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Abstract— In this paper, we consider the mean-field model of
noisy bounded confidence opinion dynamics under exogenous
influence of static radical opinions. The long-term behavior of
the model is analyzed by providing a sufficient condition for
exponential convergence of the dynamics to stationary state.
The stationary state is also characterized by a global estimate
for a sufficiently large noise. Furthermore, we consider the
order-disorder transition in the model in order to identify the
effect of the (relative) mass of the radicals on the critical noise
level at which this transition occurs. A numerical scheme for
approximating the critical noise level is provided and validated
through numerical simulations of the mean-field model and the
corresponding agent-based model for a particular distribution
of radical opinions.

I. INTRODUCTION

Long before the recent “boom” in the study of com-
plex systems, the necessity of mathematical models that
can capture the diversity of clustering behaviors in real-
world networks was realized in mathematical sociology [1].
The problem of disclosing these mechanisms is nowadays
referred to as the community cleavage problem or Abelson’s
diversity puzzle [2], [3] and primarily concerned with tempo-
ral mechanisms of opinion formation under social influence.
The interdisciplinary area of social dynamics [3]–[8] has
attracted enormous attention of the research community.

One feature observed in social and biological systems
is the homophily [9], or tendency of individuals to bond
with similar ones. In other words, like-minded individuals
influence a social actor “stronger” than different-minded
ones. Mathematically, social influence weights should be
non-constant, but rather opinion-dependent. That is, the un-
derlying interaction graph is dynamic and varies as the opin-
ions of the individuals change. A class of nonlinear models
resembling this feature are the so-called bounded confidence
models proposed as extensions of the deterministic [10]
and randomized gossip-based [11] consensus algorithms for
multi-agent networks. Bounded confidence models stipulate
that a social actor is insensitive to opinions beyond its
bounded confidence set (usually, this set is an open or closed
ball, centered at the actor’s own opinion). A detailed survey
of bounded confidence models and relevant mathematical
results can be found in [8]. Bounded confidence models
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exhibit convergence of the opinions to some steady values,
which can reach consensus or split into several disjoint
clusters. Opinions in real social groups, however, usually do
not terminate at steady values, which is usually explained by
two factors.

The first reason explaining opinion fluctuation is exoge-
nous influence, which can be interpreted as some “truth”
available to some individuals [12] or a position shared by
a group of close-minded opinion leaders (“radicals”) [13],
[14]. Typically, the exogenous signal are supposed to change
slowly compared to the opinion evolution and is thus re-
placed by a constant; the main concern is the dependence
between the constant input and the resulting opinion pro-
file. The second culprit of persistent opinion fluctuation is
uncertainty in the opinion dynamics, usually modeled as a
random drift of each opinion. Whereas these models are
still waiting for clear sociopsychological interpretation, they
are broadly adopted in statistical physics [15]–[18] to study
phase transitions in systems of interacting particles.

In spite of some progress in analysis of “noisy” bounded
confidence models [19], [20], in particular, the interplay of
confidence ranges and noise levels, all consequences of a
noise and exogenous influence in nonlinearly coupled net-
works are far from being understood. Even for the classical
models from [10], [11], disclosing the relation between the
initial and the terminal opinion profiles remains a challeng-
ing problem (including e.g. the 2R-conjecture [21], [22]).
This motivates examination of the corresponding mean-
field models as the number of actors N → ∞. The arising
macroscopic approximations of microscopic models describe
the evolution of the distribution (a probability measure or
a density) of opinion over some domain. In continuous-
time models (considered in this paper), the density obeys
a nonlinear Fokker-Planck (FP) equation. This models are
known as density-based [23], continuum-agent [24], [25],
Eulerian [26], [27], kinetic [28] or mean-field [22], [29].

