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Abstract— We develop a novel framework for formulating a
class of stochastic reachability problems with state constraints
as a stochastic optimal control problem. Previous approaches to
solving these problems are either confined to the deterministic
setting or address almost-sure stochastic notions. In contrast, we
propose a new methodology to tackle probabilistic specifications
that are less specific than almost sure requirements. To this
end, we first establish a connection between two stochastic
reach-avoid problems and a class of stochastic optimal control
problems for diffusions with discontinuous payoff functions.
We then derive a weak version of dynamic programming
principle (DPP) for the value function. Moreover, based on
our DPP, we give an alternate characterization of the value
function as the solution to a partial differential equation in the
sense of discontinuous viscosity solutions. Finally we validate
the performance of the proposed framework on the stochastic
Zermelo navigation problem.

I. INTRODUCTION

Reachability is a fundamental concept in the study of
dynamical systems, and in view of applications of this con-
cept ranging from engineering, manufacturing, biology, and
economics, to name but a few, has been studied extensively in
the control theory literature. One particular problem that has
turned out to be of fundamental importance in engineering
is the so-called “reach-avoid” problem. In the deterministic
setting this problem consists of determining the set of initial
conditions for which one can find at least one control strategy
to steer the system to a target set while avoiding certain
obstacles. The set representing the solution to this problem is
known as capture basin [1]. This problem finds applications
in, air traffic management [26], security of power networks
[18]. A direct approach to compute the capture basin is
formulated in the language of viability theory in [11], [13].
Related problems involving pursuit-evasion games are solved
in, e.g., [2], [22] employing tools from non-smooth analysis,
for which computational tools are provided by [13].

An alternative and indirect approach to reachability in-
volves using level set methods defined by value functions that
characterize appropriate optimal control problems. Employ-
ing dynamic programming techniques for reachability and
viability problems in the absence of state-constraints, these
value functions can in turn be characterized by solutions
to the standard Hamilton-Jacobi-Bellman (HJB) equations
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mohajerin,chatterjee,lygeros@control.ee.ethz.ch

corresponding to these optimal control problems [25], [28].
Numerical algorithms based on level set methods were
developed by [31], [32] and have been coded in efficient
computational tools by [28], [29]. Extending the scope of
this technique, the authors of [20], [7], [27] treat the case
of time-independent state constraints and characterize the
capture basin by means of a control problem whose value
function is continuous.

In the stochastic setting, different probabilistic analogs of
reachability problems have been studied extensively: Almost-
sure stochastic viability and controlled invariance are treated
in [1], [4], [6]; see also the references therein. Methods in-
volving stochastic contingent sets [3], [4], viscosity solutions
of second-order partial differential equations [10], [5], [6],
and derivatives of the distance function [15] were developed
in this context. In [16] the authors developed an equivalence
for the invariance problem between a stochastic differential
equation and a certain deterministic control system Following
the same problem, the authors of [33] studied the differential
properties of the reachable set based on the geometrical
partial differential equation which is the analogue of the HJB
equation for this problem.

Although almost sure versions of reachability specifica-
tions are interesting in their own right, they may be too
strict a concept in some applications. For example, in the
safety assessment context, a common specification involves
bounding the probability that undesirable events take place.
Motivated by this, in this article we develop a new framework
for solving the following stochastic reach-avoid problem:
Given p ∈ [0, 1], a horizon T > 0, and two disjoint sets
A,B ⊂ Rn, construct, if possible, a policy such that the
controlled processes reaches A prior to entering B within the
interval [0, T ]. Observe that this is a significantly different
problem compared to its almost-sure counterpart referred to
above. It is of course immediate that the solution to the
above problem is trivial if the initial state is either in B (in
which case it is almost surely impossible) or in A (in which
case there is nothing to do). However, for generic initial
conditions in Rn \ (A∪B), due to the inherent probabilistic
nature of the dynamics, the problem of selecting a policy
and determining the probability with which the controlled
process reaches the set A prior to hitting B is non-trivial.

