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Abstract— This paper develops methodologies to robustly
destabilize a two-area power system in the case of a cyber
attack in the Automatic Generation Control (AGC). In earlier
work reachability methods were used to establish conditions
under which an attacker can cause undesirable behavior by
interrupting the AGC signals and introducing an appropriate
fake signal. In this paper we investigate how to robustify this
approach to deal with practical situations where the attacker
only has partial information about the parameters of the power
system and the values of its states. We first propose an open loop
procedure, based on Markov Chain Monte Carlo optimization,
to identify an optimal attack signal. Motivated by the fact
that the results are very sensitive to parameter uncertainty, we
develop a systematic algorithm, based on feedback linearization,
to construct a feedback policy that an intruder may use to
disrupt the network. The numerical simulations demonstrate
the effectiveness of the resulting policy, as well as its robustness
with respect to modeling uncertainty and imperfect state
information.

I. INTRODUCTION

The tight coupling between large power systems and
SCADA systems gives rise to security issues [1]–[4]. An
intruder into the IT infrastructure could gain access to various
sensors and control signals, and through manipulating them
disrupt wide areas of the power system. In this paper, two
simulation based methodologies are proposed, that assess the
impact of a cyber attack at the Automatic Generation Control
(AGC) signal, the only automatic closed loop between the
IT and the power system of a control area [5], [6].

We consider a two-area power system and analyze its
behavior in the case where an attacker has gained access
to the AGC signal of one of the two areas and is able
to inject any undesirable input to the system. The task of
identifying the worst attack pattern by evaluating the impact
that it may have in the two area system is translated into
an optimization problem. In earlier work [7], reachability
methods were used to establish conditions under which an
attacker can cause security issues by gaining access of the
AGC signal. In this paper we investigate how to robustify
this approach so as to deal with practical situations where
the attacker has only partial knowledge of the state and the
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parameters of the system. Two different approaches are then
used so as to solve the resulting problem.

The first method is an iterative process based on Markov
Chain Monte Carlo (MCMC) optimization. That way, apart
from coming up with a feasible (in terms of violation the
constraints) attack trajectory, we are also able to cause a more
specific system disturbance by optimizing a cost criterion.
Since it is a randomized procedure even non convex objective
functions can be used. The drawback of this scheme is that
it provides only an open loop solution and hence cannot be
efficiently used in case of model mismatching.

The second method overcomes this difficulty providing
a feedback solution by linearizing the system. In the new
coordinates a linear feedback with constant gain is used
where the gain is optimally selected so as to ensure that
the closed loop system will be unstable. For this purpose a
variant of MCMC is used.

In Section II the physical description and the mathematical
model of the two-area power system is presented, and also
a brief introduction to Monte Carlo optimization methods
is provided. Section III introduces the first approach, based
on an open loop strategy to identify an attack signal, and
provides the corresponding simulation results. In Section
IV a systematic algorithm to construct feedback policy is
proposed. This chapter includes also a short introduction
to feedback linearization and the implementation details of
an extended Luenberger nonlinear observer. In the end of
this section simulation results that validate the robustness
and the efficiency of the proposed scheme are presented.
Finally in Section V we provide some concluding remarks
and directions for future work.

II. SYSTEM DESCRIPTION AND MATHEMATICAL
MODEL

A. Modeling of the Two-Area Power System

Consider the system of Fig. 1, which consists of two
interconnected control areas, each one equipped with its own
AGC, connected by a tie line of reactance X. According
to [8], [9], each area is approximated by an equivalent
generating unit equipped with primary frequency control.
Consider now the case of a cyber attack in the second area.
We assume that the attacker has disabled the AGC in this area
and can instead inject an input u, which acts as a bounded
disturbance to our system.

