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Abstract— In this paper, we propose an approach to detect
mode transitions and to isolate active modes in discrete-
time, switched affine systems. The proposed approach is in
particular constructed for systems in which the controller
is oblivious of the switching signal. The diagnosis approach
consists of two main parts: construction of a bank of output
filters (that generate desired residuals) and definition of a
certain type of residual/threshold-based diagnosis rules. The
filters’ construction is cast as linear feasibility problems. These
feasibility problems enforce desirable diagnosis relationships
between each subsystem’s affine constant and each residual.
The diagnosis rules are inspired by the well-known generalized
observer scheme. Moreover, we provide a method to compute
each mode’s diagnosis time based on the diagnosis rules and
properly chosen residual thresholds. A numerical example is
presented to show the performance of the proposed approach.

I. INTRODUCTION

As an important class of hybrid systems, switched sys-
tems have been the subject of many studies over the past
two decades. Many industrial systems, such as chemical
plants [13] and aeronautic systems [17], are difficult to be
exactly modeled due to the nonlinearity and complexity
of the underlying dynamics. Nonetheless, these systems
can be effectively modelled by switched systems, see for
example [7] and the reference therein. A general approach
to control the switched systems is to employ mode-dependent
controllers. Crucially, this approach requires the controller to
know the switching signal, see for example [15].

In fault diagnosis scenarios, an unexpected transition from
a healthy mode to a faulty one can also be treated as a switch-
ing. Thus, the hope is to leverage tools from switched sys-
tems in fault diagnosis setups. Unlike the common control-
theoretic viewpoint of switched systems, the switching signal
representing a fault is usually unknown to the controller here.
This implies that one first needs to detect switching instances
in diagnosis tasks. This step is then followed by isolating the
mode enabled by the switching.

To detect changes caused by a switching and/or a fault,
traditional model-based methods utilize approaches such
as observer-based approaches [4] and parity space ap-
proaches [8]. By doing so, certain residual signals are gener-
ated that enable to characterize quantitatively the occurrence
of these changes. There is an array of studies in the literature
that propose how to construct proper residual signals.

Considering linear systems, Nyberg and Frisk [5] first
developed the parity-space-like approach to construct filters.
The proposed approach has a polynomial framework and is
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able to find filters with the lowest possible order. The au-
thors’ following work in [12] extended the previous approach
to linear differential-algebraic equation (DAE) systems. In
particular, they provided a criterion for fault detectability
in the DAE systems. Inspired by [12], the authors in [10]
introduced an optimization scheme to construct residual
filters. The scheme provides a tractable procedure to find
feasible filters. Notice that all of the aforementioned methods
are only applicable to systems with a ”single” mode and
cannot be directly used to identify an active mode in switched
systems. In order to identify the active model in switched
systems, a set of residuals are usually required. The authors
in [2] extended the classical parity space approach to hybrid
systems and obtained a set of structured parity residuals.
The isolation method in [2] is similar to the generalized
observer scheme (GOS) [3] in the following sense. Each
residual is made sensitive to all but one mode. Following a
GOS mindset, there are several studies that construct a bank
of parallel observers, e.g., unknown input observers [14] and
sliding mode observers [16]. However, there is usually an
undesirable property in using the parity space and observer-
based methods: the order of the constructed residual gen-
erators is the same as that of the system dynamics. When
dealing with large-scale systems, the residual generators will
be complex and computationally demanding to implement.
Moreover, none of the above-mentioned studies provide the
required time to execute a diagnosis task (which we call the
diagnosis time later on). Practically speaking, the diagnosis
time is important since the (human or machine) operator
relies on this quantitative measure to make a proper decision,
like activating the matched controller.

Our proposed approach: In this paper, we present a diag-
nosis scheme for switched affine systems to detect transitions
among modes and to isolate an active mode. We also provide
an approach to compute the diagnosis time. Inspired by the
results in [12] and [10], we first reformulate a switched
system to a DAE model. Then, we use a parity-space-like
method to design a bank of filters. The design task of each
filter is formulated as a linear feasibility problem according
to some proper relationships that should exist between each
mode’s affine term and each residual. The diagnosis rules
are set similar to those of the GOS to determine the active
mode. This means that the residual corresponding to the
active mode is set to be zero while all other residuals are
set to be nonzero. Based on the constructed filters, we next
derive the analytical expression of the residuals and compute
the diagnosis time for some properly chosen thresholds. In
summary, the main contributions of this paper are as follows.



