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Abstract: We present an approximation method to a class of parametric integration problems
that naturally appear when solving the dual of the maximum entropy estimation problem. Our
method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional
linear program, and utilizes a convex clustering algorithm to compute an approximate solution
which requires reduced computational effort. It shows to be particularly appealing when looking
at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we
apply our method to an example problem on the unit disc.

Keywords: Entropy maximization, convex clustering, linear programming, importance
sampling

1. INTRODUCTION

Consider the problem where given a finite number of
moments generated by an unknown probability density,
we wish to estimate the unknown density. Obviously,
this problem is under-determined and will have infinitely
many solutions. To obtain a unique solution one can
introduce a concave objective to be maximized. A natural
choice for this is the information entropy, leading to the
MaxEnt density, see Section 4 for a formal treatment of
the problem.

The MaxEnt approach to density estimation and some
of its remarkable properties has first been established by
Jaynes in his seminal work Jaynes (1957). Since then it
has found many important applications in various areas
of physics, engineering, and systems biology in particular;
see e.g. the discussions in Mead and Papanicolaou (1984);
Sutter et al. (2015); Smadbeck and Kaznessis (2013). Its
operational significance motivates the quest for efficient
numerical methods to compute the MaxEnt density. The
latter is the solution to an infinite-dimensional convex op-
timization problem that is as such intractable in general. It
was shown in Csiszár (1975) that the MaxEnt distribution
subject to a finite number of moment constraints, if it
exists, belongs to the family of exponentials of polyno-
mials. Its computation can thus be reduced to solving
a system of nonlinear equations of dimension equal to
the number of moment constraints. However, solving this
system of nonlinear equations involves evaluating multi-
dimensional integrals, a computationally difficult task in
general. One way to overcome this issue is to approximate
these by a quadrature rule, see for example Ormoneit
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and White (1999); Abramov et al. (2010). An alternative
approach to approximate the MaxEnt density is presented
in (Lasserre, 2010, Section 12.3), where by using duality of
convex programming the problem is reduced to an uncon-
strained finite-dimensional convex optimization problem.
An approximation hierarchy of the objective’s gradient
and Hessian in terms of two single semidefinite programs
involving two linear matrix inequalities (LMI) is presented,
where the desired accuracy is controlled by the size of the
LMI constraints.

In this paper, we introduce a framework to numerically
approximate a class of parametric integration problems
using recent advances generalizing Gauss quadratures via
an infinite-dimensional linear program (LP) Ryu and Boyd
(2015). The difficulty resides in approximating the infinite-
LP, as solving these problems exactly is computationally
hard in general. Ryu and Boyd (2015) propose discretis-
ing the infinite-LP to a finite LP, that can be readily
solved by standard solvers. We augment this technique
by running a convex clustering algorithm which is built
on the solution of a convex optimization problem, see
Lashkari and Golland (2008). Embedded in an informa-
tion theoretic context, the algorithm systematically filters
out the most important discretization points, making it
comparable to importance sampling Robert and Casella
(2004). The reduction of the discretization set through the
identification of the important exemplars is motivated by
high-dimensional problems, where standard discretization
techniques suffer from exponential growth. To complete
the picture, we show that the dual program of the men-
tioned entropy maximization problem falls into the class
of parametric integration problems addressed by the de-
veloped approximation method.

Section 2 formally presents the class of parametric inte-
gration problems that we aim to approximate. The ap-



proximation method to these problems is introduced in
Section 3. We show in Section 4 how the maximum entropy
estimation problem can be addressed via the studied class
of parametric integration problems. To illustrate the pro-
posed methodology, the theoretical results are applied to a
two-dimensional maximum entropy estimation problem, in
Section 5. We conclude in Section 6 with a summary of our
work and comment on possible topics of further research.

