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LQG Control with Minimum Directed Information:
Semidefinite Programming Approach
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Abstract—We consider a discrete-time Linear-Quadratic-
Gaussian (LQG) control problem in which Massey’s directed
information from the observed output of the plant to the control
input is minimized while required control performance is attain-
able. This problem arises in several different contexts, including
joint encoder and controller design for data-rate minimization in
networked control systems. We show that the optimal control law
is a Linear-Gaussian randomized policy. We also identify the state
space realization of the optimal policy, which can be synthesized
by an efficient algorithm based on semidefinite programming.
Our structural result indicates that the filter-controller separation
principle from the LQG control theory, and the sensor-filter
separation principle from the zero-delay rate-distortion theory
for Gauss-Markov sources hold simultaneously in the considered
problem. A connection to the data-rate theorem for mean-square
stability by Nair & Evans is also established.

Index Terms—Control over communications; Kalman filtering;
LMIs; Stochastic optimal control; Communication Networks

I. INTRODUCTION

There is a fundamental trade-off between the best achievable
control performance and the data-rate at which plant informa-
tion is fed back to the controller. Studies of such a trade-off
hinge upon analytical tools developed at the interface between
traditional feedback control theory and Shannon’s information
theory. Although the interface field has been significantly
expanded by the surged research activities on networked
control systems (NCS) over the last two decades [1]–[5], many
important questions concerning the rate-performance trade-off
studies are yet to be answered.

A central research topic in the NCS literature has been
the stabilizability of a linear dynamical system using a rate-
constrained feedback [6]–[9]. The critical data-rate below
which stability cannot be attained by any feedback law has
been extensively studied in various NCS setups. As pointed
out by [10], many results including [6]–[9] share the same
conclusion that this critical data-rate is characterized by an
intrinsic property of the open-loop system known as topolog-
ical entropy, which is determined by the unstable open-loop
poles. This result holds irrespective of different definitions of
the “data-rate” considered in these papers. For instance, in
[9] the data-rate is defined as the log-cardinality of channel
alphabet, while in [8], it is the frequency of the use of noiseless
binary channel.
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As a natural next step, the rate-performance trade-offs are of
great interest from both theoretical and practical perspectives.
The trade-off between Linear-Quadratic-Gaussian (LQG) per-
formance and the required data-rate has attracted attention in
the literature [11]–[24]. Generalized interpretations of the clas-
sical Bode’s integral also provide fundamental performance
limitations of closed-loop systems in the information-theoretic
terms [25]–[28]. However, the rate-performance trade-off anal-
ysis introduces additional challenges that were not present
through the lens of the stability analysis. First, it is largely un-
known whether different definitions of the data-rate considered
in the literature listed above lead to different conclusions. This
issue is less visible in the stability analysis, since the critical
data-rate for stability turns out to be invariant across several
different definitions of the data-rate [6]–[9]. Second, for many
operationally meaningful definitions of the data-rate consid-
ered in the literature, computation of the rate-performance
trade-off function involves intractable optimization problems
(e.g., dynamic programming [21] and iterative algorithm [18]),
and trade-off achieving controller/encoder policies are difficult
to obtain. This is not only inconvenient in practice, but also
makes theoretical analyses difficult.

In this paper, we study the information-theoretic require-
ments for LQG control using the notion of directed informa-
tion [29]–[31]. In particular, we define the rate-performance
trade-off function as the minimal directed information from the
observed output of the plant to the control input, optimized
over the space of causal decision policies that achieve the
desired level of LQG control performance. Among many
possible definitions of the “data-rate” as mentioned earlier,
we focus on directed information for the following reasons.

First, directed information (or related quantity known as
transfer entropy) is a widely used causality measure in science
and engineering [32]–[34]. Applications include communica-
tion theory (e.g., the analysis of channels with feedback), port-
folio theory, neuroscience, social science, macroeconomics,
statistical mechanics, and potentially more. Since it is natural
to measure the “data-rate” in networked control systems by
a causality measure from the observation to action, directed
information is a natural option.

Second, it is recently reported by Silva et al. [22]–[24] that
directed information has an important operational meaning in
a practical NCS setup. Starting from an LQG control problem
over a noiseless binary channel with prefix-free codewords,
they show that the directed information obtained by solving
the aforementioned optimization problem provides a tight
lower bound for the minimum data-rate (defined operationally)
required to achieve the desired level of control performance.
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A. Contributions of this paper

The central question in this paper is the characterization of
the most “data-frugal” LQG controller that minimizes directed
information of interest among all decision policies achieving
a given LQG control performance. In this paper, we make the
following contributions.

(i) In a general setting including MIMO, time-varying, and
partially observable plants, we identify the structure of
an optimal decision policy in a state space model.

(ii) Based on the above structural result, we further develop a
tractable optimization-based framework to synthesize the
optimal decision policy.