In this article we establish a connection between the
stochastic reach-avoid problems and a stochastic optimal
control problem with discontinuous payoff functions. In a
fashion similar to [9], we propose a weak version of the
dynamic programming principle (DPP) which avoids the
technical difficulties related to the measurability of value
functions. To this end, the proposed approach imposes fairly



mild conditions on the system dynamics and the sets, namely,
a non-degeneracy of the diffusion term and an interior cone
condition, respectively. In the sequel, we will derive the
dynamic programming equation in the sense of viscosity
solutions based on our weak DPP. As a by-product of our
work, we shall also address the related issue determining
whether there exists a policy such that with probability at
least p the controlled processes resides in A at time T while
avoiding B on the interval [0, T ].

In §II we introduce the two stochastic reach-avoid prob-
lems dealt with in this article. §III provides a connection
between the stochastic reach-avoid problems and a class
of stochastic optimal control problems. In §IV we first
establish a DPP corresponding to the value function, and
characterize it as the (discontinuous) viscosity solution of
a partial differential equation. §V presents a connection
between §III and §IV and solves the stochastic reach-avoid
problem in a “ε-conservative” sense. One may observe that
this ε-precision can be made arbitrarily small. To illustrate
the performance of the our techniques, the theoretical results
developed in preceding sections are applied to solve the
stochastic Zermelo navigation problem in §VI. We conclude
with some remarks and directions for future work in §VII.

II. PROBLEM STATEMENT

Consider a probability space (Ω,F ,P) whose filtration
F = (Fs)s≥0 is generated by a n-dimensional Brownian
motion (Ws)s≥0 adapted to F. Let the natural filtration of
the Brownian motion (Ws)s≥0 be enlarged by its right-
continuous completion; — the usual conditions of complete-
ness and right continuity, and (Ws)s≥0 is a Brownian motion
with respect to F [23, p. 48]. Let U ⊂ Rm be a control
set, and let U denote the set of F-progressively measurable
maps into U.1 The basic object of our study concerns the
Rn-valued stochastic differential equation (SDE)

dXs = f(Xs, us) ds+ σ(Xs, us) dWs, s ≥ 0, (1)

where X0 = x given, f : Rn×U −→ Rn and σ : Rn×U −→
Rn×n are measurable maps, (Ws)s≥0 is the above standard
n-dimensional Brownian motion, and u := (us)s≥0 ∈ U .

Assumption 2.1: We stipulate that
a. U ⊂ Rm is compact;
b. f is continuous and Lipschitz in its first argument uni-

formly with respect to the second;
c. σ is continuous and Lipschitz in its first argument uni-

formly with respect to the second.
It is known [8] that under Assumption 2.1 there exists a

unique strong solution to the SDE (1). By definition of the
filtration F, we see that the control functions u ∈ U satisfy
the non-anticipativity condition [8]—to wit, the increment
Wt−Ws is independent of the past history {Wy, uy | y ≤ s}
of the Brownian motion and the control for every s ∈ [0, t[

1Recall [17, Chapter IV] that a U-valued process (yt)t≥0 is F-
progressively measurable if for each T > 0 the function Ω × [0, T ] 3
(ω, t) 7→ y(ω, t) ∈ U is measurable, where Ω × [0, T ] is equipped with
F ⊗ B([0, T ]), U is equipped with B(U), and B(S) denotes the Borel
σ-algebra on a topological space S.

(In other words, u does not anticipate the future increment
of W ). We let (Xt,x;u

s )s≥t denote the unique strong solution
of (1) starting from time t at the state x under the control
policy u. We denote by T the collection of all F-stopping
times. For τ1, τ2 ∈ T with τ1 ≤ τ2 P-a.s. the subset T[τ1,τ2]

is the collection of all F-stopping times τ that τ1 ≤ τ ≤
τ2 P-a.s. and are conditionally independent of Fτ1 given
(τ1, X

t,x;u
τ1 ). We also denote by Uτ the collection of all

processes u ∈ U which are conditionally independent of
Fτ given (τ,Xt,x;u

τ ). Measurability on Rn will always refer
to Borel-measurability. In the sequel the complement of a
set S ⊂ Rn is denoted by Sc.

