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Abstract— We propose a framework of LQG optimal con-
trol in which Massey’s directed information from the state
sequence to the control sequence incurs additional cost. The
information-oriented cost in this study is motivated by a broad
range of applications in which communication costs, privacy
constraints, and bounded rationality of the decision-maker are
present. Remarkably, we show that the most “information-
frugal” LQG control policy in our framework can be realized
by an attractively simple three-stage architecture comprising
(i) a linear sensor with additive Gaussian noise, (ii) a Kalman
filter, and (iii) a certainty equivalence controller. This result
can be viewed as an integration of two previously known
separation theorems: the filter-controller separation theorem
in the standard LQG control theory, and the sensor-filter
separation theorem that arises in zero-delay rate-distortion
theory for Gauss-Markov sources. A tractable computational
algorithm based on semidefinite programming is also available
to synthesize an optimal policy.

I. INTRODUCTION

In this paper, we propose a framework and methodology
to identify the minimal information for real-time decision-
making with acceptable accuracy. This is a fundamental
question that has been raised throughout science and engi-
neering. On one hand, this question is important because re-
alistic decision-makers (either humans or digital computers)
have bounded data-processing abilities (e.g., neuroscience
[19], robotics [20], theory of bounded rationality [33], [27],
networked control theory [26], [1], [14], [25], [42]); on the
other hand, thorough understanding of the problem leads
us to novel socio-engineering technologies (e.g., optimal
privacy mechanisms [28], [9], [30]). A key feature of the
algorithms needed in these contexts is a carefully designed
data-selection mechanism that intentionally discards less
important data from all available information to mitigate
the exogenous information-oriented costs. However, this per-
spective is seldom discussed in control literature.

Although the interplay between control and information
has been extensively studied in the aforementioned net-
worked control theory literature, our angle of attack in this
paper is different from many of the existing approaches.
As of today, the majority of networked control literature is
centered around the “control over communication channel”
problem where a channel model is given as part of the
problem set-up. Examples include noiseless digital channels
(quantizers) [8], [6], [12], [15], noisy discrete memoryless
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Fig. 1. “Information-frugal” LQG control problem.

channels [2], Gaussian channels [40], [5], [42], packet-
dropping channels [13], and fading channels [11]. Although
such considerations are motivated by realistic communication
models, the results tend to be case-specific and are not
suitable for identifying the minimal information for control
in general contexts. In contrast, our programme in this
paper is to carve out the fundamental trade-off between the
best achievable control performance and the required data-
rate directly, without assuming any specific communication
models. In this sense, our results can be compared with
[10], [22], [31]. However, our concern is different from [29],
where the main purpose of the study was to characterize
invariant properties of communication channels as far as
control is concerned.

In order to quantify the minimal information needed to
achieve desired control performance, we consider a general
linear-Gaussian control system in Figure 1 and how Massey’s
directed information from the state sequence xt of the
plant to the control sequence ut can be minimized while
achieving desired LQG control performances. We refer to
this framework as information-frugal LQG control, whose
precise description is available in Section II. The relevance
of directed information is previously discussed in [38], [10],
[32], and we will revisit its interpretation again in the same
section.

As the first part of the main result, we show that the
optimal decision policy for the information-frugal LQG
control in Figure 1 is realized by an attractive “sensor-filter-
controller” separation structure. (Figure 4 depicts this archi-
tecture.) More precisely, we show that an optimal decision
at every time step can be made by first observing xt through
a carefully designed MIMO linear sensor mechanism, which
acquires “just enough” information for control purposes.
Sensor outputs are processed by a causal and recursive
estimator (Kalman filter) and then a certainty equivalence
controller produces ut. It is remarkable that this simple three-
stage policy outperforms all other (Borel-measurable) poli-
cies. The result in this part can be viewed as an integration
of the previously known filter-controller separation principle
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Fig. 2. Channel-filter-controller separation principle: integration of the
channel-filter and filter-controller separation principles.

in the LQG control theory [41] and the recent channel-filter
separation principle in the Gaussian sequential rate-distortion
theory [38]; Figure 2 illustrates these principles.