• Filter Design: We propose a multimode diagnosis ap-
proach to construct residual filters for switched affine
systems in the case of asynchronous switching, employ-
ing an optimization approach in the DAE framework
(Theorem 1). Compared to the classical observer-based
methods [16], the proposed filter here typically has
a lower order dynamics, thus a simpler architecture.
The extension of the proposed approach to deal with
measurement noises is also discussed (Remark 2).

• Diagnosis time computation: We provide expression of
the matched residual and show that the matched residual
is independent of the system matrices (Corollary 1).
With the expression of the matched residual and given
some user-defined thresholds, we present an approach to
compute the diagnosis time for each mode (Theorem 2).

Notations: The set of all positive reals is R>0. The sets Rn

and Rm×n represent the space of n dimensional vectors and
the space of m× n dimensional matrices with real entries,
respectively. The set Z>0 (Z≥0) denotes all positive (non-
negative) integers. The set {1, . . . ,n} is represented by [n].
The identity matrix with appropriate dimensions is denoted
by I. For a matrix A ∈ Rm×n, A> is the transpose of
A. For a row vector v = [v1, . . . ,vn], the `∞-norm of v is
‖v‖∞ := maxi∈[n] |vi|, and |v| = [|v1|, . . . , |vn|]. For k1,k2 ∈
Z>0, where k1 < k2, the discrete sequence [k1,k1 +1, . . . ,k2]
is denoted by [k1,k2]. The operator ∧ is the logical “AND”
operator. For c∈R>0, dce rounds up c to the nearest integer.
Given a signal {s(k)}k∈Z≥0 and an operator OOO, the notation
OOO[[[s]]](k) denotes the application of the operator OOO on the
signal s at the time instance k.

II. MODEL AND PROBLEM DESCRIPTION

Consider the discrete-time system, that is comprised of n
perturbed subsystems,

x(k+1) = Aσ(k)x(k)+Bσ(k)u(k)+Eσ(k)d(k)

y(k) =Cσ(k)x(k),
(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , and y(k) ∈ Rny are the state,
input and output of the system, respectively. The disturbance
is denoted by d(k) ∈Rnd . The switching map σ : Z≥0→ [n]
is a piecewise constant function describing the active mode
at each instance k. Matrices Aσ(k), Bσ(k), Eσ(k), and Cσ(k) are
all known and have appropriate dimensions. For all i ∈ [n],
let Γi := {Ai,Bi,Ei,Ci} denote mode i. The system switches
from one mode to another mode in [n] at each switching
instance ts in S := {ts : s∈Z>0,σ(ts) 6= σ(ts−1)}. For each
mode i ∈ [n], we suppose that the control law

u(k) := Kiy(k) (2)

is available. (One can employ for example the H∞-method
proposed in [1] to design the feedback gains Ki.)

Assumption 1 (Dwell time [6]): For all ts ∈S , there ex-
ists a large enough constant τd > 0 such that ts+1− ts ≥ τd .
The quantity τd is the so-called dwell time constant.

Assumption 2 (Perturbation regularities): We stipulate
the following conditions.

(a) (Bounded disturbance) Given two constants dmin,dmax ∈
R>0, it holds that dmin ≤ |d j(k)| ≤ dmax for all j ∈ [nd ],
where d j(k) is the j-th entry of d(k).

(b) (Switched affine systems) The disturbance d(k) is con-
stant for each mode, that is d(k) = dσ(k) for all k ∈R≥0.
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Fig. 1. Structure of the closed-loop dynamics and the diagnosis block.