Definition 2.2 (First entry time): Given a control u, the
process (Xt,x;u

s )s≥t, and a measurable set A ⊂ Rn, we
introduce2 the first entry time to A:

τA(t, x) = inf{s ≥ t
∣∣ Xt,x;u

s ∈ A}. (2)
In view of [19, Theorem 1.6, Chapter 2], τA(t, x) is an

F-stopping time.

Fig. 1. The trajectory X(1) hits A prior to B within time [0, T ], while
X(2) and X(3) do not; all three start from initial state x0.

Given an initial condition (t, x), we define the set
RA(t, p;A,B) (resp. R̃A(t, x;A,B)) as the set of all ini-
tial conditions such that there exists an admissible control
strategy u ∈ U such that with probability more than p the
state trajectory Xt,x;u

s hits the set A before set B within the
time (resp. at the time) horizon T .

Definition 2.3 (Reach-Avoid within the interval [0, T ]):

RA(t, p;A,B) :=
{
x ∈ Rn

∣∣∣ ∃u ∈ U : p <

Pu
t,x

(
∃s ∈ [t, T ], Xt,x;u

s ∈ A and ∀r ∈ [t, s] Xt,x;u
r /∈ B

)}
.

Definition 2.4 (Reach-Avoid at the terminal time T ):

R̃A(t, p;A,B) :=
{
x ∈ Rn

∣∣∣ ∃u ∈ U :

p < Pu
t,x

(
Xt,x;u
T ∈ A and ∀r ∈ [t, T ] Xt,x;u

r /∈ B
)}
.

We have suppressed the initial condition in the above
probabilities, and will continue doing so in the sequel. A
pictorial representation of our problems is in Figure 1.

III. CONNECTION TO STOCHASTIC OPTIMAL CONTROL
PROBLEM

In this section we establish a connection between the
stochastic reach-avoid problems and a stochastic optimal
control problem. Consider the value functions V, Ṽ : [0, T ]×
Rn → R defined as follows:

V (t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ )
]
, τ := τA∪B ∧ T, (3a)

Ṽ (t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ̃ )
]
, τ̃ := τB ∧ T. (3b)

where ∧ denotes the minimum operator. Here τA∪B is the
hitting time introduced in Definition 2.2, and depends on

2By convention, inf ∅ =∞.



the initial condition (t, x). Also note that for a measurable
function f : Rn → R hereinafter E

[
f
(
Xt,x;u
τ

)]
stands for

conditional expectation with initial condition (t, x) given and
under the control u. For notational simplicity, we drop the
initial condition in this section.

In our subsequent work, measurability of the functions V
and Ṽ turn out to be irrelevant; see Remark 4.6 for details.

The first result of this section, Proposition 3.2, asserts
that E

[
1A(Xt,x;u

τ )
]

= Pu
t,x

(
τA < τB , τA ≤ T

)
. Since

τA and τB are F-stopping times, it then indicates mapping
(t, x) 7→ E

[
1A(Xt,x;u

τ )
]

is well-defined. Furthermore, the
similar results can be deduced for the other reachability
problem introduced in Definition 2.4 and the value function
(3b).

Assumption 3.1: The sets A and B are disjoint and closed.
Proposition 3.2: Consider the system (1), and let A,B ⊂

Rn be given. Under Assumptions 2.1 and 3.1 we have

RA(t, p;A,B) = {x ∈ Rn | V (t, x) > p},

where the set RA is the set defined in Definition 2.3 and V is
the value function defined in (3a).

Proof: In view of Assumption 3.1, the definition of
reach-avoid set in 2.3, and [30, Remark 2.3] we can express
the set RA(t, p;A,B) as

RA(t, p;A,B) =
{
x ∈ Rn

∣∣ ∃u ∈ U :

Pu
t,x

(
τA < τB and τA ≤ T

)
> p
}
.