(iii) In the stationary setting with MIMO plants, we show how
our proposed computational framework, as a special case,
recovers the existing data-rate theorem for mean-square
stability.

Concerning (i), we start with general time-varying, MIMO,
and fully observable plants. We emphasize that the optimal
decision policy in this context involves two important tasks:
(1) the sensing task, indicating which state information of the
plant should be dynamically measured with what precision,
and (2) the control task, synthesizing an appropriate control
action given available sensing information. To this end, we
first show that the optimal policy that minimizes directed
information from the state to the control sequences under the
LQG control performance constraint is linear. In this vein, we
illustrate that the optimal policy can be realized by a three-
stage architecture comprising linear sensor with additive Gaus-
sian noise, Kalman filter, and certainty equivalence controller
(Theorem 1). We then show how this result can be extended
to partially observed plants (Theorem 3).

Regarding (ii), we provide a semidefinite programming
(SDP) framework characterizing the optimal policy proposed
in step (i) (Sections IV and VII). As a result, we obtain
a computationally accessible form of the considered rate-
performance trade-off functions.

Finally, as highlighted in (iii), we analyze the horizon-
tal asymptote of the considered rate-performance trade-off
function for MIMO time-invariant plants (Theorem 2), which
coincides with the critical data-rate identified by Nair and
Evans [9] (Corollary 1).

B. Organization of this paper

The rest of this paper is organized as follows. After some
notational remarks, the problem considered in this paper is
formally introduced in Section II, and its operational interpre-
tation is provided in Section III. Main results are summarized
in Section IV, where connections to the existing results are
also explained in detail. Section V contains a simple numerical
example, and the derivation of the main results is presented
in Section VI. The results are extended to partially observable
plants in Section VII. We conclude in Section VIII.

C. Notational remarks

Throughout this paper, random variables are denoted by
lower case bold symbols such as x. Calligraphic symbols such
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Fig. 1. LQG control of fully observable plant with minimum directed
information.

as X are used to denote sets, and x ∈ X is an element.
We denote by xt a sequence x1, x2, ..., xt, and xt and X t
are understood similarly. All random variables in this paper
are Euclidean valued, and is measurable with respect to the
usual topology. A probability distribution of x is demoted by
Px. A Gaussian distribution with mean µ and covariance Σ is
denoted by N (µ,Σ). The relative entropy of Q from P is a
non-negative quantity defined by

D(P‖Q) ,

{∫
log2

dP(x)
dQ(x)dP(x) if P� Q

+∞ otherwise

where P � Q means that P is absolutely continuous with
respect to Q, and dP(x)

dQ(x) denotes the Radon-Nikodym deriva-
tive. The mutual information between x and y is defined by
I(x;y) , D(Px,y‖Px⊗Py), where Px,y and Px⊗Py are joint
and product probability measures respectively. The entropy of
a discrete random variable x with probability mass function
P(xi) is defined by H(x) , −

∑
i P(xi) log2 P(xi).

II. PROBLEM FORMULATION

Consider a linear time-varying stochastic plant

xt+1 = Atxt +Btut + wt, t = 1, · · · , T, (1)

where xt is an Rn-valued state of the plant, and ut
is the control input. We assume that initial state x1 ∼
N (0, P1|0), P1|0 � 0 and noise process wt ∼ N (0,Wt),
Wt � 0, t = 1, ..., T are mutually independent.

The design objective is to synthesize a decision policy that
“consumes” the least amount of information among all policies
achieving the required LQG control performance (Figure 1).
Specifically, let Γ be the space of decision policies, i.e., the
space of sequences of Borel measurable stochastic kernels [35]

P(uT ||xT ) , {P(ut|xt, ut−1)}t=1,...,T .

A decision policy γ ∈ Γ is evaluated by two criteria:

(i) the LQG control cost

J(xT+1,uT ) ,
∑T

t=1
E
(
‖xt+1‖2Qt+ ‖ut‖

2
Rt

)
; (2)

(ii) and directed information

I(xT → uT ) ,
∑T

t=1
I(xt;ut|ut−1). (3)

The right hand side of (2) and (3) are evaluated with respect to
the joint probability measure induced by the state space model
(1) and a decision policy γ. In what follows, we often write
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(2) and (3) as Jγ and Iγ to indicate their dependency on γ.
The main problem studied in this paper is formulated as

DIT (D) , min
γ∈Γ

Iγ(xT → uT ) (4a)

s.t. Jγ(xT+1,uT ) ≤ D, (4b)

where D > 0 is the desired LQG control performance.
Directed information (3) can be interpreted as the informa-

tion flow from the state random variable xt to the control
random variable ut. The following equality called conserva-
tion of information [36] shows a connection between directed
information and the standard mutual information:

I(xT ;uT ) = I(xT → uT ) + I(uT−1
+ → xT ).