2. PROBLEM STATEMENT

Let η ∈ Rr be a known vector, µ a Borel measure defined
on Ω ⊂ Rd and consider the optimization problem

min
λ∈Rr

{
−η>λ+ log

∫
Ω

f(λ, x) dµ(x)

}
, (1)

where λ is the r-dimensional decision variable and f :
Rr × Rd → R a nonnegative function that is assumed
to be convex and twice continuously differentiable in λ
for fixed x. This type of objectives turns out to be of
importance in a number of applications, among them
the maximum entropy estimation problem, that aims to
estimate a probability density supported on Ω only by
knowledge of its first r moments; indeed in Section 4 we
show that (1) is the dual of this problem. Note that if we
set η = 0 and recall that the logarithm is a monotonic
function, problem (1) reduces to

min
λ∈Rr

{∫
Ω

f(λ, x) dµ(x)

}
, (2)

i.e., the minimization of an expected value cost in the pres-
ence of uncertainty distributed according to µ, also a prob-
lem of major importance, see the comprehensive mono-
graph Shapiro et al. (2014) and the references therein.

To solve (1), we propose to replace the integral by a finite
weighted sum of function evaluations∫

Ω

f(λ, x) dµ(x) ≈
m∑
j=1

wjf(λ, xj). (3)

As the sum inherits the structural properties of f in λ, (3)
can be tackled by invoking methods from smooth convex
optimization Nesterov (2004).

The cornerstone of the proposed approximation consists of
finding the locations of the nodes xj and their respective
weights wj . In this study, based on some recent work on
extensions of Gauss quadrature Ryu and Boyd (2015),
the nodes xj and their weights wj can be characterized
as the solution to a semi-infinite LP. The key step of
the presented approach is to use a convex clustering
algorithm described in Lashkari and Golland (2008) to
identify the k nodes which are the most important from an
information theoretic perspective; we shall elaborate and
provide greater details about this in Section 3.2.

3. METHODOLOGY

This section articulates in two parts. Based on Ryu and
Boyd (2015), we first set the scene that allows us to find
the nodes and weights of the Gauss-LP quadratures. By
necessity we don’t aim for a comprehensive treatment, but
concentrate on the main points of central importance to
our work. We then present the ideas behind the clustering
algorithm used in this work.

3.1 Gauss-LP Quadratures

We start by briefly recalling traditional Gauss quadrature
in one dimension before exposing an approach for a gen-
eralisation to multidimensional (potentially non-standard)
domains.
A quadrature approximates an integral on the real interval
[−1, 1] by a finite sum of weighted function evaluations∫ 1

−1

f(x) dx ≈
m∑
j=1

wjf(xj), (4)

where xj ∈ [−1, 1], j = 1, . . . ,m are called quadrature
nodes and wj ≥ 0 their corresponding weights. Note that
without loss of generality, the domain can be assumed to
be equal to [−1, 1] by making an appropriate change of
integration variable. A quadrature is said to be of order
n if it exactly computes the integral of polynomials up to
degree n− 1, that is∫ 1

−1

xs dx =

m∑
j=1

wjx
s
j , for s = 0, . . . , n− 1. (5)

For an a priori fixed n, the whole difficulty resides in
finding the appropriate number m, locations and weights
wj of the nodes xj . Intuitively, the higher n is set, the
more precise the resulting quadrature will be, but the
number of required function evaluations m will increase
as a consequence.
The Gauss quadrature is a unique set of nodes and weights
such that m = n

2 . For the standard interval [−1, 1], loca-
tions of the Gauss nodes and values of their weights as a
function of n can be looked up in a table, see for example
Cheney and Kincaid (1980).