(4)

Also, by Assumption 3.1, and the definition of the stopping
time τ in (3a), for a given u ∈ U we have

Xt,x;u
τ ∈ A⇒ τA ≤ τ and τ 6= τB ⇒ T ≥ τ = τA < τB ,

which means the sample path Xt,x;u
· hits the set A before

B at the time τ ≤ T ; let us recall that by Definition 2.2
τA∪B = τA ∧ τB . Moreover,

Xt,x;u
τ /∈ A⇒ τ 6= τA ⇒ τ = (τB ∧ T ) < τA,

and this means that the sample path does not succeed in
reaching A while avoiding set B within time T . Therefore,
the event {τA < τB and τA ≤ T} is equivalent to {Xt,x;u

τ ∈
A}, and

Pu
t,x

(
τA < τB and τA ≤ T

)
= E

[
1A(Xt,x;u

τ )
]
.

This, in view of (4) and arbitrariness of control strategy u ∈
U leads to the assertion.

We state the following proposition concerning assertions
identical to those of Proposition 3.2 for the reach-avoid
problem of Definition 2.4. The proof follows effectively the
same approach as that of Proposition 3.2.

Proposition 3.3: Consider the system (1), and let A,B ⊂
Rn be given. If the setB is closed, then under Assumption 2.1
we have R̃A(t, p;A,B) = {x ∈ Rn | Ṽ (t, x) > p}, where
the set R̃A is the set defined in Definition 2.4.

IV. ALTERNATIVE CHARACTERIZATION OF
REACH-AVOID PROBLEM

The stochastic control problems introduced in (3) are well-
known as an exit-time problem. In this section we present
an alternative characterization of this class of problems as
the (discontinuous) viscosity solution of a partial differential
equation. To this end, we generalize the value functions to

V (t, x) := sup
u∈Ut

E
[
`
(
Xt,x;u
τ̄(t,x)

)]
, τ̄(t, x) := τO ∧ T, (5)

with the function ` : Rn → R being bounded measurable,
and O a measurable set. Note that τO is the stopping time
defined in Definition 2.2 that in case of value function (3a)
can be considered as O = A ∪ B. Note once again that
measurability of the function V is irrelevant to our work;
see Remark 4.6 for details.

Hereafter we shall restrict our control processes to Ut, the
set Ut denotes the collection of all processes u ∈ U which
are conditionally independent of Ft given (t, x). In view
of independence of the increments of Brownian motion, the
restriction of control processes to Ut is not restrictive, and
one can show that the value function in (5) remains the same
if Ut is replaced by U ; see, for instance, [24, Theorem 3.1.7,
p. 132] and [9, Remark 5.2].

Our objective is to characterize the value function (5) as
a (discontinuous) viscosity solution of a suitable Hamilton-
Jacobi-Bellman equation. We introduce the set S := [0, T ]×
Rn and define the lower and upper semicontinuous envelopes
of function V : S→ R:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′)

V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′).

A. Assumptions and Preliminaries

Assumption 4.1: In addition to Assumption 2.1, we stip-
ulate the following:
a. (Non-degeneracy) The controlled processes are uniformly

non-degenerate, i.e., there exists δ > 0 such that for all
x ∈ Rn and u ∈ U, σσ> ≥ δI where σ = σ(x, u) is the
diffusion term in SDE (1).

b. (Interior Cone Condition) There exist positive constants
h, r an Rn-value bounded map η : O → Rn satisfying

Brt
(
x+ η(x)t

)
⊂ O for all x ∈ O and t ∈ (0, h]

where Br(x) denotes an open ball centered at x and
radius r and O stands for the closure of the set O.

c. (Lower Semicontinuity) The function ` in (5) is lower
semicontinuous.

Note that if the set A in §III is open, then `( · ) = 1A( · )
satisfies Assumption 4.1.c. The interior cone condition in
Assumption 4.1.b. concerns shapes of the set O; figure 2
illustrate two typical scenarios:

Let us define the function J : S× U→ R:

J
(
t, x;u

)
:= E

[
`
(
Xt,x;u
τ̄(t,x)

)]
, (6)
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Fig. 2. Interior cone condition holds at every point of the boundary.

where the stopping time τ̄ is defined in (5) and depends on
the initial condition (t, x). In the following proposition, we
establish continuity of τ̄(t, x) and lower semicontinuity of
J(t, x,u) with respect to (t, x).

