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Abstract— In this paper, we provide a compositional frame-
work for the construction of infinite approximations of inter-
connected stochastic control systems. Our approach is based on
a notion of so-called stochastic simulation functions that are as-
sociated with interfaces. The stochastic simulation functions are
used to quantify the approximation error while the interfaces
are used to lift the controllers synthesized for the approximation
to the controllers for the original stochastic system. In the first
part of the paper, we analyze interconnected stochastic control
systems which consist of several stochastic control subsystems.
We derive sufficient conditions that facilitate the compositional
construction of stochastic simulation functions together with the
associated interfaces. Specifically, we show how to construct a
stochastic simulation function with the corresponding interface
for the interconnected stochastic control system from the
simulation functions and interfaces of the individual stochastic
control subsystems. In the second part of the paper, we focus
on linear stochastic control systems. We extend a methodology,
which is known for the non-probabilistic case, to construct
infinite approximations of linear stochastic control systems
together with their stochastic simulation functions and the
corresponding interfaces. Finally, we illustrate the effectiveness
of the proposed results on the interconnection of four linear
stochastic control subsystems.

I. INTRODUCTION

The design of controllers for complex (stochastic) control
systems with respect to some complex specifications, e.g.
linear temporal logic (LTL) [2], in a reliable and cost
effective way is a grand challenge in the study of many
safety-critical systems. One promising direction to overcome
those complexity issues is the use of simpler (in)finite
approximations of the given systems as a substitute in the
controller design process. Those approximations allow us to
design controllers for the approximations and then refine the
controllers to the ones for the concrete complex systems,
while providing us with the quantified errors in this detour
controller synthesis scheme.

The last decade has witnessed several results on the
construction of (in)finite approximations of continuous-time
stochastic control systems. The interested reader can consult
the recent results in [13, and references therein] on the
construction of finite approximations of stochastic control
systems. Using those finite approximations, one can leverage
the apparatus of finite-state reactive synthesis [9] towards
the problem of synthesizing hybrid controllers enforcing
complex logical specifications on the original systems. The
results in [7] check if an infinite approximation is formally
related to a concrete stochastic control system via a notion
of so-called stochastic simulation function, however these
results do not extend to the construction of approximations
and are computationally tractable only for autonomous mod-
els (i.e., with no inputs). Note that the proposed results
in [13] and [7] take a monolithic view of continuous-
time stochastic control systems, where the entire system
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is approximated. This monolithic view interacts badly with
the construction of approximations, whose complexity grows
(possibly exponentially) in the number of state variables in
the model.

In this paper, we provide a compositional framework for
the construction of infinite approximations of interconnected
stochastic control systems consisting of several stochastic
control subsystems. Our framework is based on a new
notion of so-called stochastic simulation functions and as-
sociated interfaces. Similar to the proposed notions for non-
probabilistic control systems [6], the stochastic simulation
function in this paper is used to quantify the error between
the approximation and the concrete stochastic control sys-
tem, while the interface is used to lift a controller for the
approximation to a controller for the original system.

In the first part of the paper, we present a sufficient small-
gain type condition, similar to the one in [4], that facilitates
the construction of a stochastic simulation function together
with an associated interface between the approximation and
the interconnected stochastic system, from the stochastic
simulation functions and interfaces of the individual sub-
systems. In the second part of the paper, we focus on linear
stochastic control systems. We extend the approach in [10] on
the construction of approximations of linear non-probabilistic
control systems together with their corresponding simulation
functions and interfaces to linear stochastic control systems.

Similar approaches on the compositional construction of
simulation functions based on small-gain type conditions
are proposed in [5] and [12]. In [5], the interconnection
of two non-probabilistic control subsystems is studied. We
generalize that result by considering interconnections of an
arbitrary (but finite) number of stochastic control subsystems.
General interconnected stochastic systems with an arbitrary
number of subsystems are studied in [12] as well. Although
the results in [5], [12] assume there exist approximations of
original systems and do not provide a way of constructing
them, here, we provide constructive means to compute ap-
proximations for the case of linear stochastic control systems.

