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Abstract:
Robust stability and stochastic stability have separately seen intense study in control theory
for many decades. In this work we establish relations between these properties for discrete-time
systems and employ them for robust control design. Specifically, we examine a multiplicative
noise framework which models the inherent uncertainty and variation in the system dynamics
which arise in model-based learning control methods such as adaptive control and reinforcement
learning. We provide results which guarantee robustness margins in terms of perturbations on
the nominal dynamics as well as algorithms which generate maximally robust controllers.

Keywords: Robust controller synthesis, robust control (linear case), uncertainty descriptions,
stochastic systems.

1. INTRODUCTION

Model-based learning control, which encompasses classi-
cal system identification (e.g. Ljung (2001)) and adaptive
control (e.g. Åström and Wittenmark (2013)) as well as
branches of modern reinforcement learning (e.g. Naga-
bandi et al. (2018); Tu and Recht (2019)), universally
uses a stochastic data model, where a model is estimated
from data corrupted by random noise. A salient perennial
issue in these methods is ensuring stability despite the
presence of concomitant model errors; this is the problem
of robustness.

Traditional methods for designing robust controllers in-
clude H∞ control design, which treats modeling error as
a worst-case or adversarial disturbance (Zhou and Doyle
(1998); Başar and Olsder (1998)), robust optimization over
parametric state-space uncertainty sets, which typically
involve searching for shared Lyapunov functions via con-
vex semidefinite programming (Khargonekar et al. (1990);
Nemirovskii (1993); Boyd et al. (1994); Corless (1994);
De Oliveira et al. (1999)), and certainty-equivalent control,
which utilizes only a nominal model and ignores modeling
error entirely. However, since the robust design methods
work with uncertainty sets, it is generally not straightfor-
ward to relate the uncertainty set descriptions to actual
uncertainties arising from a stochastic data model.

Alternatively, in this paper we explore the connection
between a special type of stochastic stability and robust
stability and exploit this connection for robust control
design. In particular, we use a multiplicative noise model
where the noise is viewed as a representation of uncertainty
? This material is based upon work supported by the United States
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in the nominal system model. This framework is naturally
disposed toward trading off performance and robustness
according to uncertainty directions and magnitudes which
can be estimated from trajectory data during model-based
learning control. The study of multiplicative noise models,
also known as stochastic parameter models, has a long his-
tory in control theory (Kushner (1967); Wonham (1967);
Kozin (1969)). In contrast with the well-known additive
noise setting, multiplicative noise captures linear depen-
dence of the noise on the state and control input, which
occurs intrinsically in a diverse array of modern control
systems such as robotics (Du Toit and Burdick (2011)),
networked systems with noisy communication channels
(Hespanha et al. (2007)), modern power networks with
high penetration of intermittent renewables (Carrasco
et al. (2006)), turbulent fluid flow (Lumley (2007)). Linear
systems with multiplicative noise are particularly attrac-
tive as a stochastic modeling framework because they
remain simple enough to admit closed-form expressions
for stability and optimal control via generalized Lyapunov
and Riccati equations. A multiplicative noise model also
holds a distinct advantage of being sensitive to structured
uncertainties in specific directions directly related to data,
as opposed to generic sets governed by norm balls as in
Dean et al. (2019).

In this paper we consider a fundamental question:

What is the set of perturbations to the system matrix where
the perturbed system can be guaranteed stable, given knowl-
edge only of the nominal system dynamics and stochastic
stability of a system with multiplicative noise?

This question was considered by Bernstein (1987) for the
continuous-time setting. Surprisingly, it was noted that
the addition of multiplicative noise could actually stabilize



a deterministically unstable system when interpreted in
the sense of Stratonovich (rather than Itô) Arnold et al.
(1983). Despite this difficulty, combining mean-square
stability of a multiplicative noise system with a right-shift
of the system dynamics, i.e., increasing the real parts of
the eigenvalues of A as A← A+cI was shown sufficient to
ensure robust deterministic stability. Similarly, we develop
conditions for discrete-time systems which combine mean-
square stability of a multiplicative noise system with
a scaling of the system dynamics, i.e., increasing the
absolute value of eigenvalues of A as A← cA.

