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Abstract: This paper presents a stochastic nonlinear model predictive control technique for
discrete-time uncertain nonlinear systems with particular focus on the batch polymerization
reactor application. We consider a nonlinear dynamical system subject to chance constraints
(i.e. need to be satisfied probabilistically up to a pre-assigned level). This formulation leads
to a finite-horizon chance-constrained optimization problem at each sampling time, which is in
general non-convex and hard to solve. We propose a heuristic methodology to handle uncertainty
for highly nonlinear systems. In our framework, the uncertainty propagation is modelled via a
Markov chain and a randomization technique, the so-called scenario approach, is employed
yielding a tractable formulation. The efficiency and limitations of the proposed methodology is
illustrated through its application to an uncertain batch polymerization reactor model and a
comparison with deterministic nonlinear model predictive control is presented.
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1. INTRODUCTION

Model predictive control (MPC) is a powerful control
approach for optimizing the performance of input con-
strained systems. Furthermore, it is one of the most com-
monly used methodology to control multivariable indus-
trial systems. The key idea of MPC is to find an ap-
proximate solution for the original infinite horizon control
problem by solving a finite horizon constrained optimal
control problem at each sampling time, and then, im-
plementing the control law in accordance to a receding
horizon strategy [Prandini et al. (2012)]. The nonlinear
counterpart of MPC, denoted hereafter by NMPC, offers
opportunities to model sophisticated nonlinear features
often arising in real world applications.

One challenging aspect of ensuring optimal operation of
industrial systems while enforcing critical constraints is to
address any uncertainty or disturbances that is present
in real systems [Lucia et al. (2013)], [Margellos et al.
(2013)]. Over the last decades, progress has been made
toward formulating robust variants of MPC to address
this issue, see [Bemporad et al. (2003)], [Bemporad and
Morari (1999)], [Morari and Lee (1999)] and the references
therein. The aim of a robust MPC is to provide guaranteed
stability and recursive feasibility for all admissible values
of the uncertain parameters, while the method should be
computationally tractable. In this approach, the control
cost is optimized against the worst-case disturbance re-
alization which may lead to conservative results, since
? This research was supported by the Netherlands Organization for
Scientific Research (NWO) under the grant number 408-13-030.

the disturbance distribution is not accounted for and all
disturbance realizations are treated equally. For systems
where the uncertainty is known to be in a bounded set
this approach is very powerful [Oldewurtel et al. (2013)].
However, for many practical applications it is hard to
specify an a-priori bounded disturbance set.

Recently, a different framework has been introduced to
address this issue, namely, stochastic MPC where the
constraints are addressed in a probabilistic sense, see
[Oldewurtel et al. (2013)], [Schildbach et al. (2014)] and
the references therein. Alternatively, it can be interpreted
as a relaxation of robust MPC, in which the robust
satisfaction of state constraints are traded probabilistically
via chance constraints, allowing for a small constraint
violation probability to reduce the conservatism of robust
MPC. Unfortunately, the resulting optimization problem
is non-convex and computationally expensive in general
[Mohajerin Esfahani et al. (2015)], [Rostampour et al.
(2013)].

A tractable approximation to the aforementioned opti-
mization problem can be obtained through randomized
MPC [Prandini et al. (2012)], [Schildbach et al. (2014)].
Randomized MPC is a sample-based approximation in
which only finitely many uncertainty samples are consid-
ered [Calafiore and Campi (2006)], [Campi et al. (2009)].
The advantage of this approach is that no restriction on
distribution of uncertainty is required and it is sufficient to
assume that the uncertainties are independent and identi-
cally distributed (i.i.d) and the decision variables (for fixed
uncertain variables) are convex. The randomized approach



Fig. 1. Industrial batch polymerization reactor with an
external heat exchanger (EHE).

has been extensively studied in literature for uncertain
convex problems with efficient number of drawn samples.