Unfortunately, classical Gauss quadrature does not easily
extend to multiple dimensions and to non-standard do-
mains (e.g., polytopes).
Ryu and Boyd (2015) proposed a way to extend the
method, based on the fact that any quadrature can be
interpreted as a measure µ with finite support, i.e.,∫ 1

−1

f(x) dx ≈
∫ 1

−1

f(x) dµ =

∫ 1

−1

f(x)(

m∑
j=1

wjδxj
)

=

m∑
j=1

wjf(xj),

where δxj denotes the Dirac measure. This way, the
quadrature problem reduces to searching for a non-
negative Borel measure on [−1, 1] that satisfies (5). Ryu
and Boyd (2015) propose to pick the measure that will
minimize its sensitivity to the polynomial of next degree,
yielding the optimization problem

min
µ

∫ 1

−1
xn dµ

s.t.
∫ 1

−1
xs dµ =

∫ 1

−1
xsdx, for s = 0, . . . , n− 1

µ ≥ 0,

(6)

where the constraints represent (5), and the last constraint
ensures non-negativity of the weights.

Theorem 1. ((Ryu and Boyd, 2015, Theorem 1)). The lin-

ear program (6) admits a unique solution µ? =
∑n/2
j=1 wjδxj

,
where w1, . . . , wn/2 and x1, . . . , xn/2 are the weights and
nodes of the Gauss quadrature.



Polynomials in (5) can be replaced by any linearly inde-
pendent set of test functions p0, . . . , pn−1, for example a
sinusoidal basis. The objective can also be generalised; we
denote this generalised integrand by Φ and, following Ryu
and Boyd (2015), refer to it as the sensitivity. We can now
rewrite (6) in a more general setting, yielding

min
µ

∫
Ω
φdµ

s.t.
∫

Ω
ps dµ =

∫
Ω
ps dx, for s = 0, . . . , n− 1

µ ≥ 0.

(7)

We call a solution to (7) a Gauss-LP quadrature.

Theorem 2. ((Ryu and Boyd, 2015, Theorem 2)). The LP
(7) admits a solution µ? supported on at most n points.

Problem (7) is infinite-dimensional and in general difficult
to solve. It is therefore approximated by drawing a large
set of points χM = {x1, . . . , xM}, sampled from a uniform
density on Ω. The search for the decision variable is then
restricted to those having finite support on χM , that is

µ =
∑M
i=1 wiδxi

, where δ denotes the Dirac measure. With
this simplification, the problem (7) reduces to a finite-
dimensional LP with decision variables wi, i = 1, . . . ,M ,
which can be readily solved. By carefully choosing φ,
one can guarantee that any basic feasible solution of the
LP has at most n nonzero coefficients, which yields the
corresponding support set χn = {xi ∈ χM |wi > 0} ⊆ χM
with cardinality n.

3.2 Convex Clustering

To further reduce the cardinality of the samples set χn we
propose to use the convex clustering method of Lashkari
and Golland (2008). This will result in less function evalu-
ations in (3) and therefore speed up the method. Consider
the elements of χn as n realisations of a random variable
with unknown distribution defined on Rd. Lashkari and
Golland (2008) extend classical mixture model clustering,
considering all elements of χn as cluster-center candidates.
Hence they look for the mixture distribution that maxi-
mizes the log-likelihood

l(q) =
1

n

n∑
i=1

log

n∑
j=1

qjfj(xi), (8)

where fj is an exponential family member with expecta-
tion value xj ∈ χn and xi ∈ χn, i = 1, . . . , n. The convex
combination of distributions that maximizes (8) is the
distribution that most likely generates the data set χn. It
is shown in Banerjee et al. (2005) that there is a bijection
between exponential families and Bregman divergences 1 .
Equation (8) can thus be reformulated as the optimization
problem max

q∈Rn
≥0

l(q) = 1
n

∑n
i=1 log

(∑n
j=1 qje

−βd(xi,xj)
)

s.t.
∑n
i=1 qj = 1,

(9)

where d(xi, xj) is some Bregman divergence, and xi, xj ∈
χn. The Euclidean distance is one example of a Bregman
divergence and yields the normal distribution. What will
result from (9) is a vector q with entry qj positive if and
only if xj is a cluster-center. The parameter β controls
the width of the clusters and therefore directly influences
1 See Banerjee et al. (2005) for a precise definition.

the sparsity of q, as shown in Figure 1 and Figure 2.
Ultimately, we define χk = {xj ∈ χn|qj > 0} as our
final nodes set, composed only of the cluster-centers and
of cardinality k ≤ n.