Proposition 4.2: Consider the system (1), and suppose
that Assumptions 2.1 and 4.1 hold. Then for any strategy
u ∈ U , the function (t, x) 7→ τ̄(t, x) is continuous P-a.s.
Moreover, the function (t, x) 7→ J

(
t, x,u

)
defined in (6) is

uniformly bounded and lower semicontinuous:

J
(
t, x;u

)
≤ lim inf

(t′,x′)→(t,x)
J
(
t′, x′;u

)
.

Proof: Here we briefly sketch the proof in words and
refer to [30, Proposition 4.3] for more details. Based on the
Assumptions 4.1.a. and 4.1.b., it is a well-known property
of non-degenerate processes that the set of sample paths that
hit the boundary of O and do not enter the set is negligible.
Hence, it can be observed that this property in conjunction
with almost-sure continuity of (t, x) 7→ Xt,x;u

s uniformly
with respect to s leads to almost-sure continuity of the exit

time function (t, x) 7→ τ̄(t, x). Furthermore, according to the
continuity of the exit time map and the process trajectories,
one can infer that the lower semicontinuity of payoff function
J in (6) is inherited to the value function V in (3a). Note
also that the function J is bounded since ` is.

Remark 4.3: As a consequence of Proposition 4.2, given
(t, x,u) ∈ S× U the function

Ω 3 ω 7→ J
(
θ(ω), Xt,x;u

τ̄(ω) (ω);u
)
∈ R

is P-measurable. C
Proposition 4.4 (Strong Markov Property): Consider the

system (1) satisfying Assumption 2.1. Then, for a stopping
time θ ∈ T[t,T ] and an admissible control u = 1[t,θ]u1 +
1(θ,T ]u2, where u1 ∈ Ut and u2 ∈ Uθ,

E
[
`
(
Xt,x;u
τ̄(t,x)

) ∣∣∣ Fθ] = 1{τ̄(t,x)<θ}`
(
Xt,x;u1

τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}J

(
θ,Xt,x;u1

θ ,u2

)
P-a.s.

Proof: By Definition 2.2, one has

1{θ≤τ̄(t,x)}τ̄(t, x) = 1{θ≤τ̄(t,x)}
(
τ̄(θ,Xt,x;u

θ )+θ−t
)
P-a.s.

Hereafter one can follow effectively the same computations
as in the proof of [9, Proposition 5.1] to arrive at the
assertion.

B. Dynamic Programming Principle

The following Theorem provides a dynamic programming
principle (DPP) for the exit time problem introduced in (5).

Theorem 4.5 (Exit Time Problem DPP): Consider the
system (1), and suppose that Assumptions 2.1 and 4.1 hold.
Then for every (t, x) ∈ S and for all stopping times θ ∈ T[t,T ],

V (t, x) ≤ sup
u∈Ut

E
[
1{τ̄(t,x)<θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}V

∗(θ,Xt,x;u
θ

)]
,

(7)

and

V (t, x) ≥ sup
u∈Ut

E
[
1{τ̄(t,x)<θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}V∗

(
θ,Xt,x;u

θ

)]
,

(8)

where V is the value function defined in (5).
Proof: The proof follows techniques developed in [9] in

conjunction with the strong Markov property in Proposition
4.4. To wit, one first constructs a control strategy for a small
enough open cylinder around an operating point, assembles
an appropriate covering for the set S with such open cylin-
ders, and uses this covering to arrive at a control strategy
which satisfies the required conditions within ε precision,
ε > 0 being pre-assigned and arbitrary. For the detailed proof
we refer to [30, Proposition 4.7].

Remark 4.6: The dynamic programming principles in (7)
and (8) are introduced in a weaker sense than the standard
DPP for stochastic optimal control problems [21]. To wit,
note that one does not have to verify the measurability of
the value function V defined in (5) to apply our DPP. C



C. Dynamic Programming Equation
Our objective in this subsection is to demonstrate how the

DPP derived in §IV-B characterizes the value function V as
a (discontinuous) viscosity solution to an appropriate HJB
equation. For the general theory of viscosity solutions we
refer to [14] and [21].