We further suppose that the switching map σ is unknown to
the controller (2). Let i, j ∈ [n] where i 6= j, and denote the
transition from Γi to Γ j by Mi j. Thus, the transition Mi j is
understood as a faulty situation because there is a mismatch
between model Γ j and controller gain Ki. We use Si j to
denote the status of the closed-loop dynamics that consist
of Γ j and Ki. The diagnosis process for the system (1) breaks
down to two steps: detection and isolation. In the detection
step, the goal is to identify that a transition has occurred, i.e.,
the model is not Γi anymore. The isolation step determines
Γ j occurred after the transition in order to employ the correct
controller gain K j. Fig. 1 depicts the structure of the fault
diagnosis block proposed for the closed-loop dynamics (1)-
(2). For each i, j ∈ [n], the block FFF i j represents a filter.
Mathematically speaking, each filter FFF i j is an MISO transfer
function that maps y to the residual ri j, i.e.,

ri j(k) := FFF i j[[[y]]](k),

that is responsible to identify transition Mi j has occurred.
Notice that there are in total n2 filters to be designed to.
Let the diagnosis time ∆τ be the time that the diagnosis
block takes to perform the two steps of detection and iso-
lation. Generally, the proposed approach needs to guarantee
that ∆τ < τd . To compute ∆τ , we introduce the following
definitions, given two thresholds εdet,εiso ∈ R>0.

Definition 1 (Detection time): A quantity tdet(Γi,εdet) ∈
Z>0 is called the detection time of mode Γi if

tdet(Γi,εdet) := max
{

k̂− ts :

|rii(k)| ≤ εdet, Mi j where j 6= i, ∀k ∈ [ts, k̂]
}
.

Definition 2 (Isolation time): A quantity tiso(εiso) ∈ Z>0
is called the isolation time if

tiso(εiso) := max
Mi j ,i 6= j,d

min
{

k′− tdet(Γi,εdet) : |ri j(k)| ≤ εiso,

∀k ≥ k′ ≥ tdet(Γi,εdet)
}
.

Definition 1 indicates that the transition Mi j is detected once
the residual rii exceeds the threshold εdet. Also, the isolation
time tiso(εiso) is defined for all modes. By means of this
definition of tiso(εiso), it is guaranteed that no matter which
mode occurs, the matched residual ri j will remain smaller



than εiso after tiso(εiso). Hence, the active model can be
isolated.

The problem addressed in this paper is as follows.
Problem 1: Consider the closed-loop dynamics (1)-(2)

subject to Assumptions 1 and 2, and the structure of the
diagnosis block in Fig. 1.
• For all i, j ∈ [n], design a bank of filters FFF i j such that

the input-output maps between d and ri j satisfy

d
Si j−→ ri j = 0, (3a)

d
Sih−→ ri j 6= 0, ∀h ∈ [n]/{ j}. (3b)

• Given a pair of thresholds εdet and εiso, compute the
diagnosis time, i.e.,

∆τi(εdet,εiso) : = ∆τ(Γi,εdet,εiso)

= tdet(Γi,εdet)+ tiso(εiso).
Remark 1 (Required number of residual comparisons):

In order to conduct a detection/isolation task, only the
residuals rih where h ∈ [n] are required to be compared (i.e.,
the residuals that share the same index representing the
controller). This has to do with fact that the information of
the controller is known.

III. MAIN RESULTS

In this section, we present the main results of this work.
First, the approach to design the filters is introduced. We then
provide a closed-form expression of the matched residual.
Lastly, we focus on the task of determining the diagnosis
time, given a pair of thresholds.

A. Filter designs

Let us first reiterate the conditions (3). Consider a transi-
tion Mi j. To design the filter FFF i j, the basic idea is to force
the residual ri j to be zero while the rest of residuals to be
non-zero.{

(|rii|> ε)≡ a transition occurred,
(|ri j| ≤ ε)∧ (|rih|> ε,∀h ∈ [n]/{ j})≡Mi j occurred.

(4)

Suppose now Mi j happens at some switching instance ts. The
closed-loop dynamics (1)-(2) become

x(k+1) =
{

Acl
i jx(k)+E jd(k), k ∈ [ts, ts +∆τi(ε))

Acl
j jx(k)+E jd(k), k ∈ [ts +∆τi(ε), ts+1)

y(k) =C jx(k),
(5)

where Acl
i j := A j +B jKiC j. To construct the filters, we rewrite

the closed-loop dynamics (5) in a DAE format, that is{
Hi j(p)X(k)+L(p)y(k) = 0, k ∈ [ts, ts +∆τi(ε))

H j j(p)X(k)+L(p)y(k) = 0, k ∈ [ts +∆τi(ε), ts+1),
(6)

where X(k) :=
[
x(k)> d(k)>

]>, the operator p is the time-
shift operator, and the matrices Hi j(p) and L(p) are

Hi j(p) := p×Hi j,1 +Hi j,0 =

[
−pI +Acl

i j E j

C j 0

]
,

L(p) := L0 =

[
0
−I

]
.