II. STOCHASTIC CONTROL SYSTEMS

A. Notation
We denote by N the set of nonnegative integer numbers

and by R the set of real numbers. We annotate those symbols
with subscripts to restrict them in the obvious way, e.g. R>0
denotes the positive real numbers. The symbols In, 0n, and
0n×m denote the identity matrix, zero vector, and zero matrix
in Rn×n, Rn, and Rn×m, respectively. For a, b ∈ R with
a ≤ b, we denote the closed, open, and half-open intervals in
R by [a, b], ]a, b[, [a, b[, and ]a, b], respectively. For a, b ∈ N
and a ≤ b, we use [a; b], ]a; b[, [a; b[, and ]a; b] to denote
the corresponding intervals in N. Given N ∈ N≥1, vectors
xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use x = [x1; . . . ;xN ]

to denote the vector in Rn with n =
∑N
i=1 ni. Similarly, we

use X = [X1; . . . ;XN ] to denote the matrix in Rn×m with
n =

∑N
i=1 ni, given N ∈ N≥1, matrices Xi ∈ Rni×m, ni ∈

N≥1, and i ∈ [1;N ]. Given a vector x ∈ Rn, we denote by



‖x‖ the Euclidean norm of x. Given a matrix P = {pij} ∈
Rn×n, we denote by Tr(P ) =

∑n
i=1 pii the trace of P .

Given a function f : Rn → Rm and x̄ ∈ Rm,
we use f ≡ x̄ to denote that f(x) = x̄ for all x ∈
Rn. If x is the zero vector, we simply write f ≡ 0.
Given a measurable function f : R≥0 → Rn, the (essen-
tial) supremum of f is denoted by ‖f‖∞; measurability
throughout this paper refers to Borel measurability; we
recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. A continuous
function γ : R≥0 → R≥0, is said to belong to class K if it
is strictly increasing and γ(0) = 0; γ is said to belong to
class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A continuous
function β : R≥0 × R≥0 → R≥0 is said to belong to class
KL if, for each fixed s, the map β(r, s) belongs to class
K with respect to r and, for each fixed nonzero r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞.

B. Stochastic control systems
Let (Ω,F ,P) be a probability space endowed with a

filtration F = (Ft)t≥0 satisfying the usual conditions of
completeness and right continuity [8, p. 48]. Let (Wt)t≥0
be a p̃-dimensional F-Brownian motion.

Definition 2.1: The class of stochastic control systems
with which we deal in this paper is the tuple Σ =
(Rn,Rm,Rp,U ,W, f, σ,Rq, h), where
• Rn is the state space;
• Rm is the external input space;
• Rp is the internal input space;
• U is a subset of the set of all F-progressively measur-

able processes with values in Rm; see [8, Def. 1.11];
• W is a subset of the set of all F-progressively measur-

able processes with values in Rp;
• f : Rn × Rm × Rp → Rn is the drift term

which is globally Lipschitz continuous: there exist
constants Lx, Lu, Lw ∈ R≥0 such that: ‖f(x, u, w) −
f(x′, u′, w′)‖ ≤ Lx‖x−x′‖+Lu‖u−u′‖+Lw‖w−w′‖
for all x, x′ ∈ Rn, all u, u′ ∈ Rm, and all w,w′ ∈ Rp;

• σ : Rn → Rn×p̃ is the diffusion term which is globally
Lipschitz continuous;

• Rq is the output space;
• h : Rn → Rq is the output map.
A stochastic control system Σ satisfies

Σ :

{
d ξ(t) = f(ξ(t), ν(t), ω(t)) d t+ σ(ξ(t)) dWt,
ζ(t) = h(ξ(t)), (II.1)

P-almost surely (P-a.s.) for any ν ∈ U and any ω ∈ W ,
where stochastic process ξ : Ω× R≥0 → Rn is called a solu-
tion process of Σ and stochastic process ζ : Ω× R≥0 → Rq
is called an output trajectory of Σ. We call the tuple
(ξ, ζ, ν, ω) a trajectory of Σ, consisting of a solution process
ξ, an output trajectory ζ, and input trajectories ν and ω, that
satisfies (II.1) P-a.s.. We also write ξaνω(t) to denote the
value of the solution process at time t ∈ R≥0 under the input
trajectories ν and ω from initial condition ξaνω(0) = a P-
a.s., in which a is a random variable that is F0-measurable.
We denote by ζaνω the output trajectory of the solution
process ξaνω. We emphasize that the postulated assumptions
on f and σ ensure existence, uniqueness, and strong Markov
property of the solution processes [3].

III. STOCHASTIC SIMULATION FUNCTION

Here, we introduce the notion of stochastic simulation
function, inspired by the notion of simulation function
in [10], for non-probabilistic control systems with internal
and external inputs.

