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Abstract— In this paper, we present a methodology for
actuator and sensor fault estimation in nonlinear systems. The
method consists in augmenting the system dynamics with an
approximated ultra-local model (a finite chain of integrators)
for the fault vector and constructing a Nonlinear Unknown
Input Observer (NUIO) for the augmented dynamics. Then,
fault reconstruction is reformulated as a robust state estimation
problem in the augmented state (true state plus fault-related
state). We provide sufficient conditions that guarantee the
existence of the observer and stability of the estimation error
dynamics (asymptotic stability of the origin in the absence of
faults and ISS guarantees in the faulty case). Then, we cast the
synthesis of observer gains as a semidefinite program where
we minimize the L2-gain from the model mismatch induced
by the approximated fault model to the fault estimation error.
Finally, simulations are given to illustrate the performance of
the proposed methodology.

I. INTRODUCTION

The increasing expectation of product quality and cost-
efficient operation of engineered systems has led to an in-
creasing demand on process reliability. This can be achieved
through predictive maintenance technology, for which meth-
ods and techniques for fault detection (is a fault occurring?),
isolation (what is the fault source?), and estimation (how
large the fault is?) are fundamental ingredients. Fault Detec-
tion and Isolation (FDI) has been an active field of research
for many years (see, for instance, [1]- [8], and references
therein). However, most solutions have been developed for
engineered systems with linear dynamics, when in practice
many of them are highly nonlinear in nature (e.g., robotics,
power, transportation, water, and manufacturing). The stan-
dard path to tackle nonlinear behaviour is to obtain approxi-
mated linear models of the system and then apply linear FDI
techniques. Even though this might provide insight about the
presence and source of the fault, using linear models on non-
linear systems often leads to high false negatives/positives
since linear FDI schemes struggle to distinguish between true
faults and model mismatches. The latter has motivated the
development of nonlinear FDI schemes built around different
ideas [5]- [8], e.g., observer-based [5], [6], optimization-
based [7], and differential-geometric methods [8]. Most of
these results provide elegant FDI solutions; however, they
impose strong hard to verify conditions on the system
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dynamics – mainly fault-output decoupling by filtering or
observability with respect to different subsets of outputs –
which significantly limits their applicability. Moreover, de-
spite the great value of existing FDI schemes, what is mainly
required for predictive maintenance is fault estimation. That
is, we not only need to know the presence and source of the
fault, but also its severity. If the fault is small and/or slowly
growing in magnitude (slow compared to the system time-
scale), predictions of the fault severity can be performed and
predictive maintenance can be scheduled accordingly. The
latter is only possible if we can reconstruct fault signals (at
least their magnitude) with the available information (inputs,
outputs, and system models). Note that by estimating the
fault vector, we automatically have detection and isolation by
looking at the support (the nonzero entries) of the estimated
vector.

As it is the case for FDI, fault estimation results are fairly
mature for linear systems (see, e.g., [9], [10] for results on
linear stochastic and switchings systems) and still developing
for nonlinear dynamics. In [11], the authors address the
problem for nonlinear systems with uniformly Lipschitz
nonlinearities, process faults only (i.e., no sensor faults), and
assume the so-called matching condition (the rank of the
fault distribution matrix is invariant under left multiplication
by the output matrix). For this configuration, they provide
an adaptive filter capable of approximately reconstructing
the actuator fault vector. The matching condition, however,
is a strong assumption, it makes the problem tractable but
significantly reduces the class of system for which results are
applicable. In [12], a fault estimation scheme is introduced
for both sensor and process faults using Nonlinear Unknown
Input Observers (NUIO), adaptive Radial Basis Function
Neural Networks (RBFNN), and assuming the matching
condition. They prove their scheme provides boundedness
of fault estimation errors.

The authors in [13] do not assume the matching condition.
They consider Lipschitz nonlinearities, simultaneous sensor
and process faults, and assume a standard fault observability
condition [14] on the linear part of the dynamics. They tackle
the problem using the notion of intermediate observers,
which consists on having two dedicated observers, one that
estimates the fault and the other the state. Their scheme guar-
antees bounded fault estimation errors. In [15], simultaneous
additive and multiplicative process faults are considered.
They address the fault estimation problem by decoupling
process nonlinearities and perturbations from the estimation
filter dynamics, and using regression techniques to approx-
imately reconstruct fault signals. Decoupling nonlinearities
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leads to linear filters for which linear techniques can be used
to reconstruct fault signals. However, decoupling conditions
impose strong assumptions on the system dynamics, which
significantly limits the applicability of these results.