We propose a stochastic NMPC strategy for an uncertain
batch polymerization reactor. To this end, a finite horizon
nonlinear optimization problem with chance constraints
at each step is formulated. In order to have a tractable
scheme in the proposed framework we deploy a sample-
based approximation in the spirit of randomization tech-
niques to replace the chance constraints at each step by
a number of hard constraints where each constraint rep-
resents one realization of the uncertain parameter. We set
up a Markov chain to model the uncertainty of the batch
polymerization reactor and deploy the model to generate
scenarios accordingly. Finally, we illustrate the efficiency
and limitations of the proposed framework via a numerical
study of uncertain batch polymerization reactor and a
comparison with deterministic NMPC is presented.

The layout of this paper is as follows: In Section 2 we
introduce a general stochastic NMPC framework for the
industrial problem of uncertain batch polymerization re-
actor model. In Section 3 a tractable methodology is de-
veloped while using a heuristic approximation of chance
constrained optimization problem. To investigate the effi-
ciency and practical feasibility of the discussed methodol-
ogy, in Section 4 the proposed framework is applied to an
uncertain batch polymerization reactor model and then,
a comparison with deterministic NMPC is presented. The
paper is concluded in Section 5.

2. PROBLEM STATEMENT

2.1 Model Description

Consider an uncertain batch polymerization reactor sys-
tem which is shown in Figure 1. Monomer is fed into the
reactor and it turns into a polymer via a very exothermic
chemical reaction. The reactor consists of a jacket and an
External Heat Exchanger (EHE) that can both be used to
control the temperature inside the reactor. A model of the
process can be derived by using the following continuous-
time system dynamics.

• Energy balances for the temperature of reactor (Tr),
mixture in EHE (Tek), coolant leaving EHE (Tawt),
jacket (Tj) and vessel (Ts):

Ṫr =
1

cp,rmges
(ṁfcp,f(Tf −Tr) + ∆Hrkr1mm,r (1a)

− kkA(Tr −Ts)− ṁawtcp,r(Tr −Tek)) ,

Ṫek =
1

cp,rmawt
(ṁawtcp,w(Tr −Tek) (1b)

− α(Tek −Tawt) + kr2mmmawt
∆Hr

mges
) ,

Ṫawt = (ṁawt,kwcp,w(Tin
awt −Tawt) (1c)

− α(Tawt −Tek))/(cp,wmawt,kw) ,

Ṫj =
1

cp,wmm,kw
(ṁm,kwcp,w(Tin

j −Tj) (1d)

+ kkA(Ts −Tj))

Ṫs =
1

cp,sms
(kkA(Tr −Ts)− kkA(Ts −Tj)) , (1e)

• Mass balances for the water (mw), monomer (mm)
and product (polymer) (mp) of the process:

ṁw = ṁfww,f , (1f)

ṁm = ṁfwm,f − kr1mm,r − kr2mawt
mm

mges
, (1g)

ṁp = kr1mm,r + ρ1kr2mawt
mm

mges
, (1h)

where ṁf,T
in
j ,T

in
awt are the feed flow, coolant temperature

at the inlet of the jacket and EHE control variables,

kr1 = k0 exp
( −Ea
R(Tr+273.15)

)(
ku1(1 − mp

mp+mm
) + ku2

mp

mp+mm

)
,

kr2 = k0 exp
( −Ea
R(Tek+273.15)

)(
ku1(1 − mp

mp+mm
) + ku2

mp

mp+mm

)
are reaction ratios inside reactor and EHE, respectively.
mges = mw + mm + mp corresponds to the total
mass, mm,r = mm − mm

mawt

mges
is the current amount of

monomer inside the reactor and kk = (mwkws + mmkms +
mpkps)/mges denotes the heat transfer coefficient of the
mixture inside the reactor. The reaction ratios kr1 , kr2
represent the nonlinear terms of the system. All undefined
variables are constant parameters that represent process
operational limits of the involved quantities. For detailed
descriptions the reader is referred to [(Lucia et al., 2014,
Table 1)].

By following a model proposed by [Lucia et al. (2014)],
there is a safety constraint due to the temperature (Tadiab)
that the reactor would achieve in the case of cooling failure
which can be modelled by an additional differential state
as follows:

Ṫadiab =
∆Hr

mgescp,r
ṁm − (ṁw + ṁm + ṁp)(

mm∆Hr

m2
gescp,r

) + Ṫr .