Definition 3.1: Let Σ = (Rn,Rm,Rp,U ,W, f, σ,Rq, h)
and Σ̂ = (Rn̂,Rm̂,Rp, Û ,W, f̂ , σ̂,Rq, ĥ) be two stochastic
control systems with the same internal input and output space
dimension. Let V : Rn × Rn̂ → R≥0 be a twice continu-
ously differentiable function and νν̂ : Rn×Rn̂×Rm̂×Rp →
Rm be a (measurable) function which is globally Lipschitz
continuous in the first argument. The function V is called a
simulation function of Σ̂ by Σ and νν̂ is called the associated
interface if for every x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, w, ŵ ∈ Rq ,
the inequalities:

α(‖h(x)− ĥ(x̂)‖) ≤ V (x, x̂), (III.1)

and

Lw,û,ŵV (x, x̂) := [∂xV ∂x̂V ]

[
f(x, νν̂(x, x̂, û, ŵ), w)

f̂ (x̂, û, ŵ)

]
+

1

2
Tr
([

σ(x)
σ̂ (x̂)

] [
σT (x) σ̂T (x̂)

] [
∂x,xV ∂x,x̂V
∂x̂,xV ∂x̂,x̂V

])
≤ −λV (x, x̂) + ρext(‖û‖) + ρint(‖w − ŵ‖), (III.2)

hold for some constant λ ∈ R>0 and some K∞ functions
α, ρext, ρint, where α is a convex function and ρext, ρint are
concave ones.

We say that a stochastic control system Σ̂ is approximately
alternatingly simulated by a stochastic control system Σ or Σ
approximately alternatingly simulates Σ̂, denoted by Σ̂ �AS
Σ, if there exists a stochastic simulation function of Σ̂ by Σ
as in Definition 3.1. Moreover, we call Σ̂ an abstraction of
Σ.

The following theorem shows the importance of the ex-
istence of a simulation function by quantifying the error
between Σ and its abstraction Σ̂.

Theorem 3.2: Let Σ = (Rn,Rm,Rp,U ,W, f, σ,Rq, h)
and Σ̂ = (Rn̂,Rm̂,Rp, Û ,W, f̂ , σ̂,Rq, ĥ). Suppose V is a
simulation function of Σ̂ by Σ with the associated interface
function νν̂ . Then, there exist a KL function β and K∞
functions γext, γint such that for any ν̂ ∈ Û , any ω, ω̂ ∈ W ,
and any random variable a and â that are F0-measurable1,
the inequality

E[‖ζaνω(t)− ζ̂âν̂ω̂(t)‖] ≤ β(E[V (a, â)], t)

+ γext(E[||ν̂||∞]) + γint(E[||ω − ω̂||∞]),
(III.3)

holds, where ν(t) = νν̂(ξ(t), ξ̂(t), ν̂(t), ω̂(t)).
The proof is similar to the one of Theorem 3.3 in [13] and

is omitted here for the sake of brevity.
Remark 3.3: The functions β, γext, and γint as

β (r, t) := α−1
(

3re−λt
)
, γext(r) := α−1 ((3/λ)ρext(r)) ,

γint(r) := α−1 ((3/λ)ρint(r)) , (III.4)

satisfy inequality (III.3). Note that if α−1 satisfies the triangle
inequality, i.e., α−1(a+b) ≤ α−1(a)+α−1(b), ∀a, b ∈ R≥0,
one can substitute the coefficients 3 in the expressions of β,
γext, and γint in (III.4) with 1 to get less conservative upper
bound in (III.3).

Note that the importance of the result provided in Theorem
3.2 is that one can synthesize a controller for the abstraction
Σ̂, which is potentially easier (e.g., lower dimension) to en-
force some complex specification, for example given in LTL.
Then by using the interface νν̂ , the controller constructed for
the abstraction can be refined to a controller for the concrete
stochastic control system Σ. The error, introduced in the

1Note that F0 may be the trivial sigma-algebra, i.e., a and â are non-
probabilistic initial conditions.



design process by taking the detour through the abstraction,
is quantified by inequality (III.3).

In the next section, we work with interconnected stochas-
tic control systems without internal inputs, resulting from
the interconnection of stochastic control subsystems having
both internal and external signals. In this case, the inter-
connected stochastic control systems reduce to the tuple
Σ = (Rn,Rm,U , f, σ,Rq, h) and the drift term becomes
f : Rn×Rm → Rn. In this view, the definition of stochastic
simulation function for stochastic control systems without
internal inputs simplifies as: the interface function becomes
νν̂ : Rn × Rn̂ × Rm̂ → Rm and the term ρint(‖w − ŵ‖)
is omitted in (III.2). Similarly, the results in Theorem 3.2
are modified accordingly, i.e., for systems without internal
inputs the inequality (III.3) is not quantified over ω, ω̂ ∈ W
and, hence, the term γint(E[‖ω − ω̂‖∞]) is omitted as well.

IV. COMPOSITIONALITY RESULT

In this section, we analyze interconnected stochastic con-
trol systems and show how to construct an abstraction of
an interconnected stochastic control system together with
the corresponding stochastic simulation function and the
interface in a compositional fashion. The definition of the
interconnected stochastic control system is based on the
notion of interconnected systems introduced in [11].