In this paper, we advance the theory of macroscopic mod-
eling of noisy bounded confidence dynamics by considering
“radical” opinions (equivalently, exogenous influences) that
are not necessarily concentrated at a single point (as in [13],
[26]) but have their own distribution. Following [22], [30],
[31], we consider the model on a circle by considering
periodic boundary conditions. However, we employ an even
2-periodic extension of the system in order the preserve
the extreme opinions explicitly. Our main theoretical result
shows that for sufficiently large noises the dynamic will
converge exponentially fast to a stationary state that can be
made arbitrarily close to uniform distribution by increasing



the noise level.
Exploiting the periodic nature of the system, we derive a

system of quadratic ordinary differential equations (ODEs)
describing the evolution of the Fourier coefficients of the
solution to the FP equation. For a uniform initial data, we
use the linearized ODEs to study the order-disorder transition
in the system. In particular, we provide a approximation
scheme for computing the critical noise level at which this
transition occurs. Our analysis shows that there is a direct
relation between the mass of radicals and the critical noise
level. This result is then validated by numerical simulations
of the mean-field partial differential equation (PDE) and the
corresponding agent-based stochastic differential equations
(SDEs) for a particular distribution of radicals.

Notations. We use ? to denote the convolution of two
functions. First and second order differentiation with respect
to (w.r.t.) x are denoted by (·)x and (·)xx, respectively. Similar
notations are used for differentiation w.r.t. t. P(X) is the
the space of probability densities on X = [0,1], that is, for
all ρ ∈P(X) we have

∫
X ρ(x) dx = 1 and ρ(x)≥ 0. Pe(X̃)

is the space of even density functions on X̃ = [−1,1] such
that for all ρ ∈Pe(X̃) we have

∫
X̃ ρ(x) dx = 2, ρ(x) ≥ 0

and ρ(x) = ρ(−x). The subscript ep is used to denote the
subspace of even 2-periodic functions in the corresponding
function space; e.g., Lp

ep(X̃) ⊂ Lp(X̃) is the corresponding
subspace of even 2-periodic functions on X̃ = [−1,1] for
which the p-th power of the absolute value is Lebesgue
integrable.

II. MODEL

The model includes N interacting normal agents with
opinions xi, i = 1, . . . ,N, where each agent i is influenced by
agents j resided in its confidence bound, that is, j ∈Ni =
{ j : |xi − x j| ≤ R}. We also consider exogenous influence
in form of Nr radical agents with static opinions xri , i =
1, . . . ,Nr, introduced to the original population of normal
agents. The same bounded confidence mechanism is assumed
for interaction between a normal agent and the radicals. The
model also includes noise representing the uncertainties [30]
or the effect of free will [32] in agents’ opinions. The
following system of interacting SDEs describes the evolution
of normal agents’ opinions dxi =

1
N

[
∑

j∈Ni

(x j− xi)+ ∑
j∈Ni

(xr j − xi)

]
dt +σdW i

t ,

xi(0) = xi0 ,

(1)

where xi0 , i= 1,2, . . . ,N, are the initial opinions of the normal
agents and σ > 0 is the noise level with W i

t representing
independent Wiener processes.

Following [30], we pass to the mean-field limit (N→∞) of
the agent-based model described by (1). Then, the density of
the normal opinions ρ(x, t) satisfies the following nonlinear
FP equation{

ρt = [ρ (w? (ρ +Mρr))]x +
σ2

2 ρxx,
ρ(x,0) = ρ0(x),

(2)

where w(x) = x 1|x|≤R is the interaction kernel. The func-
tion ρ(x, t) is the limit measure of the empirical measure
ρN(dx, t) = N−1

∑
N
i=1 δxi(t)(dx), as N → ∞ (here, δx(dx)

denotes a Dirac measure centered at x). The exogenous
influence of radicals is included in the mean-field model
by introducing the radical opinions density function Mρr(x)
to (2). Here, M = Nr

N is a constant denoting the relative
mass (the zeroth moment) of the radical opinions density and
ρr(x) is the corresponding time-invariant probability density
function.

We assume that the opinions reside in the bounded in-
terval. Without loss of generality, we take X = [0,1] to be
the opinion domain and X̃ = [−1,1] as its even extension.
Notice, however, the diffusion term in (1) and (2) allows
the opinions to leave [0,1]. To avoid this, following [17],
[22], [30], [31], we consider a periodic boundary condition.
However, unlike the usual periodic extensions, we consider
an even 2-periodic extension of system. In effect, we treat the
same mean-field model as in [31] with an extra constraint on
ρ0 (and the newly introduced ρr) to be even. This particular
extension has the advantage that explicitly preserves the two
extreme opinion values at x = 0 and x = 1.