Definition 4.7 (Dynkin Operator): Given u ∈ U, we de-
note by Lu the Dynkin operator/infinitesimal generator as-
sociated to the controlled diffusion (1) as

LuΦ(t, x) := ∂tΦ(t, x) + 〈f(x, u), ∂xΦ(t, x)〉

+
1

2
Tr[σσ>(x, u)∂2

xΦ(t, x)],

where Φ is a real-valued function smooth on the interior
of S, with ∂tΦ and ∂xΦ denoting the partial derivatives with
respect to t and x respectively, and ∂2

xΦ denoting the Hessian
matrix with respect to x.

Theorem 4.8 (Exit Time DPE): Consider the system (1),
and suppose that Assumptions 2.1 and 4.1 hold. Then:
◦ the lower semicontinuous function of V introduced in (5)

is a viscosity supersolution of

− sup
u∈U
LuV∗(t, x) ≥ 0 on [0, T )×Oc,

◦ the upper semicontinuous function of V is a viscosity
subsolution of

− sup
u∈U
LuV ∗(t, x) ≤ 0 on [0, T )×Oc,

both with boundary conditions{
V (t, x) = `

(
x
)
∀(t, x) ∈ [0, T ]×O (Lateral),

V (T, x) = `
(
x
)
∀x ∈ Rn (Terminal).

Proof: we briefly sketch the proof and refer to [30,
Proposition 4.10] for more details. In view of the definition
of the stopping time τ̄ and based on the assumption 4.1.a.
and 4.1.b., one sees that τ̄(t, x) = t for all (t, x) on the
lateral and terminal boundaries which immediately arrives at
the boundary assertion. In the supersolution part, for the sake
of contradiction, one can assume that there exists (t0, x0),
and a smooth function φ dominated by the value function
V∗ where (V∗ − φ)(t0, x0) = 0, such that for some δ > 0,
− supu∈U Luφ(t0, x0) < −2δ. Since φ is smooth, the map
(t, x) 7→ Luφ(t, x) is continuous. Therefore, there exist
u ∈ U and r > 0 such that Br(t0, x0) ⊂ [0, T ) × Oc and
−Luφ(t, x) < −δ for all (t, x) in Br(t0, x0). Let us define
the stopping time θ(t, x) ∈ T[t,T ] as the first exit time of tra-
jectory Xt,x;u

· from the ball Br(t0, x0). Note that by continu-
ity of solutions to (1), t < θ(t, x) < T P- a.s. for all (t, x) ∈
Br(t0, x0). Therefore, selecting r > 0 sufficiently small so
that θ(t, x) < τO, and applying Itô’s formula, we see that
for all (t, x) ∈ Br(t0, x0), φ(t, x) < E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
.

Now it suffices to take a sequence (tn, xn, V (tn, xn))n∈N
converging to (t0, x0, V∗(t0, x0)). For sufficiently large n

we have V (tn, xn) < E
[
V∗
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
which,

in view of the fact that θ(tn, xn) < τO ∧ T , contradicts the
DPP in (8). The subsolution property is proved in a similar
fashion.

Fig. 3. Construction of the sets Aε from A as described in §V.

V. A CONNECTION BETWEEN THE REACH-AVOID
PROBLEM AND PDE CHARACTERIZATION

In this section we draw a connection between the reach-
avoid problem of §II and the stochastic optimal control
problems stated in §III. To this end, note that on the one
hand, an assumption on the sets A and B in the reach-avoid
problem (Definition 2.3) within the time interval [0, T ] is
that they are closed. On the other hand, our solution to the
stochastic optimal control problem (defined in §III and solved
in §IV) relies on lower semicontinuity of the payoff function
` in (5), see Assumption 4.1.c.