In what follows, we now spell out the involved variables
in the construction of each filter FFF i j. For the status Si j, we
define the corresponding filter FFF i j as

FFF i j := a−1(p)Ni j(p)L(p), (7)

where the polynomial row vector Ni j(p) := ∑
dN
m=0 Ni j,m pm

and Ni j,m ∈ R1×(nx+ny) are constant row vectors, dN denotes
the degree of Ni j(p), and finally a(p) is a (dN +1)-th order
polynomial with all roots inside the unit disk. We define

a(p) := pdN+1 +a1 pdN + · · ·+adN p+adN+1, (8)

where for each m∈ [dN +1], am is some constant coefficient.
Notice that the role of a(p) is to ensure that the obtained
filter FFF i j is proper and stable. For the sake of simplicity
of exposition, we further suppose that all the filters are of
the same degree. Observe that both Ni j(p) and a(p) are
the design parameters. In order to make the design process
tractable, we however fix a(p) and find a feasible Ni j(p) in
the following theorem. To simplify the notation, let N̄i j :=
[Ni j,0 Ni j,1 . . . Ni j,dN ],

H̄i j :=

Hi j,0 Hi j,1 . . . 0
...

. . . . . .
...

0 . . . Hi j,0 Hi j,1

 , L̄ :=

L0 . . . 0
...

. . .
...

0 . . . L0

 .
Theorem 1 (Filter design as feasibility problem):

Consider the closed-loop dynamics (1)-(2) subject to
Assumptions 1 and 2-(a). If the filter (7) satisfies

N̄i jH̄i j = 0, (9a)

‖a−1(1)N̄i jL̄[

dN+1︷ ︸︸ ︷
I . . . I]>Ch(I−Acl

ih)
−1Eh‖∞ ≥ 1,
∀h ∈ [n]/{ j},

(9b)

then, the properties (3) hold.
Proof. We first show that equality (9a) enforces the desired

property (3a). According to the rules of multiplication of
polynomial matrices [11, Section III-A], we have

Ni j(p)Hi j(p) = N̄i jH̄i j[I pI . . . pdN+1I]>,

and thus, equality (9a) implies Ni j(p)Hi j(p) = 0. Now,
multiply from left the first DAE expression in (6) by Ni j(p)
and observe that Ni j(p)Hi j(p)X(k) + Ni j(p)L(p)y(k) =
Ni j(p)L(p)y(k) = 0. Recall the construction of filter FFF i j
in (7). It holds that

ri j(k) = FFF i j[[[y]]](k) =
(
a−1(p)Ni j(p)L(p)

)
[[[y]]](k) = 0. (10)

This concludes the first part of the proof.
In the second part of the proof, we establish that inequali-

ties (9b) imply the satisfaction of the desired property (3b). In
doing so, let us first define the transfer function TTT dri j(p) from
d to ri j, that is ri j(k) := TTT dri j(p)[[[d]]](k). Consider now that the
status of the closed-loop system is Sih for some h ∈ [n]/{ j}.
According to (5), we have

y(k) =
(
Ch(pI−Acl

ih)
−1Eh

)
[[[d]]](k),



where we used the identity x(k + 1) = px(k). By virtue
of (10), we arrive at

TTT dri j(p) = a−1(p)Ni j(p)L(p)×Ch(pI−Acl
ih)
−1Eh

= a−1(p)N̄i jL̄[I pI . . . pdN I]>×Ch(pI−Acl
ih)
−1Eh,

where the multiplication of polynomial matrices is used in
the second equality. We force the `∞-norm of the steady-state
gain of TTT dri j(p) to be greater than or equal to 1, that is

‖TTT dri j(1)‖∞ = ‖a−1(1)N̄i jL̄[I . . . I]>Ch(I−Acl
ih)
−1Eh‖∞ ≥ 1.

In light of Assumption 2-(a), it follows that ri j is nonzero
when the status is not Si j. This concludes the second part of
the proof. �

Notice that (9) is not a convex feasibility problem because
of the non-convex constraint (9b). However, (9) can be
viewed as a union of several linear feasibility problems.
Thus, it is not a difficult task to find a feasible solution for
this problem. Observe that unlike observer-based methods
the proposed approach can construct filters that may have
lower order than the underlying dynamics. In fact, when the
filter degree dN is the same as the dimension of the original
system dynamics nx, one can show that the coefficients
of any observer-based filter is a feasible solution to the
program (9) [10]. We finally provide a lower-bound on dN
in order to guarantee the existence of non-trivial solutions
to (9).