The corresponding PDE with the even 2-periodic extension
is formally expressed as ρt = (ρ Gρ)x +

σ2

2 ρxx in X̃× (0,T ],
ρ(−1, ·) = ρ(1, ·) on ∂ X̃× [0,T ],
ρ(x, ·) = ρ0(x) on X̃×{t = 0},

(3)

where
Gρ(x, t) := w(x)? (ρ(x, t)+Mρr(x)). (4)

Notice that ρ0 and ρr are the even 2-periodic extensions
of the initial density of normal opinions and the radical
opinions density, respectively. Due to periodicity, the mass
is preserved in (3), that is,

∫
X ρ(x, t) dx =

∫
X ρ0(x) dx = 1

for all t ≥ 0. PDE (3) fully describes the macroscopic model
considered in this paper.

Remark 1 (Well-posedness od dynamics): The mean-field
PDE (3) has a unique weak solution ρ ∈ C1(0,∞;C2

ep(X̃))
with ρ(t) ∈Pe(X̃) for all t ≥ 0. See [33, Theorem 1] for
the details on the required regularity on data ρ0 and ρr.

III. LONG-TERM BEHAVIOR

In this section, we study the long-term behavior of the
system by considering the equilibria of system. To this end,
we consider the corresponding stationary equation given by

σ2

2
ρxx +(ρ Gρ)x = 0. (5)

In this regard, notice that, unlike the autonomous systems
(without radicals) considered in previous studies [31], [34],
the uniform distribution ρ = 1 is not an equilibrium of
the system. There, the authors provide sufficient condition
for exponential convergence towards uniform distribution.
Here, we extend this result to our model with the exogenous
influence, i.e., the radicals.

Remark 2 (Existence of equilibrium): A fixed-point char-
acterization of the solution to the stationary equation (5) can



be used to derive existence result for a classical solution
ρ ∈C2

ep(X̃)∩Pe(X̃) for equation (5). See [33, Theorem 2]
for the details.

Let us start by presenting two main theoretical results
regarding the long-term behavior of the system. The follow-
ing Proposition provides an estimate that characterizes the
equilibria of the system for noises larger than a particular
value.

Proposition 3 (Estimate for equilibrium): Assume ρs ∈
C2

ep(X̃) ∩Pe(X̃) is a classical solution to the stationary
equation (5) with ρr ∈ L2

ep(X̃)∩Pe(X̃). Then, it holds that
‖ρs−1‖L2 < 1

η
‖ρr‖L2 if σ2 > σ2

b +ηcb, where

σ
2
b :=

4R
π

(
M+

R√
3
+2
)

and cb :=
4R2M
π
√

3
. (6)

Proof: See [33, Section 4.2].
Proposition 3 implies that, even in presence of radical

opinions, the stationary solution can be made arbitrarily close
to the uniform distribution by increasing the noise level.
Particularly, one notices that the minimum noise level σb
is directly related to the confidence bound R and the relative
mass M. Also, as the “energy” M‖ρr‖L2 of the radicals
increases, in order to counteract their effect and keep the
system in a somewhat uniform state, one must increase the
noise level further beyond σb.

Proposition 3, by itself, cannot be used for describing the
long-term behavior of the dynamics as it only characterizes
the equilibria of the system. To put this result in use, we
need to also consider the stability of these equilibria. Our
next theoretical result provides a sufficient condition for
exponential convergence of the dynamics to stationary state
for arbitrary (and sufficiently smooth) initial and radical
densities.

Proposition 4 (Exponential convergence to equilibrium):
Let ρ ∈C1(0,∞;C2

ep(X̃)) be the classical solution to PDE (3),
with ρ(t) ∈Pe(X̃) for all t ≥ 0. Then, ρ(t) converges to a
stationary state ρs ∈C2

ep(X̃)∩Pe(X̃) exponentially in L2 as
t→ ∞ if σ > σs, where σs > 0 uniquely solves

σ
2
s =

4R(3+M)

π
+

4R2

π
√

3
exp
(

8R(1+M)

σ2
s

)
, (7)

for any ρ0 ∈ L2
ep(X̃)∩Pe(X̃) and ρr ∈ L2

ep(X̃)∩Pe(X̃).
Proof: See [33, Section 4.3].