A. Interconnected stochastic control systems
We consider N ∈ N≥1 stochastic control subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi,Rqi , hi) , i ∈ [1;N ]

with partitioned internal inputs and outputs

wi =
[
wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN

]
, wij ∈ Rpij

yi = [yi1; . . . ; yiN ], yij ∈ Rqij (IV.1)

and output function
hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (IV.2)

We interpret the outputs yii as external outputs, whereas
the outputs yij with i 6= j are internal outputs which are
used to define the interconnected stochastic control systems.
In particular, we assume that the dimension of wij is equal
to the dimension of yji, i.e., the following interconnection
constraints hold:

pij = qji, ∀i, j ∈ [1;N ], i 6= j. (IV.3)

If there is no connection between stochastic control subsys-
tem Σi and Σj , then we assume that the connecting output
function is identically zero for all arguments, i.e., hij ≡ 0.
We define the interconnected stochastic control system as the
following.

Definition 4.1: Consider N ∈ N≥1 stochastic control
subsystems Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi,Rqi , hi), i ∈
[1;N ], with the input-output configuration given by (IV.1)-
(IV.3). The interconnected stochastic control system Σ =
(Rn,Rm,U , f, σ,Rq, h), denoted by I(Σ1, . . . ,ΣN ), fol-
lows by n =

∑N
i=1 ni, m =

∑N
i=1mi, q =

∑N
i=1 qii, and

functions
f(x, u) = [f1(x1, u1, w1); . . . ; fN (xN , uN , wN )],

σ(x) = [σ1(x1); . . . ;σN (xn)],

h(x) = [h11(x1); . . . ;hNN (xN )],

where u = [u1; . . . ;uN ] and x = [x1; . . . ;xN ] and with the
interconnection variables constrained by wij = yji for all
i, j ∈ [1;N ], i 6= j.

The interconnection of two stochastic control subsystems
Σi and Σj is illustrated in Figure 1.
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Fig. 1. Interconnection of two stochastic control subsystems Σi and Σj .

B. Compositional construction of abstractions, simulation
functions, and interfaces

We further assume that we are given N stochastic control
subsystems Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi,Rqi , hi) ,
together with their abstractions Σ̂i =
(Rn̂i ,Rm̂i ,Rpi , Ûi,Wi, f̂i, σ̂i,Rqi , ĥi), with the stochastic
simulation functions Vi of Σ̂i by Σi, and with the associated
interfaces νiν̂i . We use λi, αi, ρiext, and ρiint to denote
the corresponding positive constant and K∞ functions
appearing in Definition 3.1. In order to provide the
main compositionality result, we require the following
assumption:

Assumption 1: For any i, j ∈ [1;N ], i 6= j, there exist
K∞ functions γi and constants λ̂i ∈ R>0 and δij ∈ R≥0
such that for any r ∈ R≥0

λir ≥ λ̂iγi(r) (IV.4a)
hji ≡ 0 =⇒ δij = 0 and (IV.4b)
hji 6≡ 0 =⇒ ρiint((N − 1)α−1

j (r)) ≤ δijγj(r). (IV.4c)
For the ease of notation in the rest of the paper, we define

matrices Λ and ∆ in RN×N with their components given
by Λii = λ̂i, ∆ii = 0 for i ∈ [1;N ] and Λij = 0, ∆ij =
δij for i, j ∈ [1;N ], i 6= j. Moreover, we define Γ(ŝ) :=
[γ1(s1); . . . ; γN (sN )], where ŝ = [s1; . . . ; sN ].

The next theorem provides a compositional approach on
the construction of abstractions of interconnected stochastic
control systems, of the corresponding stochastic simulation
functions, and of the interfaces.

Theorem 4.2: Consider the interconnected stochastic con-
trol system Σ = I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1
stochastic control subsystems Σi. Suppose that each stochas-
tic control subsystem Σi approximately alternatingly simu-
lates a stochastic control subsystem Σ̂i with the correspond-
ing stochastic simulation function Vi and interface function
νiν̂i . If Assumption 1 holds and there exists a vector µ ∈ RN>0
such that the inequality

µT (−Λ + ∆) < 0 (IV.5)

is satisfied2, then V (x, x̂) =
∑
i µiVi(xi, x̂i) is a stochastic

simulation function of Σ̂ = I(Σ̂1, . . . , Σ̂N ) by Σ with the
following associated interface:

νν̂(x, x̂, û) = [ν1ν̂1(x1, x̂1, û1, ŵ1); . . . ; νNν̂N (xN , x̂N , ûN , ŵN )],
(IV.6)

where

ŵi =[
ĥ1i(x̂1); . . . ; ĥ(i−1)i(x̂(i−1)); ĥ(i+1)i(x̂(i+1)); . . . ; ĥNi(x̂N )

]
.