Proposition 1 (Existence of non-zero solutions): The
equality (9a) has non-zero solution if

(dN +1)(nx +ny)> Rank(H̄i j). (11)

Proof. The equality (9a) has non-zero solution if the dimen-
sion of the left null space of H̄i j is nonzero. Then (11) is
a straightforward result of Rank Plus Nullity Theorem [9,
Chapter 4]. �

Remark 2 (Measurement noises/Uncertainties): To deal
with model uncertainties and process/measurement noises,
one can add a proper objective function to the feasibility
problem (9), e.g., H2 gain of the transfer function from
noises to residuals. This is done in order to reduce the
impacts of noise and uncertainties on the residuals.

B. Transient behavior of matched filer

In the previous section, we showed that for a matched
status-residual pairing (Si j,ri j), the matched residual ri j is
enforced to become zero. Nonetheless, the residual ri j(ts) is
nonzero at a switching instance ts and this has to do with
the fact that the system’s states x(ts) 6= 0. In simple words, it
takes some time for ri j to reach the preset threshold ε after a
transition Mi j. In what follows, our goal is to quantitatively
capture this transient behavior in terms of the diagnosis time.

We use the Z-transform to incorporate the impact of x(ts).
Let the polynomial row vector Ni j(z) := [N̂i j(z) Ňi j(z)],
where N̂i j(z) and Ňi j(z) have dimensions nx and ny, re-
spectively. The following result captures the relationship
between ri j and x(ts).

Corollary 1 (Matched residual expression): Suppose that
the hypotheses in Theorem 1 hold and that the filter FFF i j

is designed using (9). Let ts be the last switching instance.
Then,

ri j(z) =−
N̂i j(z)
a(z)

zx(ts). (12)

Proof. Consider the closed-loop dynamics (5). Apply the
Z-transform on x(k+ 1) = Acl

i jx(k)+E jd(k) with the initial
condition x(ts). We have x(z) = (zI−Acl

i j)
−1(E jd(z)+zx(ts)).

Apply now the Z-transform on y(k) =C jx(k). It follows that

y(z) =C j(zI−Acl
i j)
−1(E jd(z)+ zx(ts)). (13)

Recall now that we showed in the proof of Theorem 1
that Ni j(p)Hi j(p) = 0 and Ni j(p)L(p) = 0. Replace the time-
shifter p with the Z-transform operator z in these two
relations. We get[

N̂i j(z) Ňi j(z)
][−zI +Acl

i j E j

C j 0

]
= 0,

[
N̂i j(z) Ňi j(z)

][ 0
−I

]
= 0,

where we used the expansion
[
N̂i j(z) Ňi j(z)

]
for Ni j(z). As

a result, we have

N̂i j(z) = Ňi j(z)C j(zI−Acl
i j)
−1, (14a)

N̂i j(z)E j = 0, (14b)

Ni j(z)L(z) =−Ňi j(z). (14c)

Consider the filter in (10) and again replace the time-
shifter p with z, that is, ri j(z) = a(z)−1Ni j(z)L(z)y(z). In light
of the above arguments, we have

ri j(z)
(13)
=

Ni j(z)L(z)
a(z)

×C j(zI−Acl
i j)
−1(E jd(z)+ zx(ts))

(14c)
=
−Ňi j(z)

a(z)
C j(zI−Acl

i j)
−1(E jd(z)+ zx(ts))

(14a)
=
−N̂i j(z)

a(z)
(E jd(z)+ zx(ts))

(14b)
=
−N̂i j(z)

a(z)
zx(ts).

The claim of the corollary thus follows. �
Remark 3 (Guaranteed residual convergence): Notice

that Corollary 1 states that the matched residual ri j is
independent of the system matrix Acl

i j of the status Si j. This
implies that even if Acl

i j is non-Hurwitz, the residual ri j
converges to zero (and the other residuals may diverge).