Combining the results of Propositions 3 and 4, we obtain
our main theoretical result.

Theorem 5 (Input-output stability): Assume PDE (3) has
a classical solution ρ ∈C1(0,∞;C2

ep(X̃)), with ρ(t)∈Pe(X̃)

for all t ≥ 0. If σ2 > max{σ2
b +ηcb, σ2

s }, where σb and cb
are defined in (6) and σs uniquely solves (7), then it holds
that

‖ρ(t)−1‖L2 ≤ βe−λ t +
1
η
‖ρr‖L2 , (8)

where β ,λ > 0 depend on system data and initial condition.
Proof: Notice that

‖ρ(t)−1‖L2 ≤ ‖ρ(t)−ρs‖L2 +‖ρs−1‖L2 .

Then, the inequality (8) immediately follows from Proposi-
tions 3 and 4.
This result implies that, for sufficiently large noises, the
dynamics will converge to a stationary state that can be
made arbitrarily close to uniform distribution by increasing
the noise level. We also note that the exact dependence of
the constants β and λ on the syatem data (R,σ ,M,ρr) and
initial condition can be found in the proofs of Propositions 3
and 4, available in [33].

IV. ORDER-DISORDER TRANSITION

A common behavior in noisy interactive particle systems
is the so-called order-disorder transition. For large values
of σ , the effect of diffusion process can overcome the
attracting forces among agents preventing the system from
forming any cluster. This behavior has been analyzed and
observed in several noisy bounded confidence models for
opinion dynamics. Pineda et. al. used linear stability analysis
in [32], [35] to compute the critical noise level above which
the clustering behavior diappears for a modified version
of Defuant model. The same technique of linear stability
analysis was used in [22] and [30] to compute the critical
noise level for a noisy Hegselmann-Krause system similar
to our model, except without radicals. In particular, [22]
considered the interplay between the confidence bound R and
the critical noise level σc at which the system experiences
the order-disorder transition.

In this section, we study the effect of the relative mass M
of radicals on the critical noise level σc. We emphasize that
we consider a uniform distribution for initial normal opin-
ions. In the sequel, we make use of the order parameter [22]{

Qd(x) = 1
N2 ∑

N
i, j=1 1|xi(t)−x j(t)|≤R,

Qc(ρ) =
∫∫

X2 ρ(x, t)ρ(y, t)1|x−y|≤R dxdy,
(9)

to quantify the clustering behavior of the agent-based and
mean-field models, respectively. The order parameter pro-
vides a measure for orderedness in opinions: for a uniform
distribution of opinions - absolute disorder, we have Q= 0.2;
and, for a single cluster distribution with all agents residing
in an interval of width R or less - complete order, we have
Q= 1. Roughly speaking, in case of emergence of a clustered
profile, the inverse of the order parameter is equal to the
number of clusters.

A. Approximating the Critical Noise Level σc

In what follows, we provide a method for approximating
the critical noise level σc. To do so, we exploit the periodic
nature of the system and derive the ODEs describing the
evolution of the Fourier coefficients of the solution ρ to (3).
Then, we use the linearized ODEs to present a numerical
scheme for approximating σc, without actually solving the
dynamics.

1) Fourier ODEs: The even 2-periodic extension of the
probability densities in the model allows us to consider
the Fourier expansions of ρ and ρr expressed as ρ(x, t) =
∑

∞
n=0 pn(t) cos(πnx) and ρr(x) = ∑

∞
n=0 qn cos(πnx), re-

spectively. Inserting these expansions into (3) and setting the



inner product of the residual with elements of the basis to
zero, we can obtain a system of quadratic ODEs describing
the evolution of Fourier coefficients pn(t). For n = 1, . . . ,N f ,
these ODEs are expressed as

ṗn = cn +bT
n p+ pT Qn p, (10)

where p = (p1, p2, . . . , pN f )
T . Note that for n = 0 (the con-

stant term in the Fourier expansion), we obtain ṗ0 = 0
which corresponds to the periodic nature of the system that
preserves the zeroth moment. The coefficients of (10) are
given by

cn := 2MR fn qn, (11)

(bn)k :=

{
2R fn +

MR
2 f2n q2n− π2σ2n2

2 , k = n,

nMR
{

qn+k fn+k
n+k +

q|n−k| fn−k
n−k

}
, k 6= n,

(12)

(Qn)k,l :=


nR fk

k , l = n− k > 1,

nR
{

fk
k +

fn−k
n−k

}
, l = k−n > 1,

0, Otherwise,

(13)

where qn,n ∈ N are the Fourier coefficients of ρr and fn :=
−cos(nπR)+ sinc(nπR).