This approach offers several advantages. Equation (9) is
a convex optimization problem, making it possible to de-
ploy algorithms that will converge to the global optimum.
Moreover, there is no initial guess required as it would be
the case in other clustering approaches such as k-means.
Finally, the clustering approach of Lashkari and Golland
(2008) has an information theoretic interpretation. Max-
imizing the log-likelihood function (9) is equivalent to a
certain instance of the so-called rate-distortion problem,
which considers an instance of lossy data compression, see
Berger (1971) for a detailed treatment. Interestingly, this
connection not only provides a rigorous quantification that
higher number of clusters is the inherent cost of attaining
a high objective function in (9), it also naturally sug-
gests numerical algorithms derived for the rate-distortion
problem to solve the optimization problem (9), such as
the celebrated Blahut-Arimoto algorithm Blahut (1972);
Arimoto (1972).

In view of the likelihood criteria, the proposed clustering
approach can also be cast as a process to filter out impor-
tant samples from a given dataset. Importance sampling is
a well-known technique and has been extensively studied
in the literature, see for instance Richard and Zhang (2007)
in the context of high-dimensional integration and Kotecha
and Djuric (2003) for building Gaussian particle filters to
model uncertainty propagation in a dynamical environ-
ment. The idea of using an optimization-based process
to filter out the important samples has recently received
attention, see the comprehensive survey Dick et al. (2013)
and the references therein. We believe that the proposed
approach in this study falls into this category.

During the clustering process, we put the weights aside to
focus on the locations of the nodes. We are thus left with
unchanged weights wj corresponding to the nodes xj ∈ χk
with qj > 0, designated as cluster-centers. This quadrature
does not fulfil the constraints of (7) anymore, and the
weights need to be adjusted. Since the clustering reduced
the cardinality of the nodes set, we now need to satisfy n
constraints with the k < n variables w1, . . . , wk, which is
impossible in general. We therefore seek to minimize the
maximal violation of the constraints, that is

min
w∈Rk

max
s∈{0,...,n−1}

∣∣∣∣ k∑
j=1

wjps(xj)−
∫

Ω

ps dΩ

∣∣∣∣. (10)

This can be solved with a standard solver, and we even-
tually find our final nodes set x1, . . . , xk and respective
weights w1, . . . , wk.

4. MAXIMUM ENTROPY ESTIMATION

Assume we are given a family of moments, summarized
by η, that are induced by an unknown probability density
supported on a given set Ω ⊂ Rd. Given that the number
of observed moments is finite, the problem of finding a
density matching these moments is underdetermined and
will have infinitely many solutions. To select among these
candidate solutions one typically introduces a concave
objective to be maximized by the unknown density. Here,



we introduce the multi-indexes α = (α1, . . . , αd) ∈ Nd and
select the Shannon entropy as the objective, defined for a
given density p as h(p) =

∫
Ω
p(x) log(p(x)) dx, leading to

the optimization problem
max

p∈L1(Ω)
h(p)

s.t.
〈
xα, p

〉
= ηα, for all |α| ≤ r

p ≥ 0,

(11)

where we assume that η(0, . . . , 0) = 1, which ensures
that the solution is a valid probability density. Note that

|α| =
∑d
`=1 α` and xα =

∏d
`=1 α`. We call a solution to

(11) the MaxEnt density. By using (Sutter et al., 2015,
Lemma 3.10) (that follows from Csiszár (1975)) and Sion’s
minimax theorem Sion (1958), one can show that the dual
program to (11) is given by

min
λ

−∑
|α|≤r

ηαλα + log

∫
Ω

exp

∑
|α|≤r

xαλα

dx

 , (12)

and that strong duality holds. Note that the vector of
all monomials xα of degree less than or equal to r has
dimension s(r) := ( r+dr ). Let us enumerate the multi-

indexes as α1, . . . , αs(r) and denote λi := λαi and as such
consider λ ∈ Rs(r) as the decision variable in the dual
program. Similarly let us denote ηi := ηαi . Moreover, let
us denote the dual objective function by F (λ), such that
(12) reads as minλ∈Rs(r) F (λ). Note that the dual program
(12) has exactly the structure of problem (1).