Here, the sequence uT−1
+ = (0,u1,u2, · · · ,uT−1) denotes an

index-shifted version of uT . Intuitively, this equality shows
that the standard mutual information can be written as a sum
of two directed information terms corresponding to feedback
(through decision policy) and feedforward (through plant)
information flows. Thus (4) is interpreted as the minimum
information that must “flow” through the decision policy to
achieve the LQG control performance D.

We also consider time-invariant and infinite-horizon LQG
control problems. Consider a time-invariant plant

xt+1 = Axt +But + wt, t ∈ N (5)

with wt ∼ N (0,W ), and assume Qt = Q and Rt = R
for t ∈ N. We also assume (A,B) is stabilizable, (A,Q) is
detectable, and R � 0. Let Γ be the space of Borel-measurable
stochastic kernels P(u∞||x∞). The problem of interest is

DI(D) , min
γ∈Γ

lim sup
T→∞

1
T Iγ(xT → uT ) (6a)

s.t. lim sup
T→∞

1
T Jγ(xT+1,uT ) ≤ D. (6b)

More general problem formulations with partially observable
plants will be discussed in Section VII.

III. OPERATIONAL MEANING

In this section, we revisit a networked LQG control prob-
lem considered in [22]–[24]. Here we consider time-invariant
MIMO plants while [22]–[24] focus on SISO plants. For
simplicity, we consider fully observable plants only. Consider
a feedback control system in Figure 2, where the state infor-
mation is encoded by the “sensor + encoder” block and is
transmitted to the controller over a noiseless binary channel.
For each t = 1, ..., T , let At ⊂ {0, 1, 00, 01, 10, 11, 000, · · · }
be a set of uniquely decodable variable-length codewords [37,
Ch.5]. Assume that codewords are generated by a causal policy

P(a∞||x∞) , {P(at|xt, at−1)}t=1,2,....

The “decoder + controller” block interprets codewords and
computes control input according to a causal policy

P(u∞||a∞) , {P(ut|at, ut−1)}t=1,2,....

The length of a codeword at ∈ At is denoted by
a random variable lt. Let Γ′ be the space of triplets
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Fig. 2. LQG control over noiseless binary channel.

{P(a∞||x∞),A∞,P(u∞||a∞)}. Introduce a quadratic control
cost

J(xT+1,uT ) ,
∑T

t=1
E
(
‖xt+1‖2Q+ ‖ut‖2R

)
with Q � 0 and R � 0. We are interested in a design γ′ ∈ Γ′

that minimizes data-rate among those attaining control cost
smaller than D. Formally, the problem is formulated as

R(D) , min
γ′∈Γ′

lim sup
T→+∞

1

T

∑T

t=1
E(lt) (7a)

s.t. lim sup
T→+∞

1

T
J(xT+1,uT ) ≤ D. (7b)

It is difficult to evaluate R(D) directly since (7) is a highly
complex optimization problem. Nevertheless, Silva et al. [22]
observed that R(D) is closely related to DI(D) defined by (6).
The following result is due to [38].

DI(D) ≤ R(D) < DI(D) +
r

2
log

4πe

12
+ 1 ∀D > 0. (8)

Here, r is an integer no greater than the state space dimension
of the plant.1 The following inequality plays an important role
to prove (8).

Lemma 1: Consider a control system (1) with a decision
policy γ′ ∈ Γ′. Then, we have an inequality

I(xT → uT ) ≤ I(xT → aT ‖uT−1
+ ),

where the right hand side is Kramer’s notation
[31] for causally conditioned directed information∑T
t=1 I(xt;at|at−1,ut−1).

Proof: See Appendix A.

Lemma 1 can be thought of as a generalization of the standard
data-processing inequality. It is different from the directed
data-processing inequality in [6, Lemma 4.8.1] since the
source xt is affected by feedback. See also [39] for relevant
inequalities involving directed information.

Now, the first inequality in (8) can be directly verified as

I(xT → uT ) (9a)

≤
∑T

t=1
I(xt;at|at−1,ut−1) (9b)

=
∑T

t=1

(
H(at|at−1,ut−1)−H(at|xt,at−1,ut−1)

)
(9c)

≤
∑T

t=1
H(at|at−1,ut−1) (9d)

≤
∑T

t=1
H(at) (9e)

≤
∑T

t=1
E(lt). (9f)

1More precisely, r is the rank of the optimal signal-to-noise ratio matrix
obtained by semidefinite programming, as will be clear in Section IV-B.
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Fig. 3. Structure of optimal control policy for problem (4). Matrices Ct, Vt,
Lt and Kt are determined by SDP-based algorithm in Section IV.

Lemma 1 is used in the first step. The last step follows from the
fact that expected codeword length of of uniquely decodable
codes is lower bounded by its entropy [37, Theorem 5.3.1].

Proving the second inequality in (8) requires a key tech-
nique proposed in [22] involving the construction of dithered
uniform quantizer [40]. Detailed discussion is available in [38].