We remark that the above mentioned results for nonlin-
ear systems guarantee approximate reconstruction of fault
vectors only, i.e., they ensure bounded estimation errors
which, if small enough, still lead to a fairly good estimate
of the true fault. Not having internal models of fault signals
makes it challenging to enforce zero error fault estimation. To
this end, we propose a fault estimation scheme, for process
and sensor faults, uniformly Lipschitz nonlinearities, an
without assuming the matching condition, that incorporates
an approximated internal model of the fault vector. We
use the notion of ultra-local models [16]- [17] – which
refers to a class of phenomenological models that are only
valid for very short time intervals – to characterize internal
fault models. We then extend the system dynamics with an
approximated internal fault model and construct a NUIO
to jointly reconstruct faults and states. The fault estimation
problem is re-formulated as a robust state estimation problem
in the augmented state (true state plus fault-related state). We
provide sufficient conditions that guarantee the existence of
the observer and stability of the estimation error dynamics
(asymptotic stability of the origin in the absence of faults
and ISS guarantees in the faulty case). Then, we cast the
synthesis of observer gains as a semidefinite program where
we minimize the L2-gain from the model mismatch induced
by the approximated fault model to the fault estimation error.

Notation: The symbol R+ denotes the set of nonnegative
real numbers. The n × n identity matrix is denoted by
In or simply I if n is clear from the context. Similarly,
n × m matrices composed of only zeros are denoted by
0n×m or simply 0 when their dimensions are clear. For
positive definite (semi-definite) matrices, we use the notation
P � 0 (P � 0). For negative definite (semi-definite)
matrices, we use the notation P ≺ 0 (P � 0). The notation
col[x1, . . . , xn] stands for the column vector composed of
the elements x1, . . . , xn. This notation is also used when the
components xi are vectors. The `2 vector norm (Euclidean
norm) and the matrix norm induced by the `2 vector norm
are both denoted as || · ||. We use L2(0, T ) (or simply
L2) to denote vector-valued functions z : [0, T ] → Rk
satisfying

∫ T
0
‖z(t)‖2dt < ∞. For a vector-valued signal

f(t) defined for all t ≥ 0, ||f(t)||∞ := supt≥0 ||f(t)||. For
a differentiable function W : Rn → R we denote by ∂W

∂e

the row-vector of partial derivatives and by Ẇ (e) the total
derivative of W (e) with respect to time.

II. PROBLEM FORMULATION

Consider the nonlinear system{
ẋ(t) =Ax(t) +Bu(t) + Sg(V x(t), u(t)) + Fxf(t),

y(t) =Cx(t) + Fyf(t),
(1)

where t ∈ R+, x ∈ Rn, y ∈ Rm, and u ∈ Rl are time,
state, measured output and known input vectors, respectively,

n,m, l ∈ N, matrices (A,B, S, V, C, Fx, Fy) of appropriate
dimensions, and g : Rnv × Rl → Rng is a nonlinear vector
field. Function f : R+ → Rnf denotes the unknown fault
vector, which contains both process and sensor faults, fx(t)

and fy(t), respectively, f(t) :=
[
fTx (t) fTy (t)

]T
. Matrix

Fx denotes the process fault distribution matrix while matrix
Fy represents the contribution of the fault signal to sensor
measurements. Matrix S indicates in which equation(s) the
nonlinearity appears explicitly, and V is used to indicate
which states play a role in the nonlinearity. We often omit
implicit time dependencies for notation simplicity.

Assumption 1 (Globally Lipschitz Nonlinearity) Vector
field g(V x, u) in (1) is globally Lipschitz uniformly in u(t)
and t, i.e., there exists a known positive constant α satisfying

‖g(V x̂, u, t)− g(V x, u, t)‖ ≤ α‖V (x̂− x)‖, (2)

for all x, x̂ ∈ Rn, u ∈ Rl, and t ∈ R+.

Assumption 2 (Cr Fault Vector) The fault vector f(t) in
(1) is r times differentiable, i.e., the time derivatives f (1)(t),
f (2)(t), ... ,f (r)(t) exist and are continuous, and f (r)(t) is
uniformly bounded.