C. Diagnosis time

We now present an approach to compute the diagnosis
time ∆τi(εdet,εiso) with a preset pair of thresholds (εdet,εiso).
Recall that ∆τi(εdet,εiso) = tdet(Γi,εdet)+tiso(εiso). In order to
improve the readability of the next result, let us first introduce
several notations. Define λmax := max{|λ1|, . . . , |λdN+1|}
where for each m ∈ [dN + 1], λm is a root of the polyno-
mial a(z) defined in (8). Moreover, we design a(z) such that
all its roots are distinct, i.e., λm 6= λn when m 6= n. The follow-
ing theorem shows the computation method of ∆τi(εdet,εiso).



Theorem 2 (Detection and isolation times): Suppose that
the hypotheses in Corollary 1 hold and that also Assump-
tion 2-(b) is satisfied. For 1-dimensional disturbance, there
exists a sufficiently small threshold εdet ∈ (0, ε̄det) such that

tdet(Γi,εdet) = 1, (15a)

Moreover, for any threshold εiso ∈ (0, ε̄iso), it holds that

tiso(εiso) = dlogλmax

εiso

tmaxdmax
e, (16a)

where

tmax :=

max
i, j∈[n]

{∥∥∥∥∥dN+1

∑
m=1

∣∣∣∣−N̂i j(z)(z−λm)

a(z)

∣∣∣
z=λm

∣∣∣∣ ∣∣∣(I−Acl
ii
)−1Ei

∣∣∣∥∥∥∥∥
∞

}
,

ε̄det := min
i, j∈[n],i6= j

|a(1)−1Ni j(1)L(1)Ci(I−Acl
ii )
−1Ei|dmin,

ε̄iso := min
i, j,h∈[n],i 6= j 6=h

|a(1)−1Nih(1)L(1)C j(I−Acl
i j)
−1E j|dmin.

Proof. Suppose that a transition Mi j occurs at ts. It follows
from Assumption 1 that x(ts) is the steady state of Sii.
Then, by virtue of Assumption 2-(b), x(ts) = (I−Acl

ii )
−1Eidi,

recalling matrix Acl
ii is Hurwitz.

We now show the validity of (15a). When Mi j occurs at
the instance ts, the residual rii satisfies

rii(z) = a(z)−1Nii(z)L(z)C j(zI−Acl
i j)
−1(E jd(z)+ zx(ts)).

The absolute value |rii(ts+1)| will exceed εdet because of the
transient behavior of the above expression for rii(z). Thus,
the transition Mi j will be detected in one step.

To compute the isolation time in (16a), we transform
the matched residual ri j(z) = −a(z)−1N̂i j(z)zx(ts) to its
time series format. Observe that the partial expansion
of −N̂i j(z)z/a(z) is

−N̂i j(z)z
a(z)

=
dN+1

∑
m=1

bi j,mz
z−λm

,

where bi j,m =
−N̂i j(z)(z−λm)

a(z)

∣∣∣
z=λm

and the denominator poly-

nomial a(z) = ∏
dN+1
m=1 (z−λm). Then, We apply the inverse Z-

transform to rii(z) and arrive at

ri j(k) = Z−1
[
−N̂i j(z)z

a(z)
x(ts)

]
=

dN+1

∑
m=1

λ
k
mbi j,mx(ts).

Recalling that x(ts) = (I−Acl
ii )
−1Eidi, we have

ri j(k) =
dN+1

∑
m=1

λ
k
mbi j,m(I−Acl

ii )
−1Eidi

≤ λ
k
max

∥∥∥∥∥dN+1

∑
m=1
|bi j,m||(I−Acl

ii )
−1Ei|

∥∥∥∥∥
∞

dmax

≤ λ
k
maxtmaxdmax,

where in the last inequality we used the definition of tmax
given in the theorem. Setting λ k

maxtmaxdmax ≤ εiso, we have

tiso(εiso) = dlogλmax

εiso

tmaxdmax
e.

To guarantee that the unmatched residuals are above the
thresholds εdet and εiso, we compute the corresponding min-
imum steady-state responses ε̄det and ε̄iso of the unmatched
residuals. We finally set ε̄det and ε̄iso as the upper bounds
for εdet and εiso, respectively. This Concludes the proof of
this theorem. �

Remark 4 (Multi-dimensional disturbance): When the
disturbance is multi-dimensional, the steady-state response
of the residuals is the result of multiplication of two vectors.
As a result, it is difficult to compute ε̄det and ε̄det. To avoid
false diagnosis, one should choose sufficiently small values
for the two thresholds.