(1i)

Due to the fact that the batch reactor has two different
working phases (feeding and holding) and is considered to
be finished only when the desired amount of polymer is
produced an additional state is defined by [Lucia et al.
(2014)] that accounts for the accumulated material that
has been fed by

ṁacc = ṁf . (1j)

One of the important sources of the uncertainty in real-life
problems is a mismatch between the real system param-
eters and the model parameters. Due to this reason, the
most crucial parameters of the model are considered to be



uncertain and varying with respect to their nominal value.
Particularly, the specific reaction enthalpy ∆Hr and the
specific reaction rate k0 is assumed to be stochastic vari-
ables with respect to each time instant. To generate a time
series random variable (scenarios) for the uncertainties, we
developed a Markov chain-based model that produces a
scenario taking into account the temporal correlation of
the uncertainty.

Define the complete vector of state and control variables
to be

x = [mw,mm,mp,Tr,Tek,Tawt,Tj,Ts,Tadiab,macc]

and u = [ṁf,T
in
awt,T

in
j ], respectively. We consider a

vector δ = [k0,∆Hr] that contains the uncertain variables
of system model. Using a more compact notation, the
continuous-time dynamics formulation of the uncertain
nonlinear system (1) can be written as

ẋ = f(x, u, δ) , (2)

where the states and control variables of the real process
system (2) are also subject to the following constraints.

xmin ≤ x ≤ xmax ,

umin ≤ u ≤ umax ,

where xmin, umin and xmax, umax correspond to the lower
and upper limitation of the state and control variables,
respectively. We refer the reader to [(Lucia et al., 2014,
Table 2 and Table 4)] for the detailed description about
upper, lower bounds of the state and the control variables
as well as the initial conditions.

2.2 Stochastic Control Problem

In order to solve the NMPC problem, we employ direct
multiple-shooting, where the control and the state trajec-
tories are discretized to form a finite-dimensional nonlinear
program (NLP). This method handles inequality and ter-
minal constraints robustly and it has been implemented
by using the CasADi toolbox [Andersson et al. (2012)] in
Python.

Consider the discrete-time nonlinear dynamics formulation
of the aforementioned uncertain system in a compact
format as

xt+1 = F (xt, ut, δt) , (3)

where xt ∈ R10 is the state vector, ut ∈ R3 the control
input vector, δt ∈ ∆ ⊆ R2 the random variable (uncer-
tainty) defined on a probability space ∆. It is assumed
that ∆ is endowed with the Borel σ−algebra B(∆) and P
is a probability measure defined over ∆. f : R10 × R3 ×
R2 → R10 is assumed to be a measurable function with
respect to each δt ∈ ∆. However, it is important to note
that for our study we only need a finite number of instances
of δt, and we do not require the probability space ∆ and the
probability measure P to be known explicitly. For further
technical details on this aspect the reader is referred to
[(Mohajerin Esfahani et al., 2015, Section 3.3)].

Consider a full prediction horizon that contains T time
steps, and a subscript ‘t’ in our notation is introduced
to characterize the value of the quantities for a given
time instance t = {1, 2, · · · , T} within the horizon. We
denote x0 as the initial value of the states, and define xt
and ut to be the state and input vector at time t of the

horizon, respectively. It is assumed that the entire state
vector of the system is available at each time instant, since
one can eliminate all future state variables depending on
the observed initial real plant state by using (3). We are
interested in generating an input sequence {u1, · · · , uT }
to control the nonlinear system (2) that are to be chosen
from a set of feasible inputs U ⊆ R3 ( constraint set of
control variables).

The minimization of the objective function is subject to
keeping the state inside a feasible set X ⊆ R10 (constraint
set of state variables) for a given fraction of all time steps
which maybe too conservative, and result in a poor per-
formance. Specifically, this is the case when the best per-
formance of an economic objective is achieved close to the
boundary of X. Due to the imperfect models (uncertainty
source), constraint violations will be then unavoidable [En-
gell (2007)]. To avoid infeasibility of the state constraints
when the disturbance has unbounded support, we consider
the state variables to be probabilistically feasible by means
of chance constraint on the state

Pδ
[
xt+i|t ∈ X , ∀ i

]
≥ 1− ε , (4)

where ε ∈ (0, 1) is the admissible constraint violation
parameter. Note that the index of Pδ denotes the de-
pendency of xt+i|t on the string of random scenarios
{δ0, δ1, · · · , δT−1}, which are independent and identically
distributed (i.i.d.).