To achieve a reconciliation between the two sets of hy-
potheses, given sets A and B satisfying Assumption 3.1, we
construct a smaller measurable set Aε ⊂ A◦ such that Aε :=
{x ∈ A | dist(x,Ac) ≥ ε} and Aε satisfies Assumption
4.1.b. Note that this is always possible if O := A∪B satisfies
Assumption 4.1.b.—indeed, simply take ε < h/2 to see this,
where h is as defined in Assumption 4.1.b. Figure 3 depicts
this case.

Analytically, we define

Vε(t, x) := sup
u∈Ut

E
[
1A◦

(
Xt,x;u
τε

)]
, τε := τAε∪B ∧ T.

(9)
In the following Theorem, we show that the above technique
affords an ε-conservative but precise way of characterizing
the solution to the reach-avoid problem defined in Definition
2.3 in the framework of §IV.

Theorem 5.1: Consider the system (1), and suppose that
Assumptions 2.1, 3.1, 4.1.a. and 4.1.b. hold. Then, for all
(t, x) in S and ε1 ≥ ε2 > 0, we have Vε2(t, x) ≥ Vε1(t, x),
and V (t, x) = limε↓0 Vε(t, x) where the functions V and Vε
are defined as (3a) and (9) respectively.

Proof: Here we briefly sketch the proof and refer to
[30, Theorem 5.2] for more details. Since the family of the
sets (Aε)ε>0 is nested and increasing, it is straightforward to
deduce that the family of functions (Vε)ε>0 is also increasing
pointwise as ε ↓ 0. Moreover, one can observe that the
difference between the value functions V and limε↓0 Vε is
indeed the probability measure of the trajectories that either
hit A at terminal time T or hit the boundary of the set A and
do not enter A. Both of these events are in fact negligible
duo to the Assumptions 4.1.b. and 4.1.c.

Observe also that for the problem of reachability at the
time T , defined in Definition 2.4, the above procedure is
unnecessary if the set A is open, see the required conditions
for Proposition 3.3.

VI. NUMERICAL EXAMPLE: ZERMELO NAVIGATION
PROBLEM

To illustrate the theoretical results of the preceding sec-
tions, we apply the proposed reach-avoid formulation to the
Zermelo navigation problem with constraints and stochas-
tic uncertainties. In control theory, the Zermelo navigation



Fig. 4. The Zermelo navigation problem: river and waterfall viewed from
above.

problem consists of a swimmer who aims to reach an island
(Target) in the middle of a river while avoiding the waterfall,
with the river current leading towards the waterfall. The
situation is depicted in Figure 4. We say that the swimmer
“succeeds” if he reaches the target before going over the
waterfall, the latter forming a part of his Avoid set.

A. Mathematical modeling

The dynamics of the river current are nonlinear; we let
f(x, y) denote the river current at position (x, y) [12]. We
assume that the current flows with constant direction towards
the waterfall, with the magnitude of f decreasing with
increasing distance from the middle of the river:

f(x, y) :=

[
1− ay2

0

]
.

This model may not describe the behavior of a realistic river
current, so we consider some uncertainties in the river current
modeled by a diffusion term as

σ(x, y) :=

[
σx 0
0 σy

]
.

We assume that the swimmer moves with constant velocity
VS , and we assume that he can change his direction α
instantaneously. The complete dynamics of the swimmer in
the river is given by[

dxs
dys

]
=

[
1− ay2 + VS cos(α)

VS sin(α)

]
ds+

[
σx 0
0 σy

]
dWs,

(10)
where Ws is a two-dimensional Brownian motion, and α ∈
]− π, π] is the direction of the swimmer with respect to the
x axis and plays the role of the controller for the swimmer.

B. Reach-Avoid formulation

Obviously, the probability of the swimmer’s “success”
starting from some initial position in the navigation region
depends on starting point (x, y). As shown in §III, this
probability can be characterized as the level set of a value
function, and by Theorem 4.8 this value function is the
discontinuous viscosity solution of a certain differential
equation on the navigation region with particular lateral and
terminal boundary conditions. The differential operator L in
Theorem 4.8 can be analytically calculated in this case as
follows:

sup
u∈U
LuΦ(t, x, y) = sup

α∈[−π,π]

(
∂tΦ(t, x, y)

+
(
1− ay2 + VS cos(α)

)
∂xΦ(t, x, y)

+ VS sin(α)∂yΦ(t, x, y)

+
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y)

)
.