The model of the two-area power system can be described
by the following set of differential equations (see [7] for
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Fig. 1. Two-Area Power System with AGC
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∆ ḟ1 =
f0

2H1S B1

(
∆Pm,p1 + ∆Pm,AGC1 −

1
Dl1

∆ f1 − PT sin(∆φ + φ0) + P012

)
,

∆ ḟ2 =
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Since we are interested in the impact of unreasonable
changes of the AGC signal, no changes at the actual load
of the areas are considered (∆PLi = 0) in the above model.
Moreover, the scheduled transferred power in the tie line
was not considered to be zero. So the deviation of the power
flow on the tie-line from area 1 to area 2 is described by
∆P12 = PT sin(∆φ+φ0)−P012 , where φ0 is the angle difference
that corresponds to the scheduled transferred power i.e.
P012 = PT sin(φ0).

The numerical data used for the examples are based on
Table I. The generators inertia, Hi, and schedule power, P012 ,
will be determined in the following sections. In the rest of
paper, the model parameters [H1,H2, φ0] are denoted by the
vector w. Having defined the state vector x = [x1 x2 x3 x4]T =

[∆ f1 ∆ f2 ∆φ ∆PAGC1 ]T , the system (1) is described by

ẋ = f (x,w) + g(x,w)u, (2)

where the functions f (x,w) and g(x,w) can be simply
obtained from the model presented in (1).

S Bi f0 Dli S i Cpi TNi

10 GW 50Hz 1
200 MW/Hz 0.002Hz/MW 0.1 30

∆Pmax
AGCi

∆Pmin
AGCi

∆Pmax
pi

∆Pmin
pi

PT Ka
350MW −350MW 75 MW −75 MW 1000 MW 100

TABLE I
Parameter values for the two area power system

B. Safety Considerations

The frequency control outlined in the previous part is vital
to the satisfactory performance of the power system. The
controllers try to keep the frequency to its nominal value
because large deviations could damage the power system
devices. This action may in the end jeopardize the stability of
the whole system and in the worst case lead to load shedding,
generator tripping, and system blackout. In normal operation
frequency deviation should not exceed 1.5Hz. For instance,
maximum acceptable frequency decrease for thermal power
plants is around 1.5Hz and any further decrease will result in
the disconnection of the plant. This lack of generation will
lead to further decrease of the frequency and through similar
cascading actions the whole system may collapse. Hence we
consider the system to be safe when the state trajectories of
(2) lie inside the following safe set of the state space

x1 ∈ [−1.5,+1.5],
x2 ∈ [−1.5,+1.5]. (3)

One of the main challenges is to identify whether there
exists an attack pattern that could lead the system to col-
lapse. In earlier work [7], reachability was used to assess
the impact of the intrusion in the AGC of a two-area
power network. Based on the results of [7], an attacker
could potentially use the theoretically optimal control signal
obtained by the reachability analysis and steer the system
trajectory towards the unsafe state space region. However,
due to numerical limitations, the reachability approach is
not sufficiently robust to state space discretization, making
it difficult to accurately compute the optimal control signal
and efficiently apply it on-line. Therefore, in this paper we
provide two different control approaches, open and closed
loop, to construct a suboptimal attack policy. The former
is based on randomized optimization, whereas the latter is
based on feedback linearization with control gains selected
by Monte Carlo optimization.

C. Optimization Algorithm

In this section we describe a simulation based procedure
to approximate optimizer of a bounded objective function.
Let J : Θ → [0 1] be an objective function, where Θ ⊂ Rn

is a bounded set. Since any bounded optimization criterion
can be scaled to take values in interval [0 1], we can assume
that J takes values in this range.

We consider equilibrium distributions defined by probabil-
ity density functions proportional to [J(θ)+δ]I where I and δ
are two positive parameters. Here δ is an offset which guar-
antees that the equilibrium densities are always positive and



I−1 plays the role of temperature in the sense of simulated
annealing; as I increases the function [J(θ) + δ]I becomes
increasingly peaked around the global maximizers. We use
θk to denote the state of the chain and a conditional density
pθ(·|θk) is the proposal distribution and is chosen by the
user providing that suppJ ⊂

⋃
θ∈suppJ supp pθ(·|θ). The only

requirement for the applicability of this approach is to extract
a random variable θ̄ with conditional distribution pθ(·|θk)
and evaluate J(θ̄) pointwise. The problem of maximizing the
optimization criterion is then reformulated as the problem of
estimating the optimal points from extracted samples concen-
trated around them. These extractions are obtained through
Monte Carlo Markov Chain (MCMC) simulation that relies
on extracting a random variable θ̄ whose distribution has
modes that coincide with the optimizers of J [10].