2We interpret the inequality component-wise, i.e., for x ∈ RN we have
x < 0 iff every entry xi < 0, i ∈ [1;N ].



The proof is similar to the one of Theorem 2 in [10] and
is omitted due to lack of space.

Remark 4.3: As shown in [4, Lemma 3.1], a vector µ ∈
RN>0 satisfying µT (−Λ + ∆) < 0 exists if and only if the
spectral radius of Λ−1∆ is strictly less than one.

Remark 4.4: If the functions ρiint, i ∈ [1;N ], satisfy the
triangle inequality, ρiint(a + b) ≤ ρiint(a) + ρiint(b) for all
non-negative values of a and b, then the condition (IV.4c)
reduces to

hji 6≡ 0 =⇒ ρiint(α
−1
j (r)) ≤ δijγj(r). (IV.7)

Figure 2 illustrates schematically the result of Theo-
rem 4.2.
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Fig. 2. Compositionality results.

V. LINEAR STOCHASTIC CONTROL SYSTEMS

In this section, we focus on linear stochastic control
systems Σ and square-root of quadratic stochastic simulation
functions V with linear interfaces νν̂ . In the first part, we
assume that we are given an abstraction Σ̂ and provide
conditions under which V is a stochastic simulation function.
In the second part we show how to construct the abstraction
Σ̂ together with the stochastic simulation function V and
corresponding interface νν̂ .

A. Square-root of quadratic stochastic simulation functions
A linear stochastic control system is defined as a stochastic

control system with the drift, diffusion, and output function
given by

d ξ(t) = (Aξ(t) +Bν(t) +Dω(t)) d t+ Eξ(t) dWt,

ζ(t) = Cξ(t),
(V.1)

where

A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, E ∈ Rn×n, C ∈ Rq×n.

We use the tuple Σ = (A,B,C,D,E,U ,W) to refer to
a stochastic control system of the form (V.1). Note that in
this section we consider linear stochastic control systems
driven by a scalar Brownian motion for the sake of simplicity,
though the proposed results can be further generalized for the
systems driven by multi-dimensional Brownian motions.

In this section, we assume that there exist a constant λ̃ ∈
R>0 and matrices M ∈ Rn×n, K ∈ Rm×n such that the
matrix (in)equalities

CTC �M, MT = M, and

(A+BK)TM +M(A+BK) � −2λ̃M,
(V.2)

hold. The stabilizability of (A,B) is necessary and sufficient
for the existence of such matrices, and one can use various
design techniques, e.g., pole placement, in combination with
the Lyapunov equation to compute λ̃, M , and K; see for
instance [1] for further details.

Here, we consider square-root of quadratic stochastic
simulation functions of the following form

V (x, x̂) =
(
(x− P x̂)TM(x− P x̂)

) 1
2 (V.3)

with the associated linear interface νν̂ given by
νν̂(x, x̂, û, ŵ) = K(x− P x̂) +Qx̂+Rû+ Sŵ (V.4)

where P , Q, R, and S are matrices of appropriate dimen-
sions. Assume that the equalities

AP = PÂ−BQ (V.5a)
D = PD̂ −BS (V.5b)
Ĉ = CP (V.5c)

and the inequality (V.6) hold for some λ ∈ R>0. In the
following, we show that those conditions imply that (V.3) is
a stochastic simulation function of Σ̂ by Σ with the interface
given in (V.4).

Theorem 5.1: Consider two linear stochastic
control systems Σ = (A,B,C,D,E,U ,W) and
Σ̂ = (Â, B̂, Ĉ, D̂, Ê, Û ,W) with p = p̂ and q = q̂.
Suppose that there exist constants λ̃, λ ∈ R>0 and matrices
M,K,P, Q,R, S satisfying (V.2), (V.5), and (V.6). Then,
V defined in (V.3) is a stochastic simulation function of Σ̂
by Σ with the interface νν̂ given in (V.4).