2) Approximation Scheme: Linearizing the system at t =
0 (which is equivalent to disregarding the quadratic terms
in (10) since the initial condition is uniform, i.e., pn(0) = 0
for n 6= 0), we obtain the system of linear ODEs

ṗ = c+Bp, (14)

where the vector c and matrix B are defined accordingly
using the objects cn and bn in (11) and (12) for n= 1, . . . ,N f .

Looking at coefficients of the quadratic ODEs (10), we
notice that the noise level σ only appears in the diagonal
entries of B such that by increasing σ , these diagonal entries
decrease. That is, for a large enough σ , all eigenvalues of
B are negative and the linearized system (14) is stable. This
will be our first criterion for determining the critical noise
level σc: the noise level above which all eigenvalues of B
are negative.

In order to consider the effect of the constant linear growth
rates c in (14), we further require the stationary values p̄n,n=
1, . . . ,N f of the linearized system (14) (i.e., the solutions of
the equations c+Bp = 0) to be relatively small. In order to
quantify this description, we use Parseval’s identity to set
our second criterion as

N f

∑
n=1

p̄2
n < γ, (15)

where the constant γ > 0 determines the level of similarity
between ρ and uniform distribution (disordered state). To
sum up, we solve numerically for the level of noise above
which the eigenvalues of B are negative and the inequal-
ity (15) holds.

B. Numerical Simulations

In this section, we numerically study the effect of the
relative mass of radicals M on the order-disorder transition.
Furthermore, we use our simulation results to examine the

approximation scheme presented in Section IV-A.2. To this
end, we consider a particular distribution of radical opinions,
namely, a triangular one with average A and width 2S

ρr(x) = (S−|x−A|)/S2 for |x−A| ≤ S. (16)

The corresponding Fourier coefficients of ρr are given by

qn = 2 cos(nπA) sinc2 (nπS/2) . (17)

In all the simulations of this section, the average and width
of radical distribution are fixed at A = 0.7 and S = 0.1,
respectively.

In order to solve the mean-field model described by
PDE (3) numerically, we use the ODEs (10) to compute the
coefficients of Fourier expansion of normal opinion density ρ

cut at N f = 128. In particular, we use the Fourier coefficients
of the triangular ρr given in (17) for solving ODEs (10). To
be precise, we need the Fourier coefficients qn of ρr for
1 ≤ n ≤ 2N f , that is, twice the length of Fourier expansion
of ρ (see the coefficients in (12)). For the initial condition,
we consider uniform distribution ρ0 = 1 which corresponds
to p0 = 1 and pn(0) = 0 for the Fourier coefficients.

For the agent-based model, the SDEs (1) are solved
numerically using the Euler-Maruyama method for N = 500
normal agents with time step ∆t = 0.01. For the radical
agents, we produce a random sample of size Nr = MN from
the triangular distribution (16). The initial opinions of normal
agents are randomly sampled from a uniform distribution
on the interval [0,1]. For complete correspondence between
the agent-based and mean-field models, we also consider the
effect of even 2-periodic extension in the simulations of the
agent-based model.

1) An Illustrative Example: Fig. 1 shows the result of
numerical simulation of the mean-field and agent-based
models for different noise levels with the relative mass of
radicals fixed at M = 0.15. Indeed, for σ larger than a critical
level the clustering behavior almost disappears (see the lower
panel corresponding to σ = 0.05 in Fig. 1a).