As the second part of the main result, we show that the
optimal policy can be synthesized by an efficient numerical
algorithm. Namely, besides the optimal architecture of the
control policy, another key result is that the aforementioned
MIMO sensor can be constructed by means of semidefinite
programming (SDP). It turns out that the use of SDP is
crucial here, since we are not aware of a simple analytical
expression of the optimal signal-to-noise ratio (SNR) for the
MIMO sensor. The proposed SDP-based synthesis allows us
to obtain a systematic framework representing the trade-off
function between the controller performance and the minimal
data-rate for general multi-variable and time-varying control
systems. In this paper, we do not discuss the operational
achievability (i.e., how to design source quantizers, encoders
and decoders). However, it is expected that the structural
results in this paper will provide useful insights for designing
practical source coding schemes, which is important future
work.

The rest of the paper is organized as follows. The main
problem is formally introduced in Section II, where we also
discuss its interpretations. Main results of this paper are
summarized in Section III. Section IV is devoted to deriving
the main theorem. Finally, we conclude in Section V and
discuss potential directions as future work. To save space and
improve the readability of the paper, some technical proofs
are provided in the appendix and an online report available
at [36].

NOTATION

Calligraphic symbols such as X ⊆ Rn are used to denote
subsets of Euclidean spaces. Borel σ-algebra on X with
respect to the usual topology on Rn is denoted by BX . An
(X ,BX )-valued random variable is denoted by a bold symbol
x. We use a notation xt , (x1, · · · ,xt). The probability
measure induced by a random variable x is denoted by Px

or P(dx). A Gaussian random variable x with mean µ and
covariance Σ is denoted by x ∼ N (µ,Σ). The relative
entropy of Q from P is a non-negative quantity defined by

D(P‖Q) ,

{∫
log2

P(dx)
Q(dx)P(dx) if P� Q

+∞ otherwise

where P � Q means that P is absolutely continuous
with respect to Q, and P(dx)

Q(dx) denotes the Radon-Nikodym
derivative. We say that a probability measure P on Rn

admits a density if P � L, where L is the Lebesgue
measure on Rn. We denote by supp(P) ⊆ Rn the sup-
port of P defined as the smallest closed set whose com-
plement has measure 0. If x and y have a joint prob-
ability distribution P(dx, dy) with marginals P(dx) and
P(dy), then the mutual information between x and y is
defined by I(x;y) , D(P(dx,dy)‖P(dx)P(dy)), where
P(dx)P(dy) is the product measure. A stochastic kernel
P(dx|z) is a probability measure in the first argument and
a (Borel) measurable function in the second argument. The
conditional mutual information is defined by I(x;y|z) ,∫
D(P(dx, dy|z)‖P(dx|z)P(dy|z))P(dz). The entropy of a

discrete random variable x with probability mass function
P(xi) is defined by H(x) , −

∑
i P(xi) log2 P(xi).

II. INFORMATION-FRUGAL LQG CONTROL PROBLEM

A. Problem description

Consider the linear time-varying stochastic difference
equation

xt+1 = Atxt +Btut + wt, t = 1, · · · , T, (1)

where xt is an Rn-valued stochastic process describing the
current state of the system, and ut is the control process syn-
thesized by the decision maker. We assume that the process
xt starts from an initial state with the known distribution
x1 ∼ N (0, P1|0) for some P1|0 � 0, which is independent
from the process noises wt ∼ N (0,Wt) with Wt � 0.

The main objective in this study is to synthesize a deci-
sion policy that, informally speaking, “consumes” the least
amount of information of the state process (measured in bits)
among all policies achieving a desired control performance.
In this context, the control policy is described via a sequence
of (Borel measurable) stochastic kernels denoted by γ ,∏T
t=1 P(dut|xt, ut−1); see Figure 1 for a visual interaction

between the state and control processes. A thorough treat-
ment of stochastic kernels can be found in [3]. Let Γ denote
the space of such policies.

The performance of the policy γ ∈ Γ is quantified based
on two criteria:

(i) the LQG control cost

Jγ(xT+1,uT ) ,
∑T

t=1
E
(
‖xt+1‖2Qt+ ‖ut‖

2
Rt

)
; (2)

(ii) and the directed information

Iγ(xT → uT ) ,
∑T

t=1
Iγ(xt;ut|ut−1). (3)

The directed information quantity in (3) is defined using
the conditional mutual information evaluated with respect to
the joint probability measure induced by the policy γ. For
the sake of notational simplicity we may use “I” instead of
“Iγ” when the underlying policy γ is clear from the context.