Proof: Note that V is twice continuously differentiable3

and νν̂ is globally Lipschitz continuous in its first argument.
We show that V satisfies ‖Cx− Ĉx̂‖ ≤ V (x, x̂) and

Lw,û,ŵV (x, x̂) :=
∂V (x, x̂)

∂x
(Ax+Bνν̂(x, x̂, û, ŵ) +Dw)

+
∂V (x, x̂)

∂x̂
(Âx̂+ B̂û+ D̂ŵ)

+
1

2
Tr
([
Ex
Êx̂

] [
xTET x̂T ÊT

] [
∂x,xV ∂x,x̂V
∂x̂,xV ∂x̂,x̂V

])
≤

− λV (x, x̂) + ‖
√
MD‖‖w − ŵ‖+ ‖

√
M(BR− PB̂)‖‖û‖,

(V.7)

for all x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, w, ŵ ∈ Rp.
From (V.5c), we have ‖Cx−Ĉx̂‖ = ((x−Px̂)TCTC(x−

Px̂))
1
2 and using M � CTC, it can be readily verified that

‖Cx − Ĉx̂‖ ≤ V (x, x̂) holds for all x ∈ Rn, x̂ ∈ Rn̂. We
proceed with showing the inequality in (V.7). Note that

∂xV (x, x̂) =
(x− P x̂)TM

V (x, x̂)
, ∂x̂V (x, x̂) =

−(x− P x̂)TMP

V (x, x̂)

∂x,xV (x, x̂) =
M

V (x, x̂)
− M(x− P x̂)(x− P x̂)TM

V 3(x, x̂)
,

∂x,x̂V (x, x̂) = (∂x̂,xV (x, x̂))T = −∂x,xV (x, x̂)P, and

∂x̂,x̂V (x, x̂) = PT ∂x,xV (x, x̂)P

holds. By using the equations (V.5a) and (V.5b) and the
definition of the interface function in (V.4) we simplify

Ax+Bνν̂(x, x̂, û, ŵ) +Dw − P (Âx̂+ B̂û+ D̂ŵ)

to (A + BK)(x − Px̂) + D(w − ŵ) + (BR − PB̂)û and
obtain as upper bound for Lw,û,ŵV (x, x̂) as follows:

(x− P x̂)TM
[
(A+BK)(x− P x̂) +D(w − ŵ) + (BR− PB̂)û

]√
(x− P x̂)TM(x− P x̂)

+

[
x
x̂

]T [ ET 0n×n̂
0n̂×n ÊT

] [
M −MP

−PTM PTMP

] [
E 0n×n̂

0n̂×n Ê

] [
x
x̂

]
2
√

(x− P x̂)TM(x− P x̂)
.

3Here, we just need V to be twice continuously differentiable over Rn×
Rn̂\V0, where V0 =

{
(x, x̂) ∈ Rn × Rn̂ | V (x, x̂) = 0

}
.



−λ̃
[

M −MP
−PTM PTMP

]
+

1

2

[
ET 0n×n̂

0n̂×n ÊT

] [
M −MP

−PTM PTMP

] [
E 0n×n̂

0n̂×n Ê

]
� −λ

[
M −MP

−PTM PTMP

]
(V.6)

——————————————————————————————————————————————————

We use (V.2) and (V.6) to obtain the following upper bound

(x− P x̂)TM
[
(A+BK)(x− P x̂)

]√
(x− P x̂)TM(x− P x̂)

+[
x
x̂

]T [ ET 0n×n̂
0n̂×n ÊT

] [
M −MP

−PTM PTMP

] [
E 0n×n̂

0n̂×n Ê

] [
x
x̂

]
2
√

(x− P x̂)TM(x− P x̂)

≤ −λV (x, x̂)

and with the help of Cauchy-Schwarz inequality to get the
following upper bound

(x− P x̂)TM
[
D(w − ŵ) + (BR− PB̂)û

]√
(x− P x̂)TM(x− P x̂)

≤

‖
√
MD‖‖w − ŵ‖+ ‖

√
M(BR− PB̂)‖‖û‖.

Using those computed upper bounds, we obtain (V.7) which
completes the proof. Note that the K∞ functions α, ρext,
and ρint, in Definition 3.1 associated with the stochastic
simulation function in (V.3) are given by α(s) := s,
ρext(s) := ‖

√
M(BR − PB̂)‖s and ρint(s) := ‖

√
MD‖s,

∀s ∈ R≥0.
Note that Theorem 5.1 does not impose any condition on

matrix R. Similar to the results in [6, Proposition 1] for
the non-probabilistic case, we propose a choice of R which
minimize function ρext. The choice of R minimizing ρext is
given by

R = (BTMB)−1BTMPB̂. (V.8)

As of now, we derived various conditions on the original
system Σ, the abstraction Σ̂, and the matrices appearing
in (V.3) and (V.4), to ensure that (V.3) and (V.4) result in a
stochastic simulation function with the associated interface,
respectively.