2.3 Stochastic NMPC

Consider δ := (δ0, δ1, · · · , δT−1) ∈ ∆T to be a sequence of
i.i.d. random scenarios and u := (u0, u1, · · · , uT−1) ∈ UT

as a sequence of the planned input. The predicted state for
i steps into the future is denoted by xt+i|t = ϕ(xt, ũ, δ̃)
according to (3), where xt is assumed to be the current

state, ũ := (u0, · · · , ut) and δ̃ := (δ0, · · · , δt). The main
goal is to maximize the amount of production (polymer) of
the batch reactor over a finite time horizon while satisfying
states and inputs constraints, and taking into account that
the uncertainty manifests itself in the form of random
variable. Moreover, we define a set-point tracking term
for the desired reactor temperature to ensure that the
produced polymer has the required properties. We define

−mp,t+i|t + γ(Tr,t+i|t − Tset)2 = `
(
xt+i|t = ϕ(xt, ũ, δ̃)

)
,

where Tset is the desired reactor temperature and γ is a
cost coefficient for the tracking term. `(·) is a stage cost
function that reflects our control purpose, i.e., maximizing
the amount of polymer and set-point tracking of the
reactor temperature. Consider the stochastic objective
function as follows:

J(xt,u, δ) :=

T∑
i=1

`(xt+i|t = ϕ(xt, ũ, δ̃)) , (5)

where J is a random variable. In order to obtain a deter-
ministic objective function, we consider the E [J(xt,u, δ)].

Now we can formulate a chance constrained finite horizon
optimal control problem for each time step t:

min
u∈U

E [J(xt,u, δ)] subject to: (6a)

P
[
xt+i|t ∈ X , ∀ i = {1, · · · , T}

]
≥ 1− ε . (6b)



The solution of (6) is the optimal planned input sequence
u∗ := (u∗0, u

∗
1, · · · , u∗T−1). Based on the stochastic NMPC

algorithm the current input is set to ut := u∗0 and
we proceed in a receding horizon fashion. This means
(6) is solved at each time step ‘t’ by using the current
measurement of the state xt. Due to the presence of
chance constraints, the feasible set is, in general, non-
convex and hard to determine explicitly. In the following
section, we describe a tractable formulation to solve (6) by
using a sample-based approximation [Calafiore and Campi
(2006)].

3. HEURISTIC METHODOLOGY

To solve the chance constrained optimization problem
proposed in Section 2.3, we resort to an approximation
approach. In order to avoid introducing arbitrary assump-
tions on P and its moments, we follow a randomized ap-
proach. The randomized approach is a tool to approximate
chance constraints and substitute the chance constraints
with a finite number of pointwise constraints at indepen-
dently generated scenarios of the uncertain parameter. The
number of scenarios ‘S’ remains a crucial parameter and
has to be selected carefully to achieve the desired level of
approximation of the chance constraints.

In [Calafiore and Campi (2006)] the so-called ‘scenario
approach’ is developed to provide a lower bound for the
number of scenarios that should be extracted to establish
the desired probabilistic guarantees with high confidence.
The limitation of this approach is that the theoretical
bound only holds for convex problems, i.e., when the cost
and the constraint functions are convex in the decision
variable for each realization of uncertainty. This setting
was later extended in [Mohajerin Esfahani et al. (2015)]
for a class of non-convex problems, but unfortunately our
problem here does not fall into this category. Besides, on
the practical side, the number of scenarios suggested by
theory grows linearly in the dimension of decision variables
and often goes beyond our computational capabilities.
This hampers the applicability of the method to large scale
systems, see [Rostampour et al. (2013)] for more detailed
explanation to an application in power grids. Due to the
non-convexity of the system (3), the theoretical results in
the scenario approach literature does not apply here.