The main problem studied in this paper is defined as

min
γ∈Γ

Iγ(xT → uT ) (4a)

s.t. Jγ(xT+1,uT ) ≤ D, (4b)



where D > 0 is a given parameter reflecting the desired
upper bound for the LQG control cost. We denote the optimal
value of the problem (4) by R(D). In this paper we provide
an optimization-based characterization, more specifically an
SDP reformulation, of the problem (4) which is amenable to
existing computational tools for numerical purposes.

B. Interpretation

Before proceeding with the main result of this paper,
in this subsection we elaborate further details concerning
the problem (4). The notion of directed information is first
introduced by Massey [23] based on Marko’s earlier work
[21]. The directed information is an important concept in the
context of feedback capacity of communication channels and
has already been studied in the literature [17], [39].

Directed information (4a) reflects only the information
flow from the state process xt to the control process ut, while
the standard mutual information also captures the informa-
tion flow from control to state processes. This feature makes
the notion of directed information particularly interesting in
the context of feedback control design.

As depicted in Figure 1, one can observe that the interac-
tion between xt and ut is bidirectional. Namely, there is an
information flow from xt to ut through the decision policy,
and another flow from ut to xt through the environment.
This bilateral information flow between the state and control
processes leads to a decomposition of mutual information
between these processes into two directed information terms
as

I(xT ;uT ) = I(xT → uT ) + I(uT−1
+ → xT ),

where the sequence uT−1
+ = (0,u1,u2, · · · ,uT−1) denotes

an index-shifted version of uT . The above equality is also
called conservation of information [24].

Given the above interpretation, it is clear that the natural
quantity in the design of the feedback policy with minimal
information consumption is indeed the directed information,
as it reflects the information processing cost for a decision-
maker in most of real applications. In this regard, in the
remainder of this subsection we discuss an application of
the problem (4) to networked control systems.

Consider a feedback control system in Figure 3, where
the sensor data must be transmitted to the controller in
the form of binary sequence of length rt. Let us denote
this sequence by {zt}Tt=1 ⊂ {0, 1}rt . We assume that the
“sensor + encoder” block is modeled by a stochastic kernel
P(dzt|xt, zt−1, ut−1), while the “decoder + controller” block
is modeled by another stochastic kernel P(dut|zt, ut−1).
Notice that the composition of these stochastic kernels
uniquely characterizes a policy γ ,

∏T
t=1 P(dut|xt, ut−1).

In this setting a fundamental question in accordance with the
performance of the control design is as follows.

Question 1 (Transmission rate). Suppose that a feedback
control architecture in Figure 3 is required to meet the cost
constraint Jγ ≤ D. What is the fundamental lower bound of
the total number of bits

∑T
t=1 rt that must be transmitted?
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Fig. 3. An example of the internal architecture of the decision policy in
Figure 1.

In order to address Question 1, we continue with a
lemma, describing a “data-processing inequality” for directed
information. The lemma is expressed in a rather general
setting in which the process zt is not necessarily a binary
value, i.e., zt ∈ Rrt .

Lemma 1 (Feedback Data-Processing Inequality). Con-
sider a control system (1) with a decision policy∏T
t=1 P(dut|xt, ut−1). Assume that P(dut|xt, ut−1) can

be realized as a composition of stochastic kernels
P(dzt|xt, zt−1, ut−1) and P(dut|zt, ut−1), where zt is an
Rrt -valued random variable. Then, we have an inequality

I(xT → uT ) ≤ I(xT → zT ‖uT−1
+ ),

where the right hand side is a short-hand notation for∑T
t=1 I(xT ; zt|zt−1,ut−1), written with Kramer’s causal

conditioning [18].

Proof: Let us highlight that the version of the di-
rected data processing inequality in [38] is not equivalent
to Lemma 1, as the source xt in Lemma 1 is affected by
feedback. See Appendix for the detailed proof.

Note that when the stochastic process zTt=1 takes binary
values, we then have the standard inequality H(zt) ≤
log2 |zt| = rt, where H( · ) is the entropy function. Using the
assertion of Lemma 1 in the first place we have the following
chain of inequalities:

I(xT → uT ) (5a)

≤
∑T

t=1
I(xt; zt|zt−1,ut−1) (5b)

=
∑T

t=1

(
H(zt|zt−1,ut−1)−H(zt|xt, zt−1,ut−1)

)
(5c)

≤
∑T

t=1
H(zt|zt−1,ut−1) (5d)

≤
∑T

t=1
H(zt) (5e)

≤
∑T

t=1
rt. (5f)

Note that Lemma 1 is used in the first step. The inequalities
(5) show that the directed information indeed suggests a
lower bound for the minimum number of required bits
to be transmitted in order to ensure the desired level of
performance cost. By contrast, the standard mutual infor-
mation I(xT ;uT ) in general fails to provide an insight to
Question 1. In a similar context, an observation on the
relationship between directed information and the operational
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Fig. 4. Channel-filter-controller separation architecture for “information-
frugal” LQG control.

source-coding rate is also discussed in [32, Theorem 4.1]; see
references therein for further details.