In this regard, we observe that as the level of noise
increases, the number of clusters in the possible clustering
behavior of the system decreases. To be more precise, a
higher level of noise decreases the life-time of clustering
behaviors with larger number of clusters. This effect can
be particularly seen in the evolution of order parameter in
Fig. 1b. In this regard, notice that, for noises smaller than
the critical noise level (here, σ = 0.015,0.030,0.045) the
flat areas in the order parameter in Fig. 1b correspond to
a clustered behavior where the number of clusters is equal
to the inverse of the order parameter. To illustrate, observe
that for σ = 0.03 and σ = 0.04, the system reaches a single-
cluster profile around the average radical opinion A = 0.7.
Notice, however, for σ = 0.03 the system goes through a
2-cluster profile as depicted in Fig. 1b (the almost flat areas
in the order parameter). For σ = 0.015, we observe 4-cluster
and 3-cluster profiles in mean-field and agent-based models,
respectively, at t = 104. This particular difference between
mean-field and agent-based models has been also mentioned
and explained by [22]. Finally, we also note that for M =



0.15, the approximation scheme results in σc = 0.043 for
γ = 1 and σc = 0.051 for γ = 0.1 (see (15) for influence of
γ).

2) Effect of M on σc: Fig. 2 shows the order parameter
derived numerically by simulating the mean-field and agent-
based models. Notice how for each M, the system experi-
ences a transition form order (clustered phase with Q = 1 in
the yellow strip) to the disorder (with Q = 0.2 in the blue
area in the upper part of the plots) as noise increases. Also,
we note that the blue strip in the lower part of plots in Fig. 2
represents clustering behaviors with larger number of clusters
(similar to the behavior seen for σ = 0.015 in Fig. 1).

This result shows that as the relative mass of radicals M
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Fig. 1. Numerical simulation of the mean-field (MF) and agent-based (AB)
models for increasing values of noise σ with M = 0.15 and uniform initial
state. See Section IV-B.1.

increases, the corresponding critical noise level σc, above
which the system is in disordered state, also increases. The
dependence of σc on M is in the form of a concave function.
Furthermore, for small values of M, the transition seems
to be discrete, signaling a first-order transition. However,
for large values of M the transition becomes blurry. This
phenomenon was also observed and reported in [22] for
the dependence of the critical noise level on the confidence
bound R. Notice that as M increases, the required noise level
for disordered behavior also increases. This increase in the
noise level leads to wider clusters (see Fig. 1) which, in
turn, makes differentiating the clustered (ordered) and not
clustered (disordered) behaviors difficult.

Also shown in Fig. 2 (red lines) is the result of scheme
provided in Section IV-A.2 for approximating the critical
noise level. As can be seen, the scheme indeed provides a
good approximation of the critical noise level, in particular,
for γ = 1.

V. CONCLUSIONS

In this paper, we considered a mean-field model for
bounded confidence opinion dynamics with environmental
noise. The model also included exogenous influence by
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(b) Agent-based model (SDE)

Fig. 2. The order parameter (9) at t = 103 from numerical simulation
of the mean-field and agent-based models starting form uniform initial
distribution. For the Agent-based model, the average of order parameter over
the time window [900,1000] is reported. The plot covers the region σ×M ∈
[0.01,0.15]× [0.01,1] with step sizes ∆σ = 0.005 and ∆M = 0.02. The red
lines show the result of the numerical scheme described in Section IV-A.2
for approximating the critical noise level for different values of γ w.r.t. the
second criterion (15). See Section IV-B.2.



adding a mass of radical (continuum) agents to the original
population of the normal agents. Two main theoretical results
were provided that characterized the long-term behavior of
the system. In particular, we showed that, the effect of radical
agents is restrained in systems with higher levels of noise,
that is, when agents are more inclined to exercise their “free
will” in exploring the opinion space. We note that the lower
bound on the noise level is quite conservative, considering
its theoretical nature. This can be seen by comparing the
theoretical bound of Theorem 5 with the numerical one pro-
vided for the critical noise level for order-disorder transition
in Section IV.

In Section IV, we also used Fourier analysis to provide
a numerical scheme for approximating the critical noise
level. This scheme was then validated through numerical
simulations of the mean-field model and the corresponding
agent-based model. We note that the proposed numerical
scheme drastically reduces the effort for computing the criti-
cal noise level compared to application of standard numerical
approaches for solving the PDE and the corresponding inter-
acting SDEs. As expected (and also shown by the theoretical
results), the numerical simulations revealed a higher critical
noise level for a larger mass of radicals.
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