In this paper we make the following contributions:

• We develop a result utilizing shared Lyapunov func-
tions that establishes robust stability of a set of
deterministic systems given stochastic (mean-square)
stability of another system with multiplicative noise
(Theorem 7).
• We develop a complementary result utilizing an auxil-

iary system with scaled dynamics matrices that estab-
lishes robust stability of a set of deterministic systems
given stochastic (mean-square) stability of another
system with multiplicative noise (Theorem 14).
• We show that both theorems yield robustness sets

whose size increases monotonically with the multi-
plicative noise variances and collapse to zero in the
case of zero noise.
• We develop a corresponding pair of algorithms which

efficiently compute controllers that simultaneously
maximize robustness and minimize a quadratic cost.

We elaborate on the robust stability problem in Section 2,
develop theorems in Sections 3 and 4, develop correspond-
ing algorithms in Section 5, give numerical examples in
Section 6, and conclude in Section 7.

2. PROBLEM FORMULATION

Consider the dynamics of a discrete-time linear time-
invariant (LTI) system

xt+1 = Āxt + B̄ut (1)

where the entries of Ā and B̄ are unknown constants and
are approximated (perhaps from noisy trajectory data)
by the known nominal matrices A and B leading to the
nominal model

xt+1 = Axt +But (2)

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, A ∈ Rn×n is the dynamics matrix and B ∈ Rn×m
is the input matrix. In order to stabilize the system in (2),
we use linear state feedback ut = Kxt with gain matrix
K ∈ Rm×n; classical results Kalman et al. (1960, 1963)
show that if the pair (A,B) is controllable, then the closed-
loop eigenvalues of A + BK can be placed arbitrarily by
choosing suitable gains. A robust stabilization problem is
to find a linear state-feedback control ut = Kxt such that
the closed-loop nominal system remains stable under fixed
perturbations of A and B i.e. that

xt+1 =
[
(A+ ∆A) + (B + ∆B)K

]
xt (3)

is stable for some set of perturbations ∆A ∈ A and
∆B ∈ B, ideally containing the true matrices Ā and B̄.

As a parallel development, consider an LTI system with
multiplicative noise with dynamics

xt+1 =
(
A+

p∑
i=1

γtiAi

)
xt +

(
B +

q∑
j=1

δtjBj

)
ut (4)

Multiplicative noise terms are modeled by the i.i.d. across
time (white), zero-mean, mutually independent scalar ran-
dom variables γti and δtj , which have variances αi and βj ,
respectively. The matrices Ai ∈ Rn×n and Bi ∈ Rn×m
specify how each scalar noise term affects the dynamics
and input matrices.

Stability of such a system depends on the behavior of
the second moments (covariance) of the state over time
as formalized by the notion of mean-square stability, a
form of robust stability which is stricter than stabilizability
of the nominal system (A,B) and limits the size of the
multiplicative noise variances (Kozin (1969); Willems and
Willems (1976)):

Definition 1. (Mean-square stability). The system in (4)
is mean-square stable if and only if

lim
t→∞

E
[
xtx

ᵀ
t

]
= 0, ∀x0 ∈ Rn

In order to stabilize the system in (2), we again use
linear state feedback ut = Kxt; mean-square stability of
the closed-loop system with this control is equivalently
characterized by the solution of a generalized Lyapunov
equation (GLE) (Kleinman (1969); Boyd et al. (1994)):

Lemma 2. The system in (4) is mean-square stable in
closed-loop with state feedback ut = Kxt if and only if
for any Q � 0 there exists P � 0 satisfying

P = Q+ (A+BK)ᵀP (A+BK)

+

p∑
i=1

αiA
ᵀ
i PAi +

q∑
j=1

βjK
ᵀBᵀ

j PBjK. (5)

This immediately implies the following:

Corollary 3. In the discrete-time setting, mean-square sta-
bility of (4) with control ut = Kxt implies deterministic
stability of (2) with the same control ut = Kxt.

Proof. From (5), strict mean-square stability implies ex-
istence of P � 0 such that

P = Q+ (A+BK)ᵀP (A+BK)

+

p∑
i=1

αiA
ᵀ
i PAi +

q∑
j=1

βjK
ᵀBᵀ

j PBjK

� Q+ (A+BK)ᵀP (A+BK)

which ensures stability of A+BK.