A. Ultra Local Fault Model

Under Assumption 2, we can write the linear approximated
model ζi(t) = f (i−1)(t), i = 1, 2, ..., r − 1, ζ(r)1 (t) = 0, for
the fault vector as 

ζ̇1 = ζ2,

ζ̇2 = ζ3,

...

ζ̇r−1 = ζr,

ζ̇r = 0,

f = ζ1.

(3)

Note that this model corresponds to an entry-wise r-th
order Taylor time-polynomial approximation at time t of
f(t). The accuracy of the approximated model increases
as f (r)(t) goes to zero (entry-wise) and it is exact for
f (r)(t) = 0. Model (3) is used to construct an observer that
ultra-locally [16]- [17] acts as a self-updating polynomial
spline approximating the actual value of the fault. To design
such an observer, we extend the system state, x(t), with
the states of the fault model, ζi(t), i = 1, 2, ..., r, and
augment the system dynamics in (1) with (3). We then
design a Nonlinear Unknown Input Observer (NUIO) for
the augmented system to simultaneously estimate x(t) and
f(t). We remark that the number of the faults derivatives, r,
added to the approximated model (3) is problem-dependent
and an optimal selection would depend on the frequency
characteristics of the fault. Increasing r results in higher
dimensional augmented dynamics, and thus high dimensional
observers as well. However, having larger observers also
provides more degrees of freedom for optimal synthesis.
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B. Augmented Dynamics

Define the augmented state xa := col[x, f, ḟ , . . . , f (r−1)]
and write the augmented dynamics using (1) and (3) as{

ẋa = Aaxa +Bau+ Sag(Vaxa, u) +Daf
(r),

y = Caxa,
(4a)

where

Aa :=


A Fx 0 . . . 0
0 0 Inf . . . 0
...

...
...

. . .
...

0 0 0 . . . Inf
0 0 0 . . . 0

 , Ba :=

[
B
0

]
,

Sa :=
[
ST 0

]T
, Va := [ V 0 ],

Da :=
[
0 Inf

]T
, Ca :=

[
C Fy 0

]
.

(4b)

C. Joint State-Fault Nonlinear Observer

We propose the following nonlinear unknown input ob-
server to estimate the augmented state xa

ż = Nz +Gu+ Ly +MSag(Vax̂a + J(y − Cax̂a), u),

x̂a = z − Ey,
(5a)

with observer state z ∈ Rnz (nz = n+ rnf ), estimate of the
extended estate x̂a, and matrices (N,G,L,M) defined as

N := MAa −KCa, G := MBa,

L := K(I + CaE)−MAaE, M := I + ECa.
(5b)

Matrices E, K, and J are observer gains to be designed.
Note that the fault estimate f̂(t) is given by f̂ = C̄x̂a with

C̄ :=
[
0nf×n Inf 0nf×nf (r−1)

]
. (6)

Define the estimation error as

e := x̂a − xa = z − xa − Ey = z −Mxa.

Then, the estimation error dynamics is given by

ė = Ne+ (NM + LCa −MAa)xa + (G−MBa)u

+MSa
(
g(Vax̂a + J(y − Cax̂a), u)− g(Vaxa, u)

)
−MDaf

(r).

(7)

Given the algebraic relations in (5b), it can be verify that
G−MBa = 0 and NM +LCa−MAa = 0. Therefore, (7)
can be written as

ė = Ne+MSaδg −MDaf
(r), (8)

where δg := g(Vax̂a + J(y − Cax̂a), u) − g(Vaxa, u). We
have now all the machinery required to state the problem we
seek to solve.

Problem 1 (Fault Reconstruction) Consider the nonlinear
system (1) with known input and output signals, u(t) and
y(t), and let Assumption 1 and Assumption 2 be satisfied.
Further consider the approximated internal fault model
(3), the augmented dynamics (4a), and the observer (5).
Design the observer gain matrices (E,K, J) so that: 1)

all trajectories of the estimation error dynamics (8) exists
and are globally ultimately bounded uniformly in t ≥ 0; 2)∫ T
0
||C̄e(t)||2dt ≤ c

∫ T
0
‖f (r)(t)‖2dt, for some known c > 0,

all T ∈ R+, and C̄ in (6); and 3) for f (r)(t) = 0, t ≥ 0,
limt→∞ ||e(t)|| = 0.