IV. MAIN RESULT

In this section we present the main results of this article. For
the clarity of the presentation, this section is only devoted to a
setting with full state measurements and shows how the main
objective of control synthesis can be achieved by a three-step
procedure. We shall later discuss in Section VII in regard to
an extension to partial observable systems.

A. Time-varying plants

We show that the optimal solution to (4) can be realized by
the following three data-processing components as shown in
Figure 3.
1. A linear sensor mechanism

yt = Ctxt + vt, vt ∼ N (0, Vt), Vt � 0 (10)

where vt, t = 1, ..., T are mutually independent.
2. The Kalman filter computing x̂t = E(xt|yt,ut−1).
3. The certainty equivalence controller ut = Ktx̂t.

The role of the mechanism (10) is noteworthy. Recall
that in the current problem setting in Figure 1, the state
vector xt is directly observable by the decision policy. The
purpose of introducing an artificial mechanism (10) is to
reduce data “consumed” by the decision policy while desired
control performance is still attainable. Intuitively, the optimal
mechanism (10) acquires just enough information from the
state vector xt for control purposes and discards less important
information. Since the importance of information is a task-
dependent notion, such a mechanism is designed jointly with
other components in 2 and 3. The mechanism (10) may
not be a physical sensor mechanism, but rather be a mere
computational procedure. For this reason, we also call (10)
a “virtual sensor.” A virtual sensor can also be viewed as
an instantaneous lossy data-compressor in the context of
networked LQG control [22], [38]. As shown in [38], the
knowledge of the optimal virtual sensor can be used to design
a dithered uniform quantizer with desired performance.

We also claim that data-processing components in 1-3 can
be synthesized by a tractable computational procedure based
on SDP summarized below. The procedure is sequential,
starting from controller design, followed by virtual sensor
design and Kalman filter design.

• Step 1 (Controller design) Determine feedback control gains
Kt via the backward Riccati recursion:

St =

{
Qt if t = T

Qt + Φt+1 if t = 1, · · · , T − 1
(11a)

Φt = A>t (St − StBt(B>t StBt +Rt)
−1B>t St)At (11b)

Kt = −(B>t StBt +Rt)
−1B>t StAt (11c)

Θt = K>t (B>t StBt +Rt)Kt. (11d)

Positive semidefinite matrices Θt will be used in Step 2.

• Step 2 (Virtual sensor design) Let {Pt|t,Πt}Tt=1 be the
optimal solution to a max-det problem:

min
{Pt|t,Πt}Tt=1

1

2

∑T

t=1
log det Π−1

t + c1 (12a)

s.t.
∑T

t=1
Tr(ΘtPt|t) + c2 ≤ D (12b)

Πt � 0, (12c)
P1|1 � P1|0, PT |T = ΠT , (12d)

Pt+1|t+1 � AtPt|tA>t +Wt, (12e)[
Pt|t−Πt Pt|tA

>
t

AtPt|t AtPt|tA
>
t +Wt

]
�0. (12f)

The constraint (12c) is imposed for every t = 1, · · · , T ,
while (12e) and (12f) are for every t = 1, · · · , T − 1.
Constants c1 and c2 are given by

c1 = 1
2 log detP1|0 + 1

2

∑T−1

t=1
log detWt

c2 = Tr(N1P1|0) +
∑T

t=1
Tr(WtSt).

Define signal-to-noise ratio matrices {SNRt}Tt=1 by

SNRt , P−1
t|t − P

−1
t|t−1, t = 1, · · · , T

Pt|t−1 , At−1Pt−1|t−1A
>
t−1 +Wt−1, t = 2, · · · , T

and set rt = rank(SNRt). Apply the singular value decom-
position to find Ct ∈ Rrt×nt and Vt ∈ Srt++ such that

SNRt = C>t V
−1
t Ct, t = 1, · · · , T. (13)

If rt = 0, Ct and Vt are null (zero dimensional) matrices.

• Step 3 (Filter design) Determine the Kalman gains by

Lt = Pt|t−1C
>
t (CtPt|t−1C

>
t + Vt)

−1. (14)

Construct a Kalman filter by

x̂t = x̂t|t−1 + Lt(yt − Ctx̂t|t−1) (15a)
x̂t+1|t = Atx̂t +Btut. (15b)

If rt = 0, Lt is a null matrix and (15a) becomes x̂t = x̂t|t−1.

An optimization problem (12) plays a key role in the
proposed synthesis. Intuitively, (12) “schedules” the optimal
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sequence of covariance matrices {Pt|t}Tt=1 in such a way
that there exists a virtual sensor mechanism to realize it and
the required data-rate is minimized. The virtual sensor and
the Kalman filter are designed later to realize the scheduled
covariance.