This algorithm is called Metropolis-Hastings which is as-
sociated with the objective function [J(θ)+δ]I and conditional
distribution pθ(·|θk). The algorithm produces a Markov chain
θk as follows:

Algorithm 1 Metropolis-Hastings
1: Set k = 0 and θk ∈ Θ.
2: Extract a new state θ̄ ∼ pθ(·|θk).
3: Compute the acceptance probability rate

ρ = min
{
1,

pθ(θk |θ̄)
pθ(θ̄|θk)

[J(θ̄) + δ]Ik

[J(θ) + δ]Ik

}
4: Set

θk+1 =

{
θ̄ with probability ρ
θk with probability 1 − ρ

5: Set k = k + 1.

One can show that the Markov chain constructed through
the above algorithm converges to the stationary distribution
proportional to [J(θ) + δ]I [10]. On a continuous domain
the equilibrium distributions are specified by probability
densities [11].

III. OPEN LOOP POLICY

In this method we seek to find an open loop input signal
u(t) that forces the trajectories of (2) to violate the safety
margins. Figure 2 depicts the open loop strategy of the

Fig. 2. Block diagram of open loop policy for the attacker

attacker where w and w0 denote, respectively, the real model
parameters and nominal values w0.

A. Attack signal generated by MCMC optimization

Due to the input affine dynamics (2) and the input bounds,
we restrict the search of u(t) to the class of piecewise

constant input trajectories of the form

u(t) = uκ,
T
N
κ ≤ t <

T
N

(κ + 1) κ = 0, ...,N − 1, (4)

where uκ ∈ {−350, 350}, T denotes the optimization horizon
and T/N is the time discretization step. Therefore, finding
an optimal control strategy for the attacker to violate the fre-
quency constraints (3) is relaxed to a nonlinear optimization
problem over the discrete domain Θ = {−350, 350}N with 2N

variables.
Here we resort to an optimization method based on a

variant of the Metropolis-Hastings algorithm introduced in
Section II-C, with J1 = e

∫ T
0 x2

2dt, Iκ = 5 and δ = 0.

Problem Statement. Determine the decision variables
(u1, · · · , uN) ∈ Θ of (4) to maximize the cost function J1
subject to the system dynamic (2).

B. Simulation Results for the Open Loop Policy
Based on the algorithm described in the Section II-C,

we attempt to obtain a suboptimal policy (4) to maximize
J1. In the first simulation, we assume that the attacker has
perfect knowledge of the power network i.e. w = w0. In the
second part, we consider some parameter mismatching and
investigate how robust the attacker’s policy is under these
parameter uncertainties.

1) Perfect Model: We consider a scenario with equally
sized areas, both with the same inertia, H1 = 5,H2 = 5, and
scheduled power exchange equal to P012 = −500MW through
the tie line. We assume the attacker has full knowledge
of the power network (w = w0) with the nominal model
parameter values w0 = [H1,H2, φ0] = [5, 5,−30◦]. For the
simulations, the optimization horizon T is 40sec and the
number of decision variable N is 40. We performed in total
82306 iterations until the accepted states of the chain were
50000. The ratio between accepted and total states of the
chain is 0.61.
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Fig. 3. (a) Open loop policy, (b) Frequency trajectories for perfect model,
(c) Frequency trajectories for imperfect model with ∆φ0 = 2%, and (d)
Frequency trajectories for imperfect model with ∆H1 = 4%

Fig 3.a depicts an open loop strategy for the attacker,
obtained through the MCMC optimization method. Fig 3.b



depicts the frequency response of the two areas. Clearly, the
impact of the suboptimal attack signal is extremely severe.
The swings of the transferred power on the tie line will
result in triggering the out of step relay. If the system was
not equipped with such a protection scheme, the generators
of the second area would start to trip by the time that the
frequency of that area would exceed the safety margins. The
latter could lead in cascading failures and even in a wide-area
blackout.