Under Assumption 1 and Assumption 2, Problem 1
amounts to finding a fault estimator that guarantees a
bounded estimation error, e(t), that e(t) goes to zero asymp-
totically if f (r)(t) = 0, and that the L2(0, T ) norm of
C̄e(t) (the fault estimation error) is upper bounded by that
of cf (r)(t), for some c > 0.

III. SOLUTION TO PROBLEM 1

A. ISS Estimation Error Dynamics

In this section, we derive LMI conditions for designing
the matrices E,K and J of the augmented system observer
in (5). As a stepping stone, we present a sufficient condition
for asymptotic stability of the origin of the estimation error
dynamics when there is no fault, then we prove boundedness
of the estimation error in the presence of faults using input-
to-state stability ideas [18].

Definition 1 (Input-to-State Stability [18, Def. 4.7]) The
error dynamics (8) is said to be Input-to-State Stable (ISS) if
there exist a class KL function β(·) and a class K function
γ(·) such that for any initial estimation error e(t0) and any
bounded f (r), the solution e(t) of (8) exists for all t ≥ t0
and satisfies

‖e(t)‖ ≤ β (‖e (t0)‖ , t− t0) + γ
(
‖f (r)(t)‖∞

)
. (9)

Note that ISS of the error dynamics (8) implies bounded-
ness of the estimation error for bounded f (r)(t). This follow
directly from (9).

Lemma 1 (ISS Lyapunov Function [18, Thm. 4.19]) Con-
sider the error dynamics (8) and let W (e) be a continuously
differentiable function such that

α1(‖e‖) ≤W (e) ≤ α2(‖e‖),

Ẇ (e) ≤ −W3(e), ∀ ‖e‖ ≥ ξ(‖f (r)‖),

where α1(·) and α2(·) are class K∞ functions, ξ(·) is a
class K function, and W3 is a continuous positive definite
function. Then, the estimation error dynamics (8) is ISS with
gain γ = α−11 (α2(ξ)).

Let W (e) := eTPe be an ISS Lyapunov function candi-
date. Then, it follows from (8) and the Lipschitz condition
in (2) (i.e., ‖δg‖ ≤ α‖(Va − JCa)e‖) that

Ẇ (e) ≤ eT∆e− 2eTPMDaf
(r), (10)

where ∆ := NTP + PN + αPMSaS
T
aM

TP + α(Va −
JCa)T (Va−JCa). A complete derivation of inequality (10)
is given in Appendix A. Inequality (10) implies the following

Ẇ (e) ≤− λmin(−∆)‖e‖2 + 2‖e‖‖PMDa‖‖f (r)‖
=− (1− θ)λmin(−∆)‖e‖2 − θλmin(−∆)‖e‖2

+ 2‖e‖‖PMDa‖‖f (r)‖,
(11)
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for any θ ∈ (0, 1). Therefore, by (11) and Lemma 1, if ∆
is negative definite, system (8) is ISS with input f (r) and
linear ISS-gain

γ(‖f (r)‖) =
2‖PMDa‖
θλmin(−∆)

‖f (r)‖. (12)

Based on the above discussion, the next proposition for-
malizes a LMI condition (∆ ≺ 0) that guarantees an ISS
estimation error dynamics (8). Without loss of generality,
for numerical tractability, we enforce ∆ + εI � 0 for some
small given ε > 0 instead of ∆ ≺ 0.

Proposition 1 (ISS Estimation Error Dynamics) Consider
the error dynamics (8) and suppose there exist matrices
Rnz×nz 3 P � 0, R ∈ Rnz×m, Q ∈ Rnz×m, and J ∈
Rnv×m satisfying the inequality[

X + εI X12

XT
12 −I

]
� 0, (13)

for some given ε > 0 and matrices X and X12 defined as

X :=S11 + α(V Ta Va − V Ta JCa − CTa JTVa),

S11 :=A>a P +A>a C
>
a R
> − CTa QT + PAa

+RCaAa −QCa,
X12 :=

√
α
[

(P +RCa)Sa CTa J
T
]
,

(14)

with α from (2) and the remaining matrices in (4b); then, the
ISS-gain from input f (r) to the estimation error e in (8) is
upper bounded by 2‖P (I + ECa)Da‖ε−1 with E = P

−1

R.