One mean-square stabilizing control arises from solving the
infinite-horizon LQR problem with multiplicative noise

min
π

E{γti},{δtj}
∞∑
t=0

(xᵀtQxt + uᵀtRut) ,

s.t. xt+1 =
(
A+

p∑
i=1

γtiAi

)
xt +

(
B +

q∑
j=1

δtjBj

)
ut,

where Q � 0, R � 0 and inputs are applied according to
the state-feedback policy ut = π(xt). We assume that the
problem data A, B, αi, Ai, βj , and Bj permit the existence
of a finite solution, in which case the system is called mean-
square stabilizable. Dynamic programming can be used
to show that the optimal policy is linear state feedback



ut = K∗xt, where K∗ ∈ Rm×n denotes the optimal gain
matrix, and the resulting optimal cost V (x0) for a fixed
initial state x0 is quadratic, i.e., V (x0) = xᵀ0Px0, where
P ∈ Rn×n is a symmetric positive definite matrix. There
are several ways to compute the optimal feedback gains
and corresponding optimal cost. The optimal cost is given
by the solution of the generalized algebraic Riccati equation
(GARE)

P = Q+AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi

−AᵀPB(R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj)

−1BᵀPA

which can be derived similarly to the GARE given by
McLane (1972) for continuous-time systems. The solution
P = gare(A,B,Q,R, αi, βj , Ai, Bj) can be obtained via
the recursion

Pt+1 = Q+AᵀPtA+

p∑
i=1

αiA
ᵀ
i PtAi

−AᵀPtB(R+BᵀPtB +

q∑
j=1

βjB
ᵀ
j PtBj)

−1BᵀPtA,

with P0 = Q or via semidefinite programming formulations
(Boyd et al. (1994); El Ghaoui (1995); Li et al. (2005)).
The corresponding optimal gain matrix is then

K∗ = −
(
R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj

)−1
BᵀPA.

2.1 Generalized eigenvalues and semidefiniteness

The following lemmas regarding generalized eigenvalue
problems and semidefiniteness will be needed later:

Lemma 4. Let M and N be positive semidefinite matrices
of the same size. If λmax is the maximum generalized
eigenvalue which solves Mv = λNv, then λmaxN �M .

Corollary 5. If N is singular, then λmax becomes infinite.

We omit the proofs since these results are widely known;
they follow readily from the method of Lagrange multipli-
ers and Rayleigh quotients.

Every symmetric matrix S can be split into positive and
negative semidefinite parts via eigendecomposition as

S = S+ + S−

where

S+ =
∑
i

λiviv
ᵀ
i � S � 0, S− =

∑
j

λjvjv
ᵀ
j � S � 0,

where λi and λj are positive and negative eigenvalues
respectively with associated eigenvectors vi and vj .

3. ROBUSTNESS VIA SHARED LYAPUNOV
FUNCTIONS

We begin by ignoring the contribution of feedback control;
we will introduce the control again in Sec. 5. We also
restrict our search over ∆A to the set

∆A ∈ A =

{
p∑
i=1

µiAi

∣∣∣ µi ∈ R, 0 ≤ µi < yθi,

p∑
i=1

θi = 1

}

The θi are scalars that represent the relative amount of
uncertainty in each direction, while y is a scalar governing
the maximum magnitude of the perturbations. The θi and
y can be estimated from statistics of sampled trajectory
data, e.g., using bootstrap resampling methods. This ap-
proach is intuitive; mean-square stability under stochastic
instantaneous perturbations in specific directions Ai ought
to ensure deterministic stability under constant shifts of
the dynamics in those same directions. Note the number
of linearly independent uncertainty directions p is limited
by the number of entries of A i.e. p ≤ n2. Consider the
problem of finding the largest deviation scalar y∗ which
can be tolerated while still guaranteeing stability of the
perturbed deterministic system

xt+1 =
(
A+ ∆A

)
xt, ∆A ∈ A

based on mean-square stability of the stochastic system

xt+1 = (A+ γtiAi)xt

with E[γti] = 0, E[γ2ti] = αi > 0.

3.1 Scalar case

First, we treat the scalar case where n = p = 1 so A1 = 1
and θ1 = 1 without loss of generality.

Lemma 6. Suppose

xt+1 = (A+ γt)xt
is mean-square stable where A, xt, γt are scalars with
E[γ2t ] = α > 0. Then, the perturbed deterministic system

xt+1 = (A+ y)xt (6)

is stable for any fixed perturbation |y| ≤
√
A2 + α− |A|.

Proof. The GLE in (5) reduces to

P = Q+A2P + αP

where P , Q are scalars with solution

P = Q
[
1− (A2 + α)

]−1
which is positive only when

√
A2 + α < 1. By assumption

the system is mean-square stable, so Lemma 2 implies that
the solution P > 0 and thus indeed

√
A2 + α < 1. By the

restriction on y and the triangle inequality

ρ(A+ y) = |A+ y| ≤ |A|+ |y| ≤
√
A2 + α < 1,

proving stability of (6).