2) Model with Parameter Uncertainty: In Fig 3.c and
3.d, we assume that the attacker does not have perfect infor-
mation of the system. Hence, there will be a small parameter
mismatching, for scheduled power P012 = −484.8MW and
inertia time constant H1 = 4.8sec respectively. The parameter
uncertainty for the scheduled power is considered as a small
perturbation in the voltage phase deviation ∆φ0 = 2%,
whereas for the inertia time constant of the first area is
equal to ∆H1 = 4%. It is clear that the open loop strategy
is extremely sensitive to such a model mismatching and
hence the open loop policy does not serve practically as
an efficient solution. Motivated by this, we seek to find a
feedback strategy robust to model mismatching.

IV. FEEDBACK POLICY

In this section, we propose a class of feedback strategy to
derive a suboptimal control input for the attacker to disrupt
the system. The attacker, based on feedback linearization
and the Metropolis-Hastings algorithm, can construct an
attack policy u. Having some output measurements y, the
attacker can build up a nonlinear observer to estimate the
states of the system. Given that the attacker has imperfect
knowledge of the system parameters, let w0 as in the previous
section denote the nominal parameter values. The procedure
of designing the feedback policy is depicted in Figure 4.

Fig. 4. Block diagram that indicates the construction of the feedback attack
policy

A. Feedback Linearization

In this section, we design a feedback control law u
using feedback linearization. The feedback gain can be
optimized by tuning some constant parameters so as to
meet the attacker’s goal. The basic approach of input-output
linearization is simply to differentiate the output function
repeatedly until the input u appears. Considering the input
affine nonlinear system (2) and defining an arbitrary output
y = l(x), the differentiated output can then be rewritten using

the following expression

y = l(x) = L0
f l(x),

dy
dt = L1

f l(x),
...

dρ−1y
dtρ−1 = Lρ−1

f l(x),
dρy
dtρ = Lρf (l(x)) + LgLρ−1

f l(x)u.

where L1
f l(x) = ∂l

∂x f is called the Lie Derivative of l with
respect to f .

Note that since the whole idea of this section is to derive
a feedback policy, the output y = l(x) does not have to
be practically justified. Moreover, due to the saturation of
primary and secondary loop control in (1), the vector field
f (·,w) is not smooth and consequently Li

f l(x) may not be
well defined. However, let assume now that none of the
dynamic saturations is activated and f (·,w) is sufficiently
smooth. The AGC bound will be explicitly taken into account
for the design of the attack signal.

Definition 1: The nonlinear system (2) with output y =

l(x) is said to have relative degree ρ, 1 ≤ ρ ≤ n, in a
region D ⊂ Rn if LgLi−1

f l(x) = 0 for i = 1, 2, · · · , ρ − 1,
and LgLρ−1

f l(x) , 0 for all x ∈ D.
Suppose that the above system has relative degree ρ ≤ n

in D ⊂ Rn, therefore for every x0 ∈ D, a neighborhood N of
x0 and smooth functions, ϕ1(x), . . . , ϕn−ρ(x) exist such that
∂ϕi(x)
∂x g(x) = 0, i = 1, · · · , n − ρ, ∀x ∈ N is satisfied for all

x0 ∈ N, and the map T (x,w)

z = T (x,w) =



ϕ1(x)
...

ϕn−ρ(x)
− − −

l(x)
...

Lρ−1
f l(x)


=

 Φ(x)
− − −

Ψ(x)

 =

 η
−

ξ

 , (5)

is diffeomorphism on N [12], [13]. The input-output lin-
earization technique is based on applying z = T (x,w), and
v = α(x,w) + β(x,w)u, where z = T (x,w) is an admissible
state transformation expressed in (5) and v is the new control
input signal. The functions α(x,w) and β(x,w) are then
expressed as α(x,w) = Lρf l(x), β(x,w) = LgLρ−1

f l(x). Upon
using the linearizing transformation T and the associated
functions α and β, the representation (2) will change to the
normal form as

η̇ = f0(η, ξ),
ξ̇ = Acξ + Bcv,
y = Ccξ,

(6)

where Ac, Bc and Cc are canonical controllability matrices
[14]. This form decomposes the system into a linear sub-
system described by ξ and an internal nonlinear subsystem
described by η. Here our main goal is to push the system
trajectories to the unsafe region in contrast to the usual
stabilization idea. Hence, unstable behavior of the internal



dynamics would be a benefit for our objectives, i.e. destabi-
lize the system.