Proof : We want to prove that ∆ + εI � 0 is equivalent to
(13)-(14). Consider the expression for ∆ in the text below
(10). This expression is written in terms of the original
observer gains (E,K, J). Using this ∆, (5b), and Schur
complements on ∆ + εI � 0, we can write (13) with X
and X12 in terms of the original observer gains (E,K, J) as

X := NTP + PN + α(V Ta Va − V Ta JCa − CTa JTVa),

X12 :=
√
α
[
PMSa CTa J

T
]
,

where NTP + PN expands as

ATa (I + ECa)
T
P − CTa KP + P (I + ECa)Aa − PKCa,

and PMSa becomes

PSa + PECaSa.

Consider the following change of variables

R := PE, Q := PK. (15)

Applying (15) on the above expanded X and X12, the linear
inequality (13)-(14) can be concluded. Clearly, ∆ + εI � 0
implies λmin(−∆) ≥ ε. Then, using (12), we can conclude
the bound on the ISS-gain. �

Remark 1 (LMI Feasibility) If Fy is full row rank (i.e.,
there as many sensor faults, fy , as sensors), the LMI in
(13) is always infeasible (observability is lost) [19]–[21].
The standard practice to circumvent this issue is to assume

rank[Fy] < m [19]–[21]. Note that this is only a necessary
condition for the estimator to exist, but it does not guarantee
the LMI in (13) to be feasible (this has to be checked on a
case by case basis).

Remark 2 (Decoupling of Nonlinearities) Note that it
might be possible to cancel the effect of the nonlinearity
δg in the estimation error dynamics (8) provided that we
can select M to satisfy MSa = 0. This algebraic condition
can be written in terms of the observer gain E using the
definition of M in (5b) as follows

ECaSa = −Sa. (16)

Equation (16) has a solution E, if and only if matrix CaSa
has full column rank (details about this can be found in [22]).
Physically, the latter means there must be measurements
from which the nonlinearity appears in the output dynamics.
For the sake of generality, we do not assume this thought.
We tackle the problem without imposing MSa = 0 (so
considering the nonlinear terms in the estimation error
dynamics).

Proposition 1 is used to enforce that all trajectories of the
estimation error dynamics (8) exist and are bounded for all
t ≥ 0. If the observer gains (E,K, J) satisfy the ISS LMI in
(13), boundedness in guaranteed. This follows directly from
Assumption 2 and Definition 1.

B. L2 Performance Criteria

To maximize the performance of the reconstruction
scheme, we seek to minimize the effect of f (r) (treated as an
external disturbance) on the estimation error dynamics (8).
We could use the ISS formulation in Proposition 1 to cast an
optimization problem where we minimize the ISS gain and
treat the LMI in (13) as an optimization constraint. By doing
so, we would be reducing the effect of f (r) on the complete
vector of estimation errors e (state, fault, and fault derivatives
estimation errors). Note, however, that the purpose of the
filter is to reconstruct faults only, so the performance in state
estimation and in the error of higher order fault derivatives
is not relevant. To this end, we seek to minimize the L2

gain from f (r) to the fault estimation error C̄e(t), with C̄ in
(6). The L2 gain allows for an input-output (f (r) → C̄e(t))
characterization of performance.

Definition 2 (L2-gain [23]) We say that the estimation error
dynamics (8) with input f (r) and output C̄e(t) has a L2 gain
less than or equal to λ if the following is satisfied∫ T

0

‖C̄e(t)‖2dt ≤ λ2
∫ T

0

‖f (r)(t)‖2dt,

for all T ≥ 0 and f (r)(t) ∈ L2(0, T ).

In the following lemma, we state a Lyapunov-based suf-
ficient condition (the Hamilton-Jacobi inequality) for having
a bounded L2 gain (see [18, Thm. 5.5] and [23, Thm. 2] for
further details).
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Lemma 2 (L2-gain Inequality [18, Thm. 5.5]) Consider
(8) and suppose there exists a continuously differentiable
positive semi-definite function W (e) satisfying

∂W

∂e
(Ne+MSaδg) +

1

2λ2
∂W

∂e
MDaD

T
aM

T

(
∂W

∂e

)T
+

1

2
pT p ≤ 0,

(17)
with p = C̄e and C̄ as in (6). Then, the L2-gain from f (r)

to the fault estimation error p = C̄e in (8) is less than or
equal to λ.

Based on the Lemma 2, the next proposition formalizes
an LMI-based condition guaranteeing the inequality (17) to
have the finite L2-gain of the mapping from f (r) to the fault
estimation error.