However, those conditions do not impose any requirements
on the abstract external input matrix B̂. Similar to [6] in the
context of non-probabilistic control systems, we choose an
external input matrix B̂ which preserves the behaviors of
the original stochastic system Σ on the abstraction Σ̂ in the
absence of noise: for every trajectory (ξ, ζ, ν, ω) of Σ in the
absence of noise there exists a trajectory (ξ̂, ζ̂, ν̂, ω̂) of Σ̂ in
the absence of any noise such that ζ = ζ̂.

Note that using the following choice of external input
matrix B̂, the results in [10] for the linear control system are
fully recovered by the corresponding ones here providing that
the linear stochastic control system is not affected by noise,
implying that E and Ê are identically zero.

Theorem 5.2: Consider two linear stochastic control
systems Σ = (A,B,C,D, 0n×n,U ,W) and Σ̂ =
(Â, B̂, Ĉ, D̂, 0n̂×n̂, Û ,W) with p = p̂ and q = q̂. Suppose
that there exist matrices P , Q, and S satisfying (V.5), and
that the abstract external input matrix B̂ is given by

B̂ = [P̂B P̂AG], (V.9)

where P̂ and G are assumed to satisfy

C = ĈP̂ , In = PP̂ +GF, P̂P = In̂, (V.10)

Σ1

Σ2

Σ3

Σ4

u1 y11

u2 y22

u3

u4

y13

y24

y32

y41

Fig. 3. The interconnected system I(Σ1,Σ2,Σ3,Σ4).

for some matrix F . Then, for every trajectory (ξ, ζ, ν, ω) of Σ
there exists a trajectory (ξ̂, ζ̂, ν̂, ω̂) of Σ̂ so that ζ = ζ̂ and
ω = ω̂ holds.

The proof is similar to the proof of Theorem 5 in [10] and
is omitted here for the lack of space.

In order to compute the abstraction Σ̂ and the various
matrices involved in the definition of the stochastic simula-
tion function and the interface function, one can follow the
same chain of lemmas in Subsection 4.3 in [10]. Here, we
summarize the construction of the abstraction Σ̂ in Table I.

1. Pick an injective P satisfying (26), (27), and (28) in [10];
2. Compute Â and Q from (V.5a);
3. Compute D̂ and S from (V.5b);
4. Compute Ĉ from (V.5c);
5. Compute B̂ from (V.9);
6. Determine M , K, and Ê so that (V.2) and (V.6) hold.

TABLE I
CONSTRUCTION OF AN ABSTRACTION Σ̂.

VI. AN EXAMPLE

Let us demonstrate the effectiveness of the proposed
results on an interconnection of four linear stochastic control
subsystems. We consider the system I(Σ1,Σ2,Σ3,Σ4) illus-
trated in Figure 3, where Σi, i ∈ {1, 2}, and Σj , j ∈ {3, 4},
are two triple and two double integrators affected by noise,
respectively, with system matrices for i ∈ {1, 2} given by

Ai =

[
0 1 0
0 0 1
4 −2 0

]
, Bi =

[
0
0
1

]
, CTi =

[
1
0
0

]
, Ei = I3

and for j ∈ {3, 4} given by

Aj =
[
0 1
2 0

]
, Bj =

[
0
1

]
, CTj =

[
1
0

]
, Ej = I2.

We feed the output of Σi, i ∈ {1, 2}, to the input of Σi+2
and the output of Σ3 (resp. Σ4) to the input of Σ2 (resp.
Σ1) which we describe with the interconnection matrices
that define the output functions hij(xi) = Cijxi by Cii =
Ci(i+2) = [1 0 0], i ∈ {1, 2}, and C32 = C41 = [1 0]
and the remaining hij ≡ 0. Correspondingly, the internal
input matrices are given by D14 = D23 = [0 0 d]

T and
D(j+2)j = [0 d]

T , d 6= 0, and j ∈ {1, 2}. Subsequently, we
use Ci = Cii, i ∈ {1, 2}, C3 = C32, C4 = C41, D1 = D14,
D2 = D23, D3 = D31, D4 = D42, and denote the stochastic
control subsystems by Σi = (Ai, Bi, Ci, Di, Ei,Ui,Wi).



A. The abstract subsystems
In order to construct an abstraction for I(Σ1,Σ2,Σ3,Σ4)

we begin with the construction of the abstractions Σ̂i for
each individual subsystem Σi, i ∈ {1, 2, 3, 4}. We follow
the steps outlined in Table I and obtain from step 1, for
i ∈ {1, 2} and j ∈ {3, 4}, the matrices PTi = [1 0 0] and
PTj = [1 0]. We continue with steps 2-5 and get the scalar
abstract stochastic control subsystems

Σ̂i∈{1,2,3,4} :