Having transformed (2) into (6) and applied linear feed-
back control v = Kξ, the feedback law is

u(x,w,K) =
Kξ − α(x,w)
β(x,w)

=
K[0 I]T (x,w) − α(x,w)

β(x,w)
,

where K is an 1 × ρ constant vector. To consider the input
bound and saturation limit of AGC, |u(x,w,K)| ≤ U0, we
pass the control law through a saturation operator as

ū(x,w,K) = sat(u(x,w,K),U0)

=

{
u(x,w,K) |u(x,w,K)| ≤ U0,

U0 sign(u(x,w,K)) |u(x,w,K)| > U0.
(7)

According to the frequency constraint (3), define the
cost function J2 = max(‖x1‖∞, ‖x2‖∞). Regarding the new
formulation, we restrict the class of input signals from any
bounded measurable functions to the class of all functions
generated through the feedback control law (7). The gain
K = [k1, k2, · · · , kρ]T is a tuning coefficient vector which
will be determined so as to maximize J2. Note that J2 is
different from J1 since with that setting better results were
achieved for each case.

Problem Statement. For the nonlinear system (2),
determine the coefficient K in (7) to maximize J2.

Hence, similar to the previous approach, finding an
optimal feedback policy for the attacker to violate the
frequency constraints is relaxed to a nonlinear optimization
problem.

As mentioned earlier, in most real systems the attacker
does not have full access to the states in order to apply the
proposed feedback policy (7). Therefore, in the next section
we introduce a nonlinear observer that allows the attacker to
estimate the states of the system.

B. Nonlinear Observer

The method adopted in this paper is a nonlinear ob-
server based on extended Luenberger observer proposed
by [15], [16], which is a relaxation of the normal form
observer developed by [17]. Following [18], consider a multi-
output system with y = h(x) = [h1(x) h2(x) . . . hp(x)]T

where the state x is governed by the differential equa-
tions (2). Then the observability map is given by q(x) =

[h1(x) . . . Lp1−1
f h1(x) . . . hp(x) . . . Lpp−1

f hp(x)]T , where
p1 + . . . + pp = n. That way the system is de-
composed into p decoupled subsystems, each one with
dimension pi. The system is said to be locally ob-
servable if the observability matrix Q(x) =

∂q(x)
∂x =

[dh1(x) . . . dLp1−1
f h1(x) . . . dhp(x) . . . dLpp−1

f hp(x)]T , has
full rank, i.e. rank(Q) = n.

The dynamics of the observer are then described by

˙̂x = f (x̂,w) + g(x̂,w)u + L(x̂,w)(h(x) − h(x̂)). (8)

As stated in [19], L(x̂,w) = [a1(ad f )◦s1 . . . ap(ad f )◦sp]B−1,
and B =

∂h(x̂)
∂x̂ [adp1−1

f ◦ s1 . . . adpp−1
f ◦ sp]. In the above

equations adi
f s := [ f , adi−1

f s] for i ≥ 0 is the ith Lie Bracket,
with ad0

f s := s and [ f , s] = ∂s
∂x f − ∂ f

∂x s. The vector si is the
ki vector of Q(x)−1, where ki =

∑i
j=1 p j. ai(λ) = ci0 + ci1λ +

. . . + cipi−1λ
pi−1 + λpi is the characteristic polynomial of the

i subsystem, and the coefficients ci j are design parameters
that are selected so as to place the eigenvalues at the desired
position.

According to (2), (8) and (7), the system can be repre-
sented by[
ẋ
˙̂x

]
=

[
f (x,w) + g(x,w)ū(x̂,w0,K)

f (x̂,w0) + g(x̂,w0)ū(x̂,w0,K) + L(x̂,w0)(h(x) − h(x̂))

]
,

(9)
where the controller gain K has been tuned as described in
the previous section based on the nominal model parameters
w0 so as to maximize J2.