This simple example demonstrates that the robustness
margin increases monotonically with the multiplicative
noise variance and when α = 0, i.e. |A| → 1, the bound
collapses and no robustness is guaranteed.

3.2 Multivariate case

The optimal bound y∗ is found by solving the program

maximize
y,P

y

subject to P � I +AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi

P � (A+ ∆A)
ᵀ
P (A+ ∆A)

∆A = y

p∑
i=1

kiθiAi ∀ ki ∈ {−1,+1}

(7)

i.e. maximizing y while ensuring that there exists a P
which generates a Lyapunov function which guarantees



both mean-square stability of the stochastic system and
deterministic stability of the perturbed deterministic sys-
tem. Here we have arbitrarily chosen Q = I e.g. as in (5)
without loss of generality since the constraints pertain only
to stability, which is invariant to the choice of Q. Since the
program is quasiconvex in y, it can be solved by bisection
over y and solving a feasibility SDP for each fixed y, with
the solution being the largest y which admits a feasible
solution to the SDP.

The set of constraints in the second line of (7) form corners
of a convex box polytope in the space of n × n matrices,
which is necessary and sufficient to guarantee stability of
(3) (Boyd et al. (1994); Corless (1994)). Thus, from the
perspective of verifying stability of A+∆A this procedure
no better than simply solving the same program (7) with
the first constraint deleted, which has a larger feasible set
and thus will achieve at least as good a bound as (7).
However, the solution of (7) defines a hard upper limit
on the following bounds we develop in this section which
are based on a shared Lyapunov function, since (7) gives
the optimal bound. The bounds we develop in this sec-
tion trade optimality (conservativeness) for the assurance
that P guarantees stability of the perturbed deterministic
system without explicitly using the Lyapunov inequality
P � (A+ ∆A)ᵀP (A+ ∆A).

Giving up optimization over P and instead choosing Q
arbitrarily (later in Sec. 5, Q will be chosen as the cost
matrix of an LQR control design) and calculating the
associated P , we obtain the following result:

Theorem 7. Suppose

xt+1 =

(
A+

p∑
i=1

γtiAi

)
xt (8)

is mean-square stable with E[γti] = 0, E[γ2ti] = αi > 0.
Fix a Q � I and the solution P � 0 to

P = pQ+AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi (9)

Let ηi > 0 be scalars which satisfy

pQ+

p∑
i=1

αiA
ᵀ
i PAi �

p∑
i=1

ηi (Aᵀ
i PA+AᵀPAi)

+
(10)

+

p∑
i=1

p∑
j=1

ηiηj
(
Aᵀ
i PAj +Aᵀ

jPAi
)+

Then the deterministic system

xt+1 =

(
A+

p∑
i=1

µiAi

)
xt (11)

is deterministically stable for any

0 ≤ µi < ηi (12)

Proof. It is evident that valid ηi > 0 exist since
pQ+

∑p
i=1 αiA

ᵀ
i PAi is strictly positive definite. Rear-

ranging (9) to pQ+
∑p
i=1 αiA

ᵀ
i PAi = P −AᵀPA and

substituting gives

P � AᵀPA+

p∑
i=1

ηi (Aᵀ
i PA+AᵀPAi)

+

+

p∑
i=1

p∑
j=1

ηiηj
(
Aᵀ
i PAj +Aᵀ

jPAi
)+

� AᵀPA+

p∑
i=1

µi (Aᵀ
i PA+AᵀPAi)

+

+

p∑
i=1

p∑
j=1

µiµj
(
Aᵀ
i PAj +Aᵀ

jPAi
)+

� AᵀPA+

p∑
i=1

µi (Aᵀ
i PA+AᵀPAi)

+

p∑
i=1

p∑
j=1

µiµj
(
Aᵀ
i PAj +Aᵀ

jPAi
)

=

(
A+

p∑
i=1

µiAi

)ᵀ

P

(
A+

p∑
i=1

µiAi

)
which proves stability of (11).

Remark 8. The bound in (12) of Thm. 7 is unidirectional,
but can be made bidirectional by replacing the constraint
in (10) with

pQ+

p∑
i=1

αiA
ᵀ
i PAi �

p∑
i=1

ηiYi +

p∑
i=1

p∑
j=1

ηiηjZij

where

Yi � (Aᵀ
i PA+AᵀPAi)

+
, (13)

Yi � − (Aᵀ
i PA+AᵀPAi)

−
, (14)

Zij �
(
Aᵀ
i PAj +Aᵀ

jPAi
)+
, (15)

Zij � −
(
Aᵀ
i PAj +Aᵀ

jPAi
)−
, (16)

yielding the bidirectional bound |µi| < ηi.