Despite the above discussion, it should be noted that there
is an important caveat concerning the achievability of the
lower bound offered by the directed information in (5). That
is, the bound is generally not operationally achievable even
asymptotically (i.e., T →∞). This is mainly due to the fact
that the standard rate-distortion function requires to consider
arbitrarily large block-lengths [7, Theorem 10.2.1], which
leads to arbitrarily large delays in our setting, and thus is
not acceptable. It is, however, shown that the conservatisms
of this lower bound (5) is bounded by a small constant [32].
In this light, we consider the problem (4) as the main focus
of this paper rather than Question 1.

III. MAIN RESULT

This section includes the main message of the paper,
presenting an optimal solution to the problem (4) comprising
three data-processing components. Figure 4 visually illus-
trates these components which will be detailed in the rest of
this section.

The control architecture consists of three components:
(i) A linear sensor mechanism yt = Ctxt + vt with

mutually independent additive Gaussian noise vt ∼
N (0, Vt) with Vt � 0;

(ii) The Kalman filter computing x̂t = E(xt|yt,ut−1);
(iii) And the certainty equivalence controller ut = Ktx̂t.
The parameters of these steps (i.e., matrices Ct and noise
process vt in component (i), the filter in (ii), and the
controller matrix gain Kt in (iii)) can be synthesized in a
sequential tractable computational procedure. That is, the
preceding step provides input for the following one. The
procedure involves three steps, starting with controller design
in (iii), followed by the linear sensor design in (i), and finally
the Kalman filter design in (ii):

• Step 1. (Controller design) Compute a backward Riccati
recursion.

St =

{
Qt if t = T

Qt + Φt+1 if t = 1, · · · , T − 1
(6a)

Φt = A>t (St − StBt(B>t StBt +Rt)
−1B>t St)At (6b)

Kt = −(B>t StBt +Rt)
−1B>t StAt (6c)

Θt = K>t (B>t StBt +Rt)Kt (6d)

The optimal feedback control gains {Kt}Tt=1 are obtained
in (6c), while the positive semidefinite matrices Θt are
computed as an input to the next step.

• Step 2. (Linear sensor design) Solve the max-det problem

min
{Pt|t,Πt}Tt=1

1

2

∑T

t=1
log det Π−1

t + c1 (7a)

s.t.
∑T

t=1
Tr(ΘtPt|t) + c2 ≤ D (7b)

Πt � 0, (7c)
P1|1 � P1|0, PT |T = ΠT , (7d)

Pt+1|t+1 � AtPt|tA>t +Wt, (7e)[
Pt|t−Πt Pt|tA

>
t

AtPt|t AtPt|tA
>
t +Wt

]
�0. (7f)

The constraint (7c) is defined for every t = 1, · · · , T ,
while (7e) and (7f) are for every t = 1, · · · , T − 1. The
following computation provides the input for the last step.
Set the constants c1 and c2 as

c1 = 1
2 log detP1|0 + 1

2

∑T

t=1
log detWt

c2 = Tr(N1P1|0) +
∑T

t=1
Tr(WtSt).

Let rt = rank(P−1
t|t − P

−1
t|t−1) for t = 1, · · · , T , where

Pt|t−1 , At−1Pt−1|t−1A
>
t−1 +Wt−1, t = 2, · · · , T.

Apply the singular value decomposition to find matrices
Ct ∈ Rrt×nt and Vt ∈ Srt++ such that the matrix-valued
signal-to-noise ratio (SNR) satisfies

SNRt , C>t V
−1
t Ct = P−1

t|t − P
−1
t|t−1 (8)

for t = 1, · · · , T . In case of rt = 0, Ct and Vt are
considered to be null (zero dimensional) matrices.