Theorem 1: An optimal policy for the problem (4) exists
if and only if the max-det problem (12) is feasible, and the
optimal value of (4) coincides with the optimal value of (12).
If the optimal value of (4) is finite, an optimal policy can
be realized by a virtual sensor, Kalman filter, and a certainty
equivalence controller as shown in Figure 3. Moreover, each
of these components can be constructed by an SDP-based
algorithm summarized in Steps 1-3.
Proof: See Section VI.

Remark 1: If Wt is singular for some t, we suggest to
factorize it as Wt = FtF

>
t and use the following alternative

max-det problem instead of (12):

min
{Pt|t,∆t}Tt=1

1

2

∑T

t=1
log det ∆−1

t + c1 (16a)

s.t.
∑T

t=1
Tr(ΘtPt|t) + c2 ≤ D (16b)

∆t � 0, (16c)
P1|1 � P1|0, PT |T = ∆T , (16d)

Pt+1|t+1 � AtPt|tA>t + FtF
>
t , (16e)[

I−∆t F>t
Ft AtPt|tA

>
t +FtF

>
t

]
�0. (16f)

The constraint (16c) is imposed for every t = 1, · · · , T , while
(16e) and (16f) are for every t = 1, · · · , T − 1. Constants c1
and c2 are given by c1 = 1

2 log detP1|0 +
∑T−1
t=1 log |detAt|

and c2 = Tr(N1P1|0) +
∑T
t=1 Tr(F>t StFt). This formulation

requires that At, t = 1, ..., T − 1 are non-singular matrices.
Derivation is omitted for brevity.

B. Time-invariant plants
For time-invariant and infinite-horizon problems (5) and

(6), it can be shown that there exists an optimal policy with
the same three-stage structure as in Figure 4 in which all
components are time-invariant. The optimal policy can be
explicitly constructed by the following numerical procedure:

• Step 1 (Controller design) Find the unique stabilizing solu-
tion to an algebraic Riccati equation

A>SA−S−A>SB(B>SB+R)−1B>SA+Q = 0 (17)

and determine the optimal feedback control gain by K =
−(B>SB +R)−1B>SA. Set Θ = K>(B>SB +R)K.

• Step 2 (Virtual sensor design) Choose P and Π as the
solution to a max-det problem:

min
P,Π

1

2
log det Π−1 +

1

2
log detW (18a)

s.t. Tr(ΘP ) + Tr(WS) ≤ D, (18b)
Π � 0, (18c)

P � APA> +W, (18d)[
P −Π PA>

AP APA> +W

]
�0. (18e)

Define P̃ , APA> +W , SNR , P−1 − P̃−1 and set r =
rank(SNR). Choose a virtual sensor yt = Cxt + vt, vt ∼
N (0, V ) with matrices C ∈ Rr×n and V ∈ Sr++ such that
C>V −1C = SNR.

• Step 3 (Filter design) Design a time-invariant Kalman filter

x̂t = x̂t|t−1 + L(zt − Cx̂t|t−1)

x̂t+1|t = Ax̂t +But

with L = P̃C>(CP̃C> + V )−1.

Theorem 2: An optimal policy for (6) exists if and only if a
max-det problem (18) is feasible, and the optimal value of (6)
coincides with that of (18). Moreover, an optimal policy can
be realized by a virtual sensor, Kalman filter, and a certainty
equivalence controller as shown in Figure 4, all of which are
time-invariant. Each of these components can be constructed
by Steps 1-3.
Proof: See Appendix E.

Theorem 2 shows a noteworthy fact that DI(D) defined by (6)
admits a single-letter characterization, i.e., it can be evaluated
by solving a finite-dimensional optimization problem (18).

C. Data-rate theorem for mean-square stabilization
Theorem 2 shows that DI(D) defined by (6) admits a

semidefinite representation (18). By analyzing the structure
of the optimization problem (18), one can obtain a closed-
from expression of the quantity limD→+∞ DI(D). Notice that
this quantity can be interpreted as the minimum data-rate
(measured in directed information) required for mean-square
stabilization. The next corollary shows a connection between
our study in this paper and the data-rate theorem by Nair and
Evans [9].

Corollary 1: Denote by σ+(A) the set of eigenvalues λi of
A such that |λi| ≥ 1 counted with multiplicity. Then,

lim
D→+∞

DI(D) =
∑

λi∈σ+(A)

log |λi|. (19)

Proof: See Appendix F.

Corollary 1 indicates that the minimal data-rate for mean-
square stabilization does not depend on the noise property W .
This result is consistent with the observation in [9]. However,
as is clear from the semidefinite representation (18), minimal
data-rate to achieve control performance Jt ≤ D depends on
W when D is finite.

Corollary 1 has a further implication that there exists a
quantized LQG control scheme implementable over a noiseless
binary channel such that data-rate is arbitrarily close to (19)
and the closed-loop systems in stabilized in the mean-square
sense. See [41] for details.