It can be shown that the controller value maximizing the
above Dynkin operator is

α∗(t, x, y) := arg max
α∈[−π,π]

(
cos(α)∂xΦ(t, x, y)

+ sin(α)∂yΦ(t, x, y)
)

= arctan
(∂yΦ

∂xΦ

)
(t, x, y).

Therefore, the differential operator can be simplified to

sup
u∈U
LuΦ(t, x, y) = ∂tΦ(t, x, y) + (1− ay2)∂xΦ(t, x, y)

+
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y)

+ VS‖∇Φ(t, x, y)‖,

where ∇Φ(t, x, y) :=
[
∂xΦ(t, x, y) ∂yΦ(t, x, y)

]
.

C. Simulation results

For the following numerical simulations we fix the diffu-
sion coefficients σx = 0.5 and σy = 0.2. We investigate three
different scenarios: First, we assume that the river current is
uniform, i.e., a = 0 m−1s−1 in (10). Moreover, we consider
the case that the swimmer velocity is less than the current
flow, e.g., VS = 0.6 ms−1. Based on the above calculations,
Figure 5(a) depicts the value function which is the numerical
solution of the differential operator equation in Theorem 4.8
with the corresponding terminal and lateral conditions. As
expected, since the swimmer’s speed is less than the river
current, if he starts from the beyond the target he has less
chance of reach the island. This scenario is also captured by
the value function shown in Figure 5(a).

(a)
The
first
sce-
nario:
the
swim-
mer’s
speed
is
slower
than
the
river
cur-
rent,
the
cur-
rent
be-
ing
as-
sumed
uni-
form.

(b)
The
sec-
ond
sce-
nario:
the
swim-
mer’s
speed
is
slower
than
the
max-
i-
mum
river
cur-
rent.

(c)
The
third
sce-
nario:
the
swim-
mer
can
swim
faster
than
the
max-
i-
mum
river
cur-
rent.

Fig. 5. The three different scenarios considered in the Zermelo navigation
problem.

Second, we assume that the river current is non-uniform
and decreases with respect to the distance from the middle of
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Fig. 6. The level sets of the value functions for the different scenarios
considered in the Zermelo navigation problem.

the river. This means that the swimmer, even in the case that
his speed is less than the current, has a non-zero probability
of success if he initially swims to the sides of the river
partially against its direction, followed by swimming in the
direction of the current to reaches the target. This scenario
is depicted in Figure 5(b), where a non-uniform river current
a = 0.04 m−1s−1 in (10) is considered.

Third, we consider the case that the swimmer can swim
faster than river current. In this case we expect the swimmer
to succeed with some probability even if he starts from
beyond the target. This scenario is captured in Figure 5(c),
where the reachable set (of course in probabilistic fashion)
covers the entire navigation region of the river except the
region near the waterfall.

In the following we show the level sets of the afore-
mentioned value functions for p = 0.9. To wit, as defined
in §III (and in particular in Proposition 3.2), these level
sets, roughly speaking, correspond to the reachable sets with
probability p = 90% in certain time horizons while the
swimmer is avoiding the waterfall. By definition, as shown
by the following figures, these sets are nested with respect
to the time horizon.

All simulations were obtained using the Level Set Method
Toolbox [29] (version 1.1), with a grid 101×101 in the region
of simulation.

VII. CONCLUDING REMARKS AND FUTURE DIRECTION

In this article we presented a new method to address a class
of stochastic reachability problems with state constraints.
The proposed framework provides a set characterization
of the stochastic reach-avoid set based on discontinuous
viscosity solutions of a second order PDE. In contrast to
earlier approaches, this methodology is not restricted to
almost-sure notions and one can compute the desired set

with any non-zero probability. In future works, we aim to
extend our framework to stochastic differential games.
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