Remark 5 (Disturbance regularities): Recall that
Assumption 2-(b) implies that underlying system (1)
is in fact a switched “affine” system. However, we would
like to emphasize the following fact: The only result of this
study that requires Assumption 2-(b) is the one related to
the computation of the isolation time tiso(εiso) in (16a).

Remark 6 (Threshold setting): We choose a sufficiently
small value for εdet. By doing so, the diagnosis block
becomes very sensitive to small residual variations, and a
”one step” detection phase is achieved. Moreover, observe
that there is a fundamental trade-off in selecting the thresh-
old εiso. A smaller value for εiso enables guaranteed diagnosis
results and can avoid false isolation. On the other hand, by
decreasing the value of εiso, the isolation phase takes more
time. This scenario is in particular undesirable in systems
which are unstable during the diagnosis phase. We leave
finding a balance to properly select εiso for our future studies.

Based on the designed filters and the considered diagnosis
rules, we summarize the diagnosis approach in Algorithm 1.

Algorithm 1 Diagnosis algorithm for the system (1)-(2)
1: Set thresholds εdet and εiso according to Remark 6
2: for k = ts, ts +1, . . . do
3: if |rii(k)|< εdet then
4: No transition enabled
5: else
6: A transition enabled
7: Record tdet = k− ts and exit loop
8: end if
9: end for

10: for k = ts + tdet +1, . . . , ts + tdet + tiso do
11: if k < ts + tdet + tiso then
12: Cannot determine the mode
13: else
14: Check rih(k), h ∈ [n]/{i}
15: Determine the mode according to (4)
16: end if
17: end for

IV. NUMERICAL SIMULATION

In this subsection, the following numerical example is
presented to show the effectiveness of the proposed method.



Consider a switched system with three linear subsystems,

A1 =

[
0.88 −0.05
0.4 −0.72

]
,A2 =

[
0.51 −0.24
0.8 0.32

]
,A3 =

[
0.3 0.16
0.8 0.6

]
,

B1 =

[
−0.3
−0.5

]
,B2 =

[
−1.4
0.3

]
,B3 =

[
−1.5
0.1

]
,

E1 =

[
0.7
1.3

]
,E2 =

[
0.2
−1.4

]
,E3 =

[
−1.1
0.9

]
,

C1 =

[
0.2 0.1
−0.1 0.15

]
,C2 =

[
0.3 0.4
0.1 −0.2

]
,C3 =

[
−0.1 0.2
0.4 0.1

]
,

The corresponding controller gains are

K1 =
[
0.1295 −0.2431

]
,K2 =

[
−0.0292 0.0977

]
,

K3 =
[
−0.0237 0.0729

]
.

To cover all the scenarios, the switching sequence is set as
follows: 1→ 2→ 3→ 1→ 3→ 2→ 1. The thresholds are
chosen as εdet = εiso = 0.05, the disturbance d = 0.5, and the
initial state x0 = [0 0 0]>. We use Theorem 2 and compute
the isolation time tiso = 9.
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Fig. 2. Residuals r1h, h ∈ {1,2,3} in the presence of noise.
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(k) Diagnosis result

Fig. 3. Diagnosis result of the whole process.

The residuals rih with the same index i are put together for
comparison. Here, only r1h and the transition M12 at k = 51
are analyzed, and the others are similar. The initial status of
the system is S11. Fig. 2 depicts the residuals r1h, for all h ∈
{1,2,3}, in the presence of noise. The residual r11 remains
below the threshold until the system switches to other models
at k = 51, while the other two residuals oscillate around
zero to the their corresponding steady values. As shown in
the small figure in Fig. 2, r11 crosses over the threshold
immediately after the transition happened, such that the
switching is detected in one step. According to the proposed
diagnosis approach, the diagnosis block waits for tiso = 9
steps. Afterwards, the diagnosis block can determine the
active model 2 and then activate the matched controller 2.
Notice that the residual r12 reaches the threshold εiso at
k = 57. The matched residual r11 fluctuates around 0. A false
diagnosis is possible when the noise level is large. Hence,
we will focus on the impact of the measurement noise in
our future work. The diagnosis result of the whole process
is shown in Fig. 3.
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