{
d ξ̂i(t) = ν̂i(t) d t+ ξ̂i(t) dWt,
ζ̂i(t) = ξ̂i(t),

with the interconnection matrices D̂i = 0 and diffusion
matrices Êi = 1 = ‖Ei‖. Simultaneously, we get Qi = −4
for i ∈ {1, 2}, Qj = −2 for j ∈ {3, 4}, and Si = −d for
i ∈ {1, 2, 3, 4}. Next, we set λ̃ = 1 and solve an appropriate
linear matrix inequality to determine Mi and Ki so that (V.2)
holds. We get

Mi =

[
6.0122 4.3636 1.1968
4.3636 4.4916 1.2608
1.1968 1.2608 0.6304

]
, KT

i =

[
−7.5
−3.5
−4.5

]
,

for i ∈ {1, 2}, and

Mj =
[
6.2601 4.6753
4.6753 4.1554

]
, KT

j =
[−4
−3

]
,

for j ∈ {3, 4}. Inequality (V.6) holds for λ = 1/2. The
matrices Ri follow from (V.8) and are Ri = 1.9 for i ∈
{1, 2} and Rj = 1.13 for j ∈ {3, 4}. The interfaces are
given by

νiν̂i(xi, x̂i, ûi, ŵi) = Ki(xi − Pix̂i)− 4x̂i + 1.9ûi − dŵi
νjν̂j (xj , x̂j , ûj , ŵj) = Kj(xj − Pj x̂j)− 2x̂j + 1.13ûj − dŵj

(VI.1)

for i ∈ {1, 2} and j ∈ {3, 4} and the internal inputs are given
by ŵ1 = x̂4, ŵ2 = x̂3, ŵ3 = x̂1, ŵ4 = x̂2. Theorem 5.1
applies to Σi and Σ̂i showing that Vi of the form (V.3)
is a stochastic simulation function of Σ̂i by Σi with the
interface νiν̂i . As provided in the proof of Theorem 5.1, the
comparison functions for i ∈ {1, 2} and j ∈ {3, 4} are given
by

αi(s) = s, λi = 1
2
, ρiext(s) = 0.65s, ρiint(s) = 1.76ds,

αj(s) = s, λj = 1
2
, ρjext(s) = 0.15s, ρjint(s) = 3ds,

for any s ∈ R≥0.

B. The interconnected system
We now proceed by applying Theorem 4.2. In particular,

we check Assumption 1, which is satisfied by γi(s) = s,
λ̂i = 1

2 , and using ρiint (c.f. Remark 4.4), δij are as
δ13 = δ24 = 1.76d, δ32 = δ41 = 3d, and the rests
are zero. Additionally, we require the existence of a vector
µ ∈ R4

>0 satisfying (IV.5), which is the case if and only
if the spectral radius of 2∆ is strictly less than one, i.e.,
2
√

3× 1.76d < 1, which holds for d = 0.1. One can choose
the vector µ as µ = [1; 1; 1; 1] and, hence, it follows
that V (x, x̂) =

∑4
i=1 Vi(xi, x̂i) is a stochastic simulation

function of I(Σ̂1, Σ̂2, Σ̂3, Σ̂4) by I(Σ1,Σ2,Σ3,Σ4) where
the interface function follows from (VI.1). Following the
proof of [10, Theorem 2], we see that V satisfies (III.1)
with α(s) = s and (III.2) with λ = 0.4, ρext(s) = 0.65s,
and ρint ≡ 0. From Theorem 3.2 we obtain

E[‖ζaνω(t)− ζ̂âν̂ω̂(t)‖] ≤ e−0.4t
E[V (a, â)] + 4.6E[||ν̂||∞].

(VI.2)

We show some simulation results in Figure 4 for inputs

ν̂1(t) = 1
1+t sin(t), ν̂2(t) = 1

1+t cos(t), ν̂4 = ν̂3 ≡ 0.
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ζ̂2(t)
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0
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−
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(t

)|
|

t [sec]

Fig. 4. Top two plots: One realization of ζ1 (resp. ζ2) ( ) and ζ̂1 (resp.
ζ̂2) ( ). Bottom: Five realizations of ‖ζ− ζ̂‖. The solid black line indicates
the error bound 4.6 as computed using (VI.2).

In the top two plots of the figure, we see a realization of
the observed process, ζ1 (resp. ζ2) and ζ̂1 (resp. ζ̂2) of
I(Σ1,Σ2,Σ3,Σ4) and I(Σ̂1, Σ̂2, Σ̂3, Σ̂4), respectively. On
the bottom part, we see five realizations of ‖ζ − ζ̂‖, where
ζ = [ζ1; ζ2] and ζ̂ = [ζ̂1; ζ̂2]. The solid black line denotes
the error bound given by the computed stochastic simulation
function V (see Theorem 3.2).
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