C. Simulation Results for the Feedback Policy

Similar to Section III-B, we consider an attack intrusion in
the second area with the same nominal model parameters w0.
It is then reasonable to assume that the intruder has access
to the measurements ∆ f2 and ∆φ. Therefore, the output
measurement vector is y = h(x) = [x2 x3]T . Considering
p1 = 1 and p2 = 3, one can check that the observability
matrix Q is indeed full rank. Similarly, if we choose y =

h(x) = [x1 x1]T , and l(x) = x3, we have ρ = 2.
In the first part we assume that the attacker has perfect

knowledge of the model of the power network and constructs
a feedback policy based on a state estimate generated by
the nonlinear observer of Section IV-B. In the second part,
we consider some parameter mismatching and investigate
how robust the attacker’s policy is under these parameter
uncertainties.
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Fig. 5. (a) Closed loop policy, (b) Frequency trajectories for perfect model,
(c) Frequency trajectories for imperfect model with ∆φ0 = 2%, and (d)
Frequency trajectories for imperfect model with ∆H1 = 4%

1) Perfect Model: Here we assume that w = w0 and apply
the Metropolis-Hastings algorithm to obtain the coefficient K
in (7) to maximize J2. Fig 5.a depicts the feedback policy



of the attacker and Fig 5.b shows the frequency trajectory
of each area and proves the severe impact that a suboptimal
attack signal could have on the system. For the simulations,
T was chosen to be 40sec and K was the number of decision
variables. Since the objective function is absolutely positive,
we can select δ = 0. The parameter Ik = 5 is fixed and the
set Θ is set to [−100, 100]2.

2) Model with Parameter Uncertainty: Similar to the
open loop simulations (Fig 5.c, 5.d), we assume that the
attacker has an imperfect knowledge of the system by intro-
ducing P012 = −484.8MW and H1 = 4.8sec. This parameter
mismatching is associated to ∆φ0 = 2% and ∆H1 = 4%. Note
that these deviations are just considered for the actual model,
whereas the power system model and observer dynamics that
the attacker uses to generate his policy are still designed
based on w0. In contrast to the open loop strategy, the
feedback policy is considerably robust to such a model
mismatching and consequently it provides an effective and
practical solution to construct an attack signal.

3) Robustness Observation and Level of Frequency Vio-
lation: To investigate how robust the generated policy is, we
now fix the coefficient K obtained for the nominal case with
w0 and apply the policy (7) to a larger domain of parameter
uncertainties.

Fig. 6. Unsafe region and level of frequency violation

In Figure 6, the x, y and z axes depict the first and second
inertia time constant Hi, and the voltage phase displacement
of the tie line ∆φ respectively. Each point in this region
represents a certain set of dynamic parameters for the two-
area power network. Having considered the frequency vi-
olation threshold equal to 1.3Hz and applied the nominal
feedback policy on the second area for different parameters
w, one can observe that the region is separated to two parts,
namely ”Safe” and ”Unsafe”. It is of interest that the power
network is more vulnerable to AGC intrusion if the area with
smaller inertia time constant is attacked. This is reasonable
also from a physical point of view, since the other area
will need more time to react to the attack signal. Moreover,
roughly speaking, the inertia size determines the ”Safe” and
”Unsafe” regions whereas the level of frequency violation
(different color regions in Fig 6) is highly dependent on the
scheduled power.

V. CONCLUSION

In this paper, two approaches on designing an optimal
control strategy to destabilize a two-area power system in
the case of a cyber attack in AGC are developed. The first
approach, is an open loop policy based on Markov Chain
Monte Carlo optimization. However, via simulations it was
demonstrated that this policy is extremely sensitive to param-
eter uncertainty. Motivated by this a systematic algorithm
based on feedback linearization was developed so as to
construct an attack signal. The proposed scheme was tested
numerically and its robustness to parameter mismatching
were verified from the obtained simulation results. Current
work concentrates on the implementation of the proposed
scheme on a realistic, IEEE benchmark network.
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