We aim to solve the dual program (12) with the Newton
method

λ(k+1) = λ(k) −H(λ(k))−1(g(λ(k))− η). (13)

The Hessian H(λ(k)) ∈ Rs(r)×s(r) and the gradient
g(λ(k)) ∈ Rs(r) are then approximated by

g(λ)i =

∑m
j=1 wjx

αi
j exp

(∑
|α|≤r x

α
j λα

)
∑m
j=1 wj exp

(∑
|α|≤r x

α
j λα

) (14)

H(λ)iq = g(λ)i+q − g(λ)ig(λ)q,

for i, q = 1, . . . , s(r), where the nodes xj and the respective
weights wj are found using the methodology presented in
Section 3.

Remark 3. (Computational stability). The evaluation of
the gradient and Hessian required in the Newton method
(13) involves the term (14). Note that a straightforward
computation of the gradient and Hessian via (14) is nu-
merically difficult. In the light of (Nesterov, 2005, p. 148),
we present a numerically stable technique for computing
the term (14).
We consider the functions Rs(r) 3 λ 7→ fj(λ) =∑
|α|≤n x

α
j λα ∈ R, f̄(λ) := maxj=1,...,m fj(λ) and Rs(r) 3

λ 7→ ϕj(λ) = fj(λ) − f̄(λ) ∈ R, such that all components
of ϕj(λ) are non-positive. One can show that the term (14)
is equivalent to

g(λ)i =

∑m
j=1 wje

ϕj(λ) ∂
∂λi

ϕj(λ)∑m
j=1 wje

ϕj(λ)
+

∂

∂λi
f̄(λ)

which can be computed with a small numerical error.

5. SIMULATION RESULTS

Three important features of the technique are illustrated
through an example problem on the unit disc. First, we
solve Problem (7), then present the clustering algorithm,
in particular how β alone controls the amount of clusters
k, and finally see how the resulting Gauss-LP quadratures
(with k clusters) perform on the maximum entropy esti-
mation problem.

Consider problem (7) where Ω = {(x, y) ∈ R2 | x2 +
y2 ≤ 1}. We follow the procedure described at the end of
Section 3.1, extract M = 20000 samples xi uniformly on
Ω and thus define χM = {x1, . . . , xM}. Further, we choose
the two-dimensional test functions pij = xiyj for i+j < 7,

leading to n = 7(7+1)
2 = 28. Heuristically, we know that

the sensitivity function φ = x7 + y7 yields a sparse w.
The resulting problem is an LP with M variables and n
constraints:

min
w∈RM

≥0

∑M
`=1 w`(x

7
` + y7

` )

s.t.
∑M
`=1 w`x

i
`y
j
` =

∫
Ω
xiyj dΩ, for i+ j < 7

w` ≥ 0,

which can be solved with a standard LP solver (e.g.,
MOSEK), yielding the upper left repartition of nodes in
Figure 1. As expected from Theorem 2, the solution is
sparse with nnz(w) = 28.

Fig. 1. Results of the clustering algorithm for different
values of β. The colorbar represents the scale of
the weights. For clarity only nodes with nonzero
weights are depicted. The upper left graph shows the
unclustered set χm as a reference.

In a second step, we run the clustering algorithm intro-
duced in Section 3.2 for several values of β, and report
the results in Figure 1. We observe that the sparsity
of q, represented by k, grows monotonically with β, as
mentioned in Section 3.2, see Figure 2.