• Step 3. (Filter design) Determine the Kalman gains by

Lt = Pt|t−1C
>
t (CtPt|t−1C

>
t + Vt)

−1. (9)

Construct the Kalman filter by

x̂t = x̂t|t−1 + Lt(yt − Ctx̂t|t−1) (10a)
x̂t+1|t = Atx̂t +Btut. (10b)

If rt = 0, Lt is a null matrix and (10a) is simply replaced
by x̂t = x̂t|t−1.

The following theorem formally explains the output of the
above constructive procedure and bridges the result to the
problem (4).

Theorem 1 (Information-Fugal LQG Controller). An optimal
policy for the problem (4) exists if and only if the max-det
problem (7) is feasible, and the optimal value of the program
(4) coincides with the optimal value of (7). If the optimal



value of (4) is finite, an optimal policy can be realized by
an interconnection of a linear sensor, Kalman filter, and
a certainty equivalence controller as shown in Figure 4.
Moreover, each of these components can be constructed by
an SDP-based algorithm summarized in Steps 1-3.

Remark 1 (Three-stage Separation Principle). The assertion
of Theorem 1 is indeed an integration of the previously
known filter-controller separation principle in the LQG
control theory [41] and sensor-filter separation principle
in the Gaussian sequential rate-distortion theory [38] (cf.
Figure 2). We also emphasize that our separation principles
enjoys a tractable computational characterization using an
SDP algorithm.

In the literature of classical LQG control theory, a linear
sensor mechanism yt = Ctxt+vt is traditionally considered
to be a part of the given model. In this view, it is well-known
from the filter-controller separation principle that the optimal
LQG controller is a composition of the Kalman filter and
the certainty equivalence controller [41]. On the other hand,
for (uncontrolled) linear dynamical systems (i.e., when the
controller gain Kt is fixed) the design problem is translated
into the minimization of the directed information I(xT →
x̂T ) over the reconstruction policies

∏T
t=1 P(dx̂t|xt, x̂t−1).

This problem turns out to be the Gaussian sequential rate-
distortion problem [37], where a sensor-filter separation
principle is known [38] (see also [35]). However, to the
best of our knowledge, the three-stage sensor-filter-controller
separation principle in Theorem 1 is derived for the first time
in this paper for a control problem of the form (4).

IV. DERIVATION OF MAIN RESULT

In this section we sketch the main ideas to establish the
assertion of Theorem 1, and refer the interested reader to
[36] for further details.

Let us define subsets Γ1 ⊂ Γ2 ⊂ Γ of the policy space as
follows.

• Subset Γ1 ⊂ Γ A policy γ ∈ Γ1 is a sequence
of stochastic kernels γ =

∏T
t=1 P(dut|xt, ut−1) where

P(dut|xt, ut−1) can be written as a composition of the
following terms:

(i) A stochastic kernel defined as P(dyt|xt) =
N (Ctxt, Vt) with some nonnegative integer rt, a
matrix Ct ∈ Rrt×nt and Vt � 0. This kernel can be
simply realized through a linear sensing mechanism
with mutually independent additive Gaussian noise

yt = Ctxt + vt, vt ∼ N (0, Vt); (11)

(ii) A linear map ut = lt(y
t).

• Subset Γ2 ⊂ Γ A policy γ ∈ Γ2 is a sequence
of stochastic kernels γ =

∏T
t=1 P(dut|xt, ut−1) where

P(dut|xt, ut−1) = N (Mtxt + Ntu
t−1, Gt) with some

matrices Mt, Nt, and Gt � 0. This kernel can be realized
through

ut = Mtxt +Ntu
t−1 + gt, gt ∼ N (0, Gt). (12)

The outline of the proof of Theorem 1 can be described
through a chain of inequalities as follows:

inf
γ∈Γ:Jγ≤D

I(xT → uT ) (13a)

≥ inf
γ∈Γ:Jγ≤D

∑T

t=1
I(xt;ut|ut−1) (13b)

≥ inf
γ∈Γ2:Jγ≤D

∑T

t=1
I(xt;ut|ut−1) (13c)

≥ inf
γ∈Γ1:Jγ≤D

∑T

t=1
I(xt;yt|yt−1) (13d)

≥ inf
γ∈Γ1:Jγ≤D

I(xT → uT ) (13e)

Notice that since Γ1 ⊂ Γ, we clearly have (13a) ≤ (13e).
Therefore, showing the above inequalities proves that all
quantities in (13) are equal. This is indeed an insightful
observation indicating that the restriction of the class of
optimal policies to the subset Γ1 does not deteriorate the
performance.