Mean-square stabilizability of linear systems by quantized
feedback with Markovian packet losses is considered in [42],
where a necessary and sufficient condition in terms of nominal
data-rate and packet dropping probability is obtained. Al-
though directed information is not used in [42], it would be an
interesting future work to compute limT→∞

1
T I(XT → UT )

under the stabilization scheme proposed there and study how
it is compared to the right hand side of (19).
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Fig. 4. Sensor-filter-controller separation principle: integration of the sensor-
filter and filter-controller separation principles.

D. Connections to existing results

We first note that the “sensor-filter-controller” structure
identified by Theorem 1 is not a simple consequence of
the filter-controller separation principle in the standard LQG
control theory [43]. Unlike the standard framework in which
a sensor mechanism (10) is given a priori, in (4) we design a
sensor mechanism jointly with other components. Intuitively,
a sensor mechanism in our context plays a role to reduce
information flow from yt to xt. The proposed sensor design
algorithm has already appeared in [44]. In this paper we
strengthen the result by showing that the designed linear sensor
turns out to be optimal among all nonlinear (Borel measurable)
sensor mechanisms.

Information-theoretic fundamental limitations of feedback
control are derived in [25]–[28] via the “Bode-like” integrals.
However, the connection between [25]–[28] and our problem
(4) is not straightforward, and the structural result shown
in Figure 3 does not appear in [25]–[28]. Also, we note
that our problem formulation (4) is different from networked
LQG control problem over Gaussian channels [12], [14], [45]
where a model of Gaussian channel is given a priori. In such
problems, linearity of the optimal policy is already reported
[4, Ch.10,11].

It should be noted that problem (4) is closely related to the
sequential rate-distortion problem (also called zero-delay or
non-anticipative rate-distortion problem) [6], [46], [47]. In the
Gaussian sequential rate-distortion problem where the plant
(1) is an uncontrolled system (i.e., ut = 0), it can be shown
that the optimal policy can be realized by a two-stage “sensor-
filter” structure [46]. However, the same result is not known
for the case in which feedback controllers must be designed
simultaneously. Relevant papers towards this direction in-
clude [47]–[49], where Csiszár’s formulation of rate-distortion
functions [50] is extended to the non-anticipative regime. In
particular, [49] considers non-anticipative rate-distortion prob-
lems with feedback. In [51] and [52], LQG control problems
with information-theoretic costs similar to (4) are considered.
However, the optimization problem considered in these papers
are not equivalent to (4), and the structural result shown in
Figure 4 does not appear.

In a very recent paper [24, Lemma 3.1], it is independently
reported that the optimal policy for (4) can be realized by
an additive white Gaussian noise (AWGN) channel and linear
filters. While this result is compatible to ours, it is noteworthy
that the proof technique there is different from ours and is
based on fundamental inequalities for directed information
obtained in [39]. In comparison to [24], we additionally prove
that the optimal control policy can be realized by a state space
model with a three-stage structure (shown in Figure 3, 4),

which appears to be a new observation to the best of our
knowledge.

The SDP-based algorithms to solve (4), (6) and (38) are
newly developed in this paper, using the techniques presented
in [46] and [44]. Due to the lack of analytical expression of the
optimal policy (especially for MIMO and time-varying plants),
the use of optimization-based algorithms seems critical. In
[53], an iterative water-filling algorithm is proposed for a
highly relevant problem. In this paper, the main algorithmic
tool is SDP, which allows us to generalize the results in [22]–
[24] to MIMO and time-varying settings.

V. EXAMPLE

In this section, we consider a simple numerical example to
demonstrate the SDP-based control design presented in Sec-
tion IV-B. Consider a time-invariant plant (5) with randomly
generated matrices

A=

 0.12 0.63 −0.52 0.33
0.26 −1.28 1.57 1.13
−1.77 −0.30 0.77 0.25
−0.16 0.20 −0.58 0.56

,W =

 4.94 −0.10 1.29 0.35
5.55 2.07 0.31

2.02 1.43
sym. 3.10



B =

 0.66 −0.58 0.03 −0.20
2.61 −0.91 0.87 −0.07
−0.64 −1.12 −0.19 0.61
0.93 0.58 −1.18 −1.21

,
and the optimization problem (6) with Q = I and R = I . By
solving (18) with various D, we obtain the rate-performance
trade-off curve shown in Figure 5 (top left). The vertical
asymptote D = Tr(WS) corresponds to the best achievable
control performance when unrestricted amount of informa-
tion about the state is available. This corresponds to the
performance of the state-feedback linear-quadratic regulator
(LQR). The horizontal asymptote

∑
λi∈σ+(A) log |λi| = 1.169

[bits/sample] is the minimum data-rate to achieve mean-
square stability. Figure 5 (bottom left) shows the rank of
SNR matrices as a function of D. Since SNR is computed
numerically by an SDP solver with some finite numerical
precision, rank(SNR) is obtained by truncating singular values
smaller than 0.1% of the maximum singular value. Figure 5
(right) shows selected singular values at D = 33, 40 and 80.
Observe the phase transition (rank dropping) phenomena. The
optimal dimension of the sensor output changes as D changes.