We then regularize the weights according to Section ??.
Finally, we tackle the maximum entropy estimation prob-
lem on the unit disc as special case of (P). Let r = 2 and
thus s(r) = 6, and let the vector of moments be given by
the moments of the uniform density on the unit disc.
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Fig. 2. The number of clusters k grows monotonically in
the cluster-width controlling parameter β.

ηij =

∫
Ω

U(Ω)xiyj dxdy =
1

π

∫
Ω

xiyj dx dy.

i 0 0 0 1 1 2
j 0 1 2 0 1 0
ηij 1 0 1/4 0 0 1/4

The uniform density is known to be the maximum en-
tropy distribution h(U(Ω)) = −

∫
Ω

1
π log( 1

π ) dΩ = log π '
1.1447. Figure 3 shows how our approximations perform
for n = 28 constraints and k ≤ n. We see that the
scheme developed in this work recovers the uniform density
perfectly for k = n, that is no clustering. As soon as
k < n, we see that the computational savings offered by
the clustering algorithm come with a loss of accuracy in
the entropy. We also see that the approximated maximum
entropy distribution for k < n has a very different shape
from the uniform density. This is due to the fact that,
by approximating integrals with finite sums, we are no
longer optimizing the entropy, but a surrogate, leading to
different solutions. In fact, this phenomenon is not specific
to this particular example, it has been observed while
conducting tests on different domains Ω and moments
vectors η. Nevertheless the approximated entropy is indeed
approaching the desired maximum entropy.

6. CONCLUSION

We presented a simple approximation scheme to a class
of parametric integration problems we showed to appear
when one wants to solve the dual of the maximum entropy
estimation problem. Starting from a recent generaliza-
tion of Gauss quadratures, we augmented the method by
running a convex clustering algorithm in order to bring
out the most important nodes of the quadrature. We
thus paved the way towards approximate solutions with
reduced computational cost. The method is particularly
appealing when looking at problems with unusual domains
and in a multi-dimensional setting.

We showed how the scheme performs in a two-dimensional
context. The extension of the Gauss quadrature yields
exact solution of the maximum entropy problem, see

Fig. 3. Approximation of the uniform density on the unit
disc for different values of k ≤ n, where n = 28. The
entropy h(p) is growing as k goes to n, and is equal
to h(U(Ω)) for k = n.

Figure 3. For a fixed exactness degree (set by n being
the number of initial Gauss nodes), we ran the clustering
algorithm for different cluster-sizes, resulting in improving
estimates of the entropy as k (the number of clusters) goes
to n.

For future work, we opt for a rigorous framework to quan-
tify the approximation error introduced by the proposed
clustering approach as well as to better understand the
sparsity phenomenon related to the choice of the β param-
eter. Moreover, we plan to apply the presented methodol-
ogy to particular high-dimensional examples in the context
of systems biology, where the MaxEnt densities are the
key objects in the so-called moment closure method to
approximate the chemical master equation Smadbeck and
Kaznessis (2013).

An important research direction to investigate further
would also be the complexity and runtime comparison



between the presented approach and exisiting numerical
schemes for the maximum entropy estimation problem,
such as Lasserre’s SDE approach (Lasserre, 2010, Sec-
tion 12.3). Infinite-dimensional linear programs of the
type (7) naturally appear in the context of the so-called
static, convex-analytic formulation of Markov decision pro-
cesses. The approximation of these linear programs by
means of a finite program is the core of a methodology
known as approximate dynamic programming, see Bert-
sekas and Tsitsiklis (1996); Hernández-Lerma and Lasserre
(1999). Recent developments in the performance of the
first order convex optimization methods Mohajerin Es-
fahani et al. (2017), as well as randomized optimization
Mohajerin Esfahani et al. (2015), are among approaches
that we aim to use as a tool to investigate this connection
in our subsequent works.
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