Remark 9. Let θi ≥ 0 be scalars such that
∑p
i=1 θi = 1;

these denote relative uncertainty in directions Ai. The
largest robust stability bounds with respect to this choice
of θi are obtained by setting ηi = yθi and maximizing
the scalar y, which can be accomplished via bisection. As
discussed earlier, optimizing a bidirectional bound over P ,
Q, and y is equivalent to solving the full program in (7).

For p = 1, the Theorem 7 reduces as follows:

Corollary 10. Suppose

xt+1 = (A+ γt1A1)xt

is mean-square stable with E[γt1] = 0, E[γ2t1] = α1 > 0.
Fix a Q � I and the solution P � 0 to

P = Q+AᵀPA+ α1A
ᵀ
1PA1

Let ζ1 > 0 be a scalar which satisfies

1√
ζ21 + α1 − ζ1

Q+ 2ζ1A
ᵀ
1PA1 � (AᵀPA1 +Aᵀ

1PA)+.

(17)

Then the deterministic system

xt+1 = (A+ µ1A1)xt

is deterministically stable for any

0 ≤ µ1 < η1



where η1 > 0 is a scalar uniquely determined by ζ1 as

η1 =
√
ζ21 + α1 − ζ1 ( ≤

√
α1 )

Also, η1 satisfies

Q+ α1A
ᵀ
1PA1 � η1 (Aᵀ

1PA+AᵀPA1)
+

+ 2η21A
ᵀ
1PA1

(18)

in accordance with Thm. 7.

Proof. Multiplying both sides of (17) by η1 and using

η1 =
√
ζ21 + α1 − ζ1 gives

Q+ 2η1ζ1A
ᵀ
1PA1 =

η1√
ζ21 + α1 − ζ1

Q+ 2η1ζ1A
ᵀ
1PA1

� η1 (AᵀPA1 +Aᵀ
1PA)

+
(19)

Rearranging η1 =
√
ζ21 + α1 − ζ1 gives α1 = η21 + 2η1ζ1.

Adding 2η21A
ᵀ
1PA1 to both sides of (19) and substituting

α1 = η21 +2η1ζ1 gives exactly (18). Thus the condition (10)

of Thm. 7 is satisfied by η1 =
√
ζ21 + α1 − ζ1. Applying

Thm. 7 completes the proof.

If all robustness bounds ηi in Theorem 7 are chosen
proportional to

√
ζ2i + αi − ζi (like in Cor. 10), we obtain

the following corollary:

Corollary 11. Suppose the system in (8) is mean-square
stable with E[γti] = 0, E[γ2ti] = αi > 0. Fix a Q � I and
the solution P � 0 to (9). Let ηi > 0 be scalars which

satisfy (10) and are chosen proportional to
√
ζ2i + αi − ζi

where ζi are scalars which marginally satisfy
1√

ζ2i + αi − ζi
Q+ 2ζiA

ᵀ
i PAi � (AᵀPAi +Aᵀ

i PA)+.

(20)

Then the deterministic system in (11) is stable for any
0 ≤ µi < ηi where the ηi are upper bounded by

ηi <
√
ζ2i + αi − ζi <

√
αi

Proof. The proof proceeds by contradiction. Suppose

ηi =
√
ζ2i + αi − ζi

From (20) and using an argument identical to Corollary
10 we have

Q+ 2ηiζiA
ᵀ
i PAi � ηi (AᵀPAi +Aᵀ

i PA)
+

Summing over all the noises,

pQ+

p∑
i=1

2ηiζiA
ᵀ
i PAi �

p∑
i=1

ηi (AᵀPAi +Aᵀ
i PA)

+
(21)

Substituting αi = η2i + 2ηiζi, the matrix inequality in (10)
reduces to

pQ+

p∑
i=1

2ηiζiA
ᵀ
i PAi �

p∑
i=1

ηi (AᵀPAi +Aᵀ
i PA)

+

+

p∑
i=1

∑
j 6=i

ηiηj
(
Aᵀ
i PAj +Aᵀ

jPAi
)+

which is a contradiction; we need the additional terms
p∑
i=1

∑
j 6=i

ηiηj
(
Aᵀ
i PAj +Aᵀ

jPAi
)+

(22)

on the right-hand side of (21) in order to match (10) in
Theorem 7, which shows that the bounds ηi must be less
than

√
ζ2i + αi − ζi.