Consider the following tractable formulation of (6), called
Randomized NMPC:

min
u∈U

∑
δk∈W0

J(xt,u, δ
k) subject to (7a)

xt+i|t = ϕ(xt,u, δ
l) ∈ X ,

{
∀ i = {1, · · · , T}
∀ δ(l) ∈W1

, (7b)

where W0 := {δ1, · · · , δS0} is a set of ‘S0’ number of
scenarios that is used to empirically approximate the cost
function J and W1 := {δ(S0+1), · · · , δ(S0+S1)} is a set of
‘S1’ number of scenarios to empirically enforce the state
constraints for the full predicted stages i = {1, · · · , T}.
(S0, S1) are non-negative integers and S = (S0 + S1)
full horizon uncertainty scenarios are drawn independently
with respect to ∆T . We assumed for every realization of
uncertainty a feasible solution is admitted.

Applying a receding horizon policy in the MPC framework,
the problem in (7) must be solved at each time step with

an updated initial state xt and the current input ut := u?0
is set to the first element of the feasible solution u∗ :=
(u∗0, u

∗
1, · · · , u∗T−1). The proposed procedure is summarized

in Algorithm 1. Note that the user defined scenario sizes

Algorithm 1 Randomized NMPC

1: Fix S0 ∈ [1,∞) to approximate the cost function and
S1 ∈ [1,∞). When S1 goes to infinity, the level of
constraint violation ‘ε’ goes to zero.

2: Generate S = (S0 + S1) scenarios of δ (uncertain
variables) corresponding to ∆T .

3: Solve (7) and determine a feasible solution u∗.
4: Apply the first input of solution ut := u?0 to the

uncertain real system (2).
5: Measure state (xt): if (mp,t) is the desired quantity

then stop.
6: Go to step 2.

S0 and S1 can be seen as tuning variables to approximate
the cost function and to enforce the constraints for the
predicted stages, respectively.

For sake of comparison, we consider a deterministic NMPC
strategy where in the problem (7) we replace δ with
a nominal value, i.e. the forecast or expected value of
uncertain terms for the full horizon. The procedure is
summarized in Algorithm 2.

Algorithm 2 Deterministic NMPC

1: Fix δ = (δn0 , δ
n
1 , · · · , δnT−1) in the problem (7).

2: Solve (7) and determine a feasible solution u∗.
3: Apply the first input of solution ut := u?0 to the

uncertain real system (2).
4: Measure state (xt): if (mp,t) is the desired quantity

then stop.
5: Go to step 2.

It is worth mentioning that one may consider a robust
NMPC strategy where it needs to characterize the worst-
case realization of δ for each predicted stage using vertices
of predetermined bounds for each element of δ. This
leads to a set of all possible worst-case scenarios for δ ∈
Wworst. Finding the worst-case scenario in particular for a
nonlinear system is in general intractable. As an attempt
to address this issue, one may only focus on extreme
points of the uncertainty set. If we assume a rectangular
uncertainty set at each sampling step, then there are two
possible worst-cases (upper and lower bounds) for each
uncertain element (22 vertices). This leads to 22T possible
worst-case scenarios over the prediction horizon, and as
such encounters the curse of dimensionality and renders
the robust variant of the problem (6) intractable.

4. CASE STUDY

4.1 Uncertainty Model

In this section we concentrate on the development of an
uncertainty model that enables us to generate scenarios
(uncertainty samples), while taking its temporal correla-
tion into account. We assume that the uncertainty is a
discrete-time stochastic process, in which the outcome of
a given state can affect the outcome of the next state.



This type of process is called a Markov chain. Consider
a finite number of states, where the process starts in one
of these states and moves successively from one state to
another, and define the probabilities for the transitions be-
tween states. To generate various uncertainty realizations,
the transition probability matrix is constructed, which is
initialized via a nominal value of the uncertainty for the
starting state. This method offers an excellent fit for both
the probability density function and the autocorrelation
function of the generated time series. It is assumed to
have two independent models for each random variable
(∆Hr, k0). To generate a random scenario, we first initial-
ize the state of the first stage and then it will jump to
the next state with high probability and this will continue
until the last stage. In case of having the same probability
of transition, a random decision will be made.