Specifically, the minimum data-rate to achieve control per-
formance D = 33 is found to be 6.133 [bits/sample]. The
optimal sensor mechanism yt = Cxt + vt,vt ∼ N (0, V ) to
achieve this performance is given by

C=

[
−0.864 0.258 −0.205 −0.382
−0.469 −0.329 0.662 0.483
−0.130 0.332 −0.502 0.780

]
, V =

[
0.029 0 0
0 0.208 0
0 0 1.435

]
.

If D = 40, required data-rate is 3.266 [bits/sample] and the
optimal sensor is given by

C=

[
−0.886 0.241 −0.170 −0.359
−0.431 −0.350 0.647 0.523

]
, V =

[
0.208 0
0 2.413

]
.

Similarly, minimum data-rate to achieve D = 80 is 1.602
[bits/sample], and this is achieved by a sensor mechanism with

C=[ −0.876 0.271 −0.169 −0.362 ], V = 1.775 .
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Fig. 5. (Top left) Data rate DI(D) [bits/step] required to achieve control
performance D. (Bottom left) Rank of SNR(D), evaluated after truncating
singular values smaller than 0.1% of the maximum singular value. (Right)
Singular values of SNR(D) evaluated at D = 33, 40 and 80. Truncated
singular values are shown in block bars. An SDP solver SDPT3 [54] with
YALMIP [55] interface is used.
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Fig. 6. Closed-loop performances of the controllers designed for D = 33
(top), D = 40 (middle), and D = 80 (bottom). Trajectories of the second
component of the state vector and their Kalman estimates are shown.

Figure 6 shows the closed-loop responses of the state trajec-
tories simulated in each scenario.

VI. DERIVATION OF MAIN RESULT

This section is devoted to prove Theorem 1. We first define
subsets Γ0, Γ1, and Γ2 of the policy space Γ as follows.
Γ0 : The space of policies with three-stage separation struc-

ture explained in Section IV.
Γ1 : The space of linear sensors without memory followed

by linear deterministic feedback control. Namely, a policy
P(uT ‖xT ) in Γ1 can be expressed as a composition of

yt = Ctxt + vt, vt ∼ N (0, Vt) (20)

and ut = lt(y
t), where Ct ∈ Rrt×nt , rt is some

nonnegative integer, Vt � 0, and lt(·) is a linear map.
Γ2 : The space of linear policies without state memory.

Namely, a policy P(uT ‖xT ) in Γ2 can be expressed as

ut = Mtxt +Ntu
t−1 + gt, gt ∼ N (0, Gt) (21)

with some matrices Mt, Nt, and Gt � 0.

A. Proof outline

To prove Theorem 1, we establish a chain of inequalities:

inf
γ∈Γ:Jγ≤D

Iγ(xT → uT ) (22a)

≥ inf
γ∈Γ:Jγ≤D

∑T

t=1
Iγ(xt;ut|ut−1) (22b)

≥ inf
γ∈Γ2:Jγ≤D

∑T

t=1
Iγ(xt;ut|ut−1) (22c)

≥ inf
γ∈Γ1:Jγ≤D

∑T

t=1
Iγ(xt;yt|yt−1) (22d)

≥ inf
γ∈Γ0:Jγ≤D

∑T

t=1
Iγ(xt;yt|yt−1) (22e)

≥ inf
γ∈Γ0:Jγ≤D

Iγ(xT → uT ). (22f)

Since Γ0 ⊂ Γ, clearly (22a) ≤ (22f). Thus, showing the
above chain of inequalities proves that all quantities in (22) are
equal. This observation implies that the search for an optimal
solution to our main problem (4) can be restricted to the class
Γ0 without loss of performance. The first inequality (22b)
is immediate from the definition of directed information. We
prove inequalities (22c), (22d), (22e) and (22f) in subsequent
subsections VI-B, VI-C, VI-D and VI-E. It will follow from
the proof of inequality (22f) that an optimal solution to (22e),
if exists, is also an optimal solution to (22f). In particular,
this implies that an optimal solution to the original problem
(22a), if exists, can be found by solving a simplified problem
(22e). This observation establishes the sensor-filter-controller
separation principle depicted in Figure 3.

Then, we focus on solving problem (22e) in Subsection
VI-F. We show that problem (22e) can be reformulated as an
optimization problem in terms of SNRt , C>t V

−1
t Ct, which

is further converted to an SDP problem.