Corollaries 10 and 11 go towards showing the functional
dependence of upper bounds of the robustness margins on
the multiplicative noise variance, namely a

√
αi relation.

Significantly, the robustness margins collapse to nothing
when the variances are all zero and increase monotonically
with increasing noise variances.

3.3 Conservative simplifications

It can be shown that 1√
ζ2
i
+αi−ζi

is convex in ζi, so any

linearization (first-order Taylor series expansion) will be a
global underestimator of this function. Thus a conservative
solution can be found by linearization, yielding a convex
semidefinite constraint which can be expressed as a gener-
alized eigenvalue problem which can be solved efficiently.
For example, linearizing 1√

ζ2
i
+αi−ζi

about ζi = 0 yields

1√
αi

+ 1
αi
ζi. This is worked out in the following lemma:

Lemma 12. Define A, Ai, αi, P , Q as in Cor. 11. Let λi
be the maximum generalized eigenvalue which solves[

(AᵀPAi +Aᵀ
i PA)

+ − 1√
α
Q

]
v = λi

[
1

α
Q+ 2Aᵀ

i PAi

]
v.

Then ζi ≥ λi satisfies (20).

Proof. By Lemma 4 we have the semidefinite bound

λi

(
1

αi
Q+ 2Aᵀ

i PAi

)
� (AᵀPAi +Aᵀ

i PA)
+ − 1

√
αi
Q.

Rearranging,(
1
√
αi

+
1

αi
λi

)
Q+ 2λiA

ᵀ
i PAi � (AᵀPAi +Aᵀ

i PA)
+
.

Since 1√
λ2
i
+αi−λi

is a convex function of λi,

1√
λ2i + αi − λi

≥ 1
√
αi

+
1

αi
λi

and thus
1√

λ2i + αi − λi
Q+ 2λiA

ᵀ
i PAi � (AᵀPAi +Aᵀ

i PA)
+

which is exactly the constraint in (20) with ζi = λi. Noting
that 1√

ζ2
i
+αi−ζi

is nondecreasing in ζi completes the proof.

Similarly, an even more conservative bound is obtained
by neglecting the contribution of 2ζiA

ᵀ
i PAi in (20), again

resulting in a generalized eigenvalue problem.

Lemma 13. Define A, Ai, αi, P , Q as in Cor. 11. Let λi
be the maximum generalized eigenvalue which solves

(AᵀPAi +Aᵀ
i PA)

+
v = λiQv.

Then ζi ≥ 1
2

(
αλi − 1

λi

)
satisfies (20).

Proof. By Lemma 4 we have the semidefinite bound

λiQ � (AᵀPAi +Aᵀ
i PA)

+

Setting

λi <
1√

ζ2i + αi − ζi
and rearranging yields

ζi ≥
1

2

(
αλi −

1

λi

)



and (
1√

ζ2i + αi − ζi

)
Q � (AᵀPAi +Aᵀ

i PA)
+

Adding 2ζiA
ᵀ
i PAi � 0 to the left side gives exactly the

constraint in (20).

4. ROBUSTNESS VIA STABILITY OF AUXILIARY
SYSTEMS

Now, instead of requiring the same Lyapunov function to
ensure mean-square stability of a stochastic system and
stability of a perturbed deterministic system with the
same nominal A, we construct auxiliary stochastic systems
whose mean-square stability implies deterministic stability
of the “target” perturbed deterministic system. Such an
approach can be fundamentally more flexible than using
a shared Lyapunov function since the open-loop dynamics
of the auxiliary system are permitted to be significantly
less stable.

Theorem 14. Suppose the stochastic system

xt+1 =

A
√√√√1 +

p∑
i=1

ηi +

p∑
i=1

γtiAi

xt

with E[γ2ti] = αi ≥ ηi

(
1 +

∑p
j=1 ηj

)
, ηi ≥ 0 is mean-

square stable. Then the deterministic system

xt+1 =
(
A+

p∑
i=1

µiAi

)
xt

is stable for all |µi| < ηi.

