computation of this procedure is the
vector sort used to determine ψ↑i .
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