4.2 Simulation Setup

As described before, to solve the optimal control problem
we employed CasADi by using direct multiple-shooting for
the discretization of the aforesaid continuous-time dynami-
cal system. For the multiple shooting approach we used the
explicit Runge-Kutta integration scheme. In particular,
in this work all NLP optimization problems are solved
using IPOPT [Wächter and Biegler (2006)] which uses
first and second order exact derivative information pro-
vided automatically by CasADi [Andersson et al. (2012)].
The real system plant (2) is simulated with the calcu-
lated control input using also the explicit Runge-Kutta
integration scheme. The uncertain elements of the real
system are generated randomly from uniform distribution
of predetermined interval for each simulation. All proposed
optimization problems are solved in Python on a standard
MacBook Pro with an Intel i-5 processor at 2.5GHz with
one core and 4 GB of RAM.

4.3 Simulation Results

Consider a simulation study derived based on the following
parameters that are chosen based on physical knowledge
of the process. The sampling time of the NMPC controller
τ = 15s and with a prediction horizon of T = 15 steps.
The cost coefficient for tracking term is chosen to be
γ = 104. The criteria that the batch process is considered
to be finished is the amount of product (polymer) that
has been produced (mp,t+T |t = 20680 [kg]) and the
set-point tracking of the reactor temperature is Tset =
90 [◦C]. We assumed the nominal values of kn0 = 7.0,
∆Hn

r = 950.0, and taking a value from k0 ∼ U(4.0, 10.0),
∆Hr ∼ U(850.0, 1050.0), randomly.

Figure 2 contains six sub-figures from top to bottom that
represent the following results: The first three are state
trajectories that are reactor temperature (Tr,t), monomer
mass (mm,t) and product mass (mp,t), respectively. The
rest are optimal control inputs that are feed flow (ṁf,t),
jacket temperature (Tj,t) and EHE temperature (Tawt,t),
respectively. The obtained results for the implementation
of the deterministic NMPC strategy are denoted by ‘Red’
color using Algorithm 2. ‘Green’ and ‘Blue’ colors both
represent the results obtained via randomized NMPC with
a different number of scenarios. We consider same scenar-
ios that contribute to the cost function and the states

Computational Batch
time time

Deterministic 00:15 01:51
NMPC Minutes Hour

Randomized 01:00 02:29
NMPC (S = 4) Hour Hour

Randomized more than 5 05:19
NMPC (S = 100) Days Hour

Table 1. The computational and batch process
time of different control strategy.

constraints. Namely, we generate S scenarios instead of
using different tuning parameters in Algorithm 1. ‘Green’
color represents the case where S = 4 and ‘Blue’ color
shows the case with S = 100.

Since the quality of product (polymer) is related to the
reactor temperature (sub-figure one), we consider that as
the set-point tracking term in our objective function (5).
We examine a violation level of Tset±1.5[◦C] a posteriori.
As it is clearly shown, using randomized NMPC resulted
in a feasible solution and inside the desired bound for the
reactor temperature. The result of deterministic NMPC
strategy is, indeed, an infeasible (undesired) reactor tem-
perature, since the observed (Tr,t) is outside of the de-
sired bounds. Furthermore, the two different results (Blue
and Green) of randomized NMPC depict that taking into
account more possible random scenarios (S = 100) the
reactor temperature almost perfectly tracked the desired
Tset and thus, lead to better performance.

Sub-figure two presents the monomer mass at each sam-
pling time whereas the polymer mass is shown in sub-
figure three. From these two figures, it is clearly visible
that better set-point tracking of the reactor temperature
results in longer batch process time. The reason is due to
the fact that there is always a trade-off between the quality
of product and how fast the batch process is done. Table 1
illustrates the computational time and batch process time
of the different strategies.

5. CONCLUSIONS

In this paper we formulated a stochastic nonlinear model
predictive control problem for an uncertain nonlinear
system, in particular a batch polymerization reactor. We
proposed a heuristic framework to approximate chance
constrained finite horizon optimization with a large-scale
deterministic optimization problem at each sampling time.
Due to the limitation arising from non-convexity of the
considered system, we cannot directly employ randomized
algorithms that are developed for convex problems.

To circumvent this limitation, one can employ tools from
statistical learning literature, in particular the notion of
Vapnik-Chervonenkis (VC) dimension. The VC-dimension
is a useful ‘complexity measure’ in many classical control
problems. However, calculating this bound for the system
function (3) may be a difficult task and we will pursue this
viewpoint in our subsequent work.
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