The first inequality (13b) follows directly from the def-
inition of the directed information. As such, the proof of
inequality (13e) reveals that an optimal solution to (13d), if
exists, is also an optimal solution to (13e). This implies that
it suffices to find an optimal solution to a simplified problem
(13d). It is remarkable that the class of control policies Γ1

by construction enjoys the separation structure as detailed
in (i) and (ii). We further show that, by invoking standard
LQG optimal control theory, the optimal linear map ut =
lt(y

t) for (13d) can be written as ut = KtE(xt|yt,ut−1)
where E(xt|yt,ut−1) is computed by the Kalman filter.
This observation establishes the sensor-filter-controller sepa-
ration principle. With this structural understanding, we show
that problem (13d) can be reformulated as an optimization
problem in terms of SNRt , C>t V

−1
t Ct, which is further

converted to an SDP problem.

V. CONCLUSION AND FUTURE DIRECTIONS

This paper considered an optimal control problem in which
the directed information from the state variables to the
control actions is minimized subject to the requirement that
the control policy achieves a desired level of LQG control
performance. It was shown that an optimal control policy
admits a novel three-stage separation structure comprising (i)
an additive Gaussian channel, (ii) Kalman filter, and (iii) cer-
tainty equivalence controller. We also proposed a tractable
numerical algorithm to synthesize the optimal policy with
the three-stage architecture.

The problem setting in this paper is concerned with a finite
horizon performance cost for a linear time-varying dynamical
system. An interesting future direction is to investigate the
implication of the main result of the paper, Theorem 1, in
other special cases including time invariant dynamics and/or
an infinite horizon performance cost. Besides, throughout this
study we assume that we have access to full state of the
system, potentially subject to some measurement noise. A
natural extension is when we have only partial observation
of the state of the system, i.e., the decision-maker is only



allowed to measure a process yt , h(xt) for a given output
function h. The key idea for this extension is the innovations
approach [16], which is a standard technique since [4]. Other
relevant discussions can also be found in [34] in the context
of zero-delay rate-distortion theory for partially observable
Gauss-Markov processes.

APPENDIX

In this appendix we show the data-processing inequality
for directed information, and in particular provide the proof
of Lemma 1. First, let us recall that Kramer’s causally
conditioned directed information [18] is defined by

I(xT → yT ‖zT ) ,
∑T

t=1
I(xT ;yt|yt−1, zt).

Notice that the following chain of equalities hold for every
t = 1, · · · , T .

I(xt; zt|zt−1,ut−1)− I(xt;ut|ut−1)

=I(xt; zt,ut|zt−1,ut−1)− I(xt;ut|ut−1) (14a)

=I(xt; zt|ut)− I(xt; zt−1|ut−1) (14b)

=I(xt; zt|ut)− I(xt−1; zt−1|ut−1)

− I(xt−1; zt−1|xt−1,ut−1) (14c)

=I(xt; zt|ut)− I(xt−1; zt−1|ut−1). (14d)

When t = 1, the above identity is understood to mean
I(x1; z1) − I(x1;u1) = I(x1; z1|u1) which clearly holds
as x1–z1–u1 form a Markov chain. Equation (14a) holds
because I(xt; zt,ut|zt−1,ut−1) = I(xt; zt|zt−1,ut−1) +
I(xt;ut|zt,ut−1) and the second term is zero since xt–
(zt,ut−1)–ut form a Markov chain. Equation (14b) is ob-
tained by applying the chain rule for mutual information in
two different ways:

I(xt; zt,ut|ut−1)

= I(xt; zt−1|ut−1) + I(xt; zt,ut|zt−1,ut−1)

= I(xt;ut|ut−1) + I(xt; zt|ut).

The chain rule is applied again in step (14c). Finally, (14d)
follows as zt−1–(xt−1,ut−1)–xt form a Markov chain.

Now, the desired inequality can be verified by computing
the right hand side minus the left hand side as∑T

t=1

[
I(xt; zt|zt−1,ut−1)− I(xt;ut|ut−1)

]
=
∑T

t=1

[
I(xt; zt|ut)− I(xt−1; zt−1|ut−1)

]
(15a)

=I(xT ; zT |uT ) ≥ 0. (15b)

In step (15a), the identity (14) is used. The telescoping sum
(15a) cancels all but the final term (15b); this concludes
Lemma 1 assertion.
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