Proof. Mean-square stability implies there exists P such
that

P � AᵀPA+

p∑
i=1

ηiA
ᵀPA+

p∑
i=1

ηiA
ᵀ
i PAi

+

p∑
i=1

p∑
j=1

ηiηjA
ᵀ
i PAi

� AᵀPA+

p∑
i=1

ηi(A
ᵀPAi +Aᵀ

i PA)

+

p∑
i=1

p∑
j=1

ηiηjA
ᵀ
i PAi (23)

� AᵀPA+

p∑
i=1

ηi(A
ᵀPAi +Aᵀ

i PA)

+

p∑
i=1

η2iA
ᵀ
i PAi +

p∑
i=1

∑
j 6=i

ηiηjA
ᵀ
i PAj

=
(
A+

p∑
i=1

ηiAi

)ᵀ
P
(
A+

p∑
i=1

ηiAi

)
By symmetry of the terms

∑p
i=1 ηiA

ᵀPA+
∑p
i=1 ηiA

ᵀ
i PAi,

the same argument can be applied for each sign com-
bination of ηi i.e. ±η1,±η2, . . . ,±ηp from (23) onward,
which together prove stability of A+

∑p
i=1 kiηiAi for any

ki ∈ {−1,+1} with the same Lyapunov matrix P . By an
argument from Schur complements (see e.g. Corless (1994);
Boyd et al. (1994)), this is necessary and sufficient for any

convex combination of A +
∑p
i=1 kiηiAi to be also stable

using P , completing the proof.

Remark 15. The condition E[γ2ti] = αi ≥ ηi
(

1 +
∑p
j=1 ηj

)
places an upper bound on the robustness margins ηi which
is related to the multiplicative noise variances αi. In the
case of p = 1, this reduces to η1 <

1
2

(√
1 + 4α1 − 1

)
.

At first glance the condition of Thm. 14 may seem overly
restrictive since it requires mean-square stability with a
scaled A matrix; indeed such a procedure is somewhat
limiting in the open-loop setting since this can make the
plant unstable. However, in the control design setting this
essentially does not matter since the gain can be made
larger to compensate, and because a simple scaling of A
does not affect controllability of the pair (A,B); to see
this, simply note that the rank of the controllability matrix[
B AB . . . An−1B

]
is unaffected by a nonzero scaling of

A. The work of Bernstein (1987) similarly leverages this
fact.

5. INPUT UNCERTAINTIES AND ROBUST
CONTROL DESIGN ALGORITHMS

In the case where there are uncertainties in the input
matrix B under closed-loop state feedback, Theorems 7
and 14 are easily modified by simply substituting

A← A+BK,

{Ai} ← {Ai} ∪ {BjK},
{αi} ← {αi} ∪ {βj},

p← p+ q

yielding a set of p+q robustness bounds {η′i} = {ηi}∪{ψj}
which ensure stability of

xt+1 =
(
A+BK +

p∑
i=1

µiAi +

q∑
j=1

νjBjK
)
xt (24)

where 0 ≤ µi < ηi, 0 ≤ νj < ψj (bounds in negative
directions also assured for Thm. 14). These results are
formulated as Algorithms 1 and 2 for generating optimal,
maximally robust controllers. Note that Algorithm 1 gives
unidirectional bounds while Algorithm 2 gives bidirec-
tional bounds; it is useful to retain the unidirectional
bounds of Algorithm 1 in order to realize the potentially
larger robustness margins in opposing directions.

6. NUMERICAL RESULTS

Here we consider an inverted pendulum with a torque-
producing actuator whose dynamics have been linearized
about the vertical equilibrium. In continuous-time the
dynamics are

ẋ =

[
0 1
mc 0

]
︸ ︷︷ ︸

Ac

x+

[
0
1

]
︸︷︷︸
Bc

u

where mc is a normalized mass constant. A forward Euler
discretization with step size ∆t yields

A = I +Ac∆t =

[
1 ∆t

mc∆t 1

]
, B = Bc∆t =

[
0

∆t

]
Uncertainty on the mass constant mc corresponds to
uncertainty on the (2, 1) entry of A. We consider an



Algorithm 1: Robust control design

Input: Controllable nominal pair (A,B), cost
matrices Q � 0, R � 0, uncertainty directions
Ai, Bj and magnitudes θi > 0, φj > 0.

Output: Gain matrix K and margins ηi, ψj such
that (24) is stable for all 0 ≤ µi < ηi,
0 ≤ νj < ψj .