Proposition 2 (Finite L2-gain) Suppose there exist matri-
ces P � 0, R, Q, J and scalar ρ ≥ 0 satisfying L11 (P +RCa)Da X12

∗ −ρI 0
∗ ∗ −I

 � 0, (18)

L11 := X +
1

2
C̄T C̄, (19)

and X,X12 as defined in (14), C̄ in (6) and the remaining
matrices in (4b). Then, the L2-gain from f (r) to the fault
estimation error p = C̄e in (8) is upper bounded by

√
2ρ.

Proof: The proof is similar to the proof of Proposition 1
and is given in Appendix B. �

Using Proposition 2, we next cast a semidefinite program
where we seek to minimize the L2-gain from f (r) to p = C̄e.
We add the ISS LMI in (13) as a constraint to this program to
enforce that the resulting filter also guarantees boundedness
for bounded faults. The latter is important to avoid that the
filter diverges (as the L2 criteria does not guarantee stability).

Theorem 1 (Optimal Fault Estimator) Consider the aug-
mented system dynamics (4), the filter (5), and the corre-
sponding estimation error dynamics (8). To design the opti-
mal fault estimator (5), solve the following convex program

min
P,R,Q,J,ρ

ρ

s.t.
[
X + εI X12

XT
12 −I

]
� 0 L11 (P +RCa)Da X12

∗ −ρI 0
∗ ∗ −I

 � 0

P � 0, ρ ≥ 0,

(20)

with given ε > 0, X,X12 as defined in (14), L11 in (19), and
the remaining matrices in (4b). Let us denote the optimizers
by P ?, R?, Q?, J?, ρ?, and based on (15), define the matrices
E? = P ?

−1

R?,K? = P ?
−1

Q?. Then, we have the following:
1) The ISS-gain from f (r) to e is upper bounded by

2‖P ?(I + E?Ca)Da‖ε−1.
2) The L2-gain from f (r) to C̄e is upper bounded by√

2ρ?.

Fig. 1. Benchmark System Schematic.

Proof: Theorem 1 follows from the above discussion,
Proposition 1, and Proposition 2. �

Remark 3 (Perfect Estimation) The developed methodol-
ogy can guarantee zero estimation error for zero f (r), i.e.,
when the r-time derivative of the fault vector vanishes. This
follows directly from the estimation error dynamics (8) since
if f (r) = 0, the error dynamics becomes independent of
external disturbances.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed method by a
benchmark example for FDI [24]–[26]. The dynamics of the
system (a single-link robotic arm with a revolute elastic joint,
see Fig. 1 for a schematic) can be described as follows:

Jlq̈l + Flq̇l + k (ql − qm) +mgc sin (ql) = 0,

Jmq̈m + Fmq̇m − k (ql − qm) = kτu,

where ql and qm are the angular position of the link and the
angular position of the motor, respectively. Constants Jl and
Jm are the moments of inertia of the link and the motor and
Fl and Fm are the viscous coefficients associated to friction
acting at the link and the motor, respectively. The flexibility
in the joint is modeled by a spring with a spring coefficient
k, m is the link mass, g is the gravity constant, c is the height
of the link center of mass, kτ is the amplifier gain, and u
is the torque input delivered by the motor. Units are in SI,
and the parameters are: Jl = 4.5, Jm = 1, Fl = 0.5, Fm =
1, k = 2,m = 4, g = 9.8, c = 0.5, and kτ = 1. The torque
input is u = 2sin(0.25t).

By selecting x1 := q̇m, x2 := qm, x3 := q̇l, and x4 := ql,
the system can be written in the form of (1):

ẋ = Ax+Bu+ Sg (V x) + Fxf

y = Cx+ Fyf,
(21)

where x := [x1, x2, x3, x4]T is the state vector, and

A =


−Fm
Jm − k

Jm
0 k

Jm
1 0 0 0

0 k
Jl

−FlJl − k
Jl

0 0 1 0

 ,
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Fig. 2. The actual sensor fault and its estimate using the proposed method.

B =
[

kτ
Jm

0 0 0
]T
, C =

[
0 1 0 0
0 0 0 1

]
,

S =
[

0 0 mgc
Jl

0
]T
, V =

[
0 0 0 1

]
.