Define scalar z and scaled multiplicative noise
variances αi = θi × z, and βj = φj × z

Find the largest z∗ which still admits a solution to
P = gare(A,B,Q,R, αi, βj , Ai, Bj) via bisection

Define scalar y and scaled uncertainty magnitudes
ηi = θi × y, ψj = φj × y

Find the largest scaling y∗ via bisection which
satisfies

Q+KᵀRK +

p+q∑
i=1

αi
′A′i

ᵀ
PA′i

�
p+q∑
i=1

η′i
(
A′i

ᵀ
P (A+BK) + (A+BK)ᵀPA′i

)+
+

p+q∑
i=1

p+q∑
j=1

η′iη
′
j

(
A′i

ᵀ
PA′j +A′j

ᵀ
PA′i

)+
where {A′i} = {Ai} ∪ {BjK}, {α′i} = {αi} ∪ {βj},
and {η′i} = {ηi} ∪ {ψj}

Return control law

K = −
(
R+BᵀPB + z∗

∑q
j=1 φjB

ᵀ
j PBj

)−1
BᵀPA

and margins ηi = θi × y∗, ψj = φj × y∗

Algorithm 2: Robust control design

Input: Controllable nominal pair (A,B) , cost
matrices Q � 0, R � 0, uncertainty directions
Ai, Bj and magnitudes θi > 0, φj > 0.

Output: Gain matrix K and robustness margins ηi,
ψj such that (24) is stable for all |µi| < ηi,
|νj | < ψj .

Define scalar y and scaled uncertainty magnitudes
ηi = θi × y, ψj = φj × y

Define scaled multiplicative noise variances

αi = ηi

(
1 +

∑p
j=1 ηj +

∑q
k=1 ψk

)
, and

βj = ψi (1 +
∑p
i=1 ηi +

∑q
k=1 ψk)

Define scalar z(y) =
√

1 +
∑p
i=1 ηi +

∑q
j=1 ψi, and

scaled system matrices Az = A× z, Bz = B × z
Find the largest y∗ which still admits a solution to
P = gare(Az, Bz, Q,R, αi, βj , Ai, Bj) via bisection

Return control law

K = −
(
R+Bᵀ

zPBz +
∑q
j=1 βjB

ᵀ
j PBj

)−1
Bᵀ
zPAz

where quantities P , βj and z are evaluated at y∗,
and margins ηi = θi × y∗, ψj = φj × y∗

example where the true mass constant is m̄c = 10, but
the nominal model underestimates it as mc = 5; such
a situation could easily arise during the initial phase
of system identification in adaptive control with noisy
measurements, or in time-varying scenarios such as a robot
arm picking up a heavy load. We take a step size ∆t = 0.1.
The problem data is then

Ā =

[
1 0.1
1 1

]
, A =

[
1 0.1

0.5 1

]
, B̄ = B =

[
0

0.1

]
,

Q = R =

[
1 0
0 1

]
, A1 =

[
0 0
1 0

]
, θ1 = 1

Applying Algorithms 1, 2, and certainty-equivalent control
design, we obtained the results in Table 6. We found the
sets of true Ā matrices stabilized by the controls from

Algos. 1 and 2 were Ā ∈
[

1 0.1
0.1 + µ1 1

]
where |µ1| < 6.997

and |µ1| < 3.970 respectively. Stability of all systems
within these sets was empirically verified by a fine grid
search using 10000 samples of µ1 in each interval. Both
robustness sets happened to include the true matrix Ā,
so the robust controls were guaranteed to stabilize the
true system, confirmed by ρ(Ā + B̄K) < 1. By contrast,
the certainty-equivalent control failed to stabilize the true
system. This can be understood intuitively; the pendulum
had a larger mass in reality than in the nominal model,
so a larger control effort was necessary to stabilize the
pendulum and prevent it from falling over. Although on
this particular example Algorithm 1 gave a larger (unidi-
rectional) robustness margin, in general this not need hold;
certain problem instances admit much larger robustness
margins using Algorithm 2 relative to Algorithm 1. Thus,
our two algorithms may be considered complementary
from a control design standpoint.

Code which implements this example is available at
https://github.com/TSummersLab/robust-control-multinoise.

7. CONCLUSION AND FUTURE WORK

This work gives an effective methodology for certifying
robustness and designing robust controllers with favorable
properties and flexibility relative to competing approaches.

Direct extensions to this work include finding sharper
bounds, e.g., via alternate auxiliary systems analogous
to the one used in Section 4, and handling nonlinear
dependence of the dynamics and/or noise on states and
inputs. Future work will integrate the results of this work
with adaptive model-based learning control for an end-to-
end control framework which gracefully transitions from
maximal robustness to maximal performance according to
empirical uncertainties.
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