The nonlinearity is given by g (V x) = − sin (x4), which
is Lipschitz with constant α = 1. We set initial conditions
as x(0) = [0.01, 0.01, 0.01, 0.01]T . In addition, the first
measurement is the angular position of the motor, and the
second one is the angular position of the link. Then, we
simulate for two different scenarios, one for the first sensor
fault where we have

Fx =


0
0
0
0

 , Fy =

[
1
0

]
,

and the other one for the actuator fault with

Fx =


1
0
0
0

 , Fy =

[
0
0

]
.

For both scenarios, we augment the benchmark system
(21) using (4) with r = 1. Next, we design an NUIO observer
of the form (5) by solving the minimization problem (20) in
Theorem 1, for the estimation of the actuator fault and the
first sensor fault. To solve the convex program (20), we use
the YALMIP toolbox in MATLAB.

Finally, we apply the designed NUIO to the system in
the simulation. The initial condition of the observer in the
simulation is taken as the zero vector. A gradually increasing
(similar to an incipient fault [27]) sensor fault occurs at
time t = 25 (sec). Figure 2 depicts the estimated actuator
fault and its actual value. For actuator fault, to indicate the
capability of the developed method to estimate time-varying
faults, a sinusoidal actuator fault with the same frequency of
input is simulated (i.e., fx = 0.1sin(0.25t)). Figure 3 shows
the estimated actuator fault and its actual value. It can be
seen that the estimated actuator and first sensor faults follow
the actual fault with almost zero error in steady state.

V. CONCLUSION

In this paper, a method for time-varying actuator and sen-
sor faults estimation in nonlinear systems has been proposed.
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Fig. 3. The actual actuator fault and its estimate using the proposed method.

To this end, we have augmented the system dynamics with
an approximated internal model for the fault vector (using
ideas from ultra-local models). Then, a nonlinear unknown
input observer is constructed for the augmented dynamics.
The fault estimation problem has been re-formulated as a
robust state estimation problem in the augmented state. We
have provide sufficient conditions that ensure the stability
of the observer error dynamics (guaranteeing asymptotic
fault estimation) and robustness against model mismatch
in the internal fault model (in terms of a finite L2-gain
from fault model mismatch to fault estimation error). In
Theorem 1, a convex minimization problem has been casted
for destining optimal estimators. Finally, simulations for a
benchmark system are given to illustrate the performance
of the proposed methodology. The numerical simulations
show that the proposed method properly estimates sensor
and actuator faults for the benchmark system.

APPENDIX

A. Lyapanov Function Proof

The inequality in (10) can be derived as follows:

Ẇ =eT
(
NTP + PN

)
e+ 2eTPMSaδg

− 2eTPMDaf
(r)

≤eT
(
NTP + PN

)
e+ 2

∥∥eTPMSa
∥∥ ‖δg‖

− 2eTPMDaf
(r)

≤eT
(
NTP + PN

)
e

+ 2
∥∥eTPMSa

∥∥α‖(Va − JCa)e‖ − 2eTPMDaf
(r)

≤eT
(
NTP + PN

)
e+ α

( ∥∥eTPMSa
∥∥2 +

‖(Va − JCa)e‖2
)
− 2eTPMDaf

(r)

=eT
(
NTP + PN + αPMSaS

T
aM

TP

+ α(Va − JCa)T (Va − JCa)
)
e− 2eTPMDaf

(r)

:=eT∆e− 2eTPMDaf
(r).

(22)
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B. L2-Gain LMI

If we define W (e) := eTPe with positive definite matrix
P ; then (17) can be written as follows

eT
(
NTP + PN +

1

2
C̄T C̄

)
e+ 2eTPMSaδg

+
2

λ2
eTPMDaD

T
aM

TPe ≤ 0.

We can find an upper bound for the above inequality, similar
to stability proof in Appendix A, as

eT (∆ +
1

2
C̄T C̄ +

2

λ2
PMDaD

T
aM

TP )e ≤ 0,

where ∆ is same as definition in (22). Using Schur comple-
ment the above inequality is equivalent to[

∆ + 1
2 C̄

T C̄ PMDa

∗ −λ
2

2 I

]
� 0.

If we follow the same procedure in proof of Proposition 1,
the equivalent inequality can be found as X + 1

2 C̄
T C̄ (P +RCa)Da X12

∗ −λ
2

2 I 0
∗ ∗ −I

 � 0.

Finally, by defining a change of variable as ρ := λ2

2 , (18)
can be implied.
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