B. Proof of inequality (22c)

We will show that for every γP = {P(ut|xt, ut−1)}Tt=1 ∈ Γ
that attains a finite objective value in (22b), there exists γQ =
{Q(ut|xt, ut−1)}Tt=1 ∈ Γ2 such that JP = JQ and∑T

t=1
IP(xt;ut|ut−1) ≥

∑T

t=1
IQ(xt;ut|ut−1)

where subscripts of I and J indicate probability measures on
which these quantities are evaluated. Without loss of gener-
ality, we assume P(xT+1, uT ) has zero-mean. Otherwise, we
can consider an alternative policy γP̃ = {P̃(ut|xt, ut−1)}Tt=1,
where

P̃(ut|xt, ut−1),P(ut+EP(ut)|xt+EP(xt), ut−1+EP(ut−1))

which generates a zero-mean joint distribution P̃(xT+1, uT ).
We have IP̃ = IP in view of the translation invariance of
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mutual information, and JP̃ ≤ JP due to the fact that the cost
function is quadratic.

First, we consider a zero-mean, jointly Gaussian probability
measure G(xT+1, uT ) having the same covariance matrix as
P(xT+1, uT ).

Lemma 2: The following inequality holds whenever the left
hand side is finite.∑T

t=1
IP(xt;ut|ut−1) ≥

∑T

t=1
IG(xt;ut|ut−1) (23)

Proof: See Appendix C.

Next, we are going to construct a policy γQ =
{Q(ut|xt, ut−1)}Tt=1 ∈ Γ2 using a jointly Gaussian measure
G(xT+1, uT ). Let Etxt + Ftu

t−1 be the least mean-square
error estimate of ut given (xt,u

t−1) in G(xT+1, uT ), and
let Vt be the resulting estimation error covariance matrix.
Define a stochastic kernel Q(ut|xt, ut−1) by Q(ut|xt, ut−1) =
N (Etxt + Ftu

t−1, Vt). By construction, Q(ut|xt, ut−1) sat-
isfies2

dG(xt, u
t) = dQ(ut|xt, ut−1)dG(xt, u

t−1). (24)

Define Q(xT+1, uT ) recursively by

dQ(xt, ut−1) = dP(xt|xt−1, ut−1)dQ(xt−1, ut−1) (25)

dQ(xt, ut) = dQ(ut|xt, ut−1)dQ(xt, ut−1) (26)

where P(xt|xt−1, ut−1) is a stochastic kernel defined by (1).
The following identity holds between two Gaussian measures
G(xT+1, uT ) and Q(xT+1, uT ).

Lemma 3: G(xt+1, u
t) = Q(xt+1, u

t) ∀t = 1, · · · , T.
Proof: See Appendix D.

We are now ready to prove (22c). First, replacing a policy
γP with a new policy γQ does not change the LQG control
cost.

JγP =

∫ (
‖xt+1‖2Qt + ‖ut‖2Rt

)
dP(xt+1, u

t)

=

∫ (
‖xt+1‖2Qt + ‖ut‖2Rt

)
dG(xt+1, u

t) (27a)

=

∫ (
‖xt+1‖2Qt + ‖ut‖2Rt

)
dQ(xt+1, u

t) (27b)

=JγQ .

Equality (27a) holds since P and G have the same second
order moments. Step (27b) follows from Lemma 3. Second,
replacing γP with γQ does not increase the information cost.∑T

t=1
IP(xt;ut|ut−1) ≥

∑T

t=1
IG(xt;ut|ut−1) (28a)

=
∑T

t=1
IQ(xt;ut|ut−1). (28b)

The inequality (28a) is due to Lemma 2. In (28b),
IG(xt;ut|ut−1) = IQ(xt;ut|ut−1) holds for every t =
1, · · · , T because of Lemma 3.

2Equation dP(x, y) = dP(y|x)dP(x) is a short-hand notation for P(BX×
BY ) =

∫
BX

P(BY |x)dP(x) ∀BX ∈ BX , BY ∈ BY .

C. Proof of inequality (22d)

Given a policy γ2 ∈ Γ2, we are going to construct a policy
γ1 ∈ Γ1 such that Jγ1 = Jγ2 and

Iγ2(xt;ut|ut−1) = Iγ1(xt;yt|yt−1) (29)

for every t = 1, · · · , T . Let γ2 ∈ Γ2 be given by

ut = Mtxt +Ntu
t−1 + gt, gt ∼ N (0, Gt).

Define ỹt ,Mtxt +gt. If we write Ntut−1 = Nt,t−1ut−1 +
· · ·+Nt,1u1, it can be seen that ut and ỹt are related by an
invertible linear map

ỹ1...
...
ỹt

 =


I 0 · · · 0

−N2,1 I
...

...
. . . 0

−Nt,1 · · · −Nt,t−1 I




u1...
...
ut

 (30)

for every t = 1, · · · , T . Hence,

I(xt;ut|ut−1) = I(xt; ỹt +Ntu
t−1|ỹt−1,ut−1)

= I(xt; ỹt|ỹt−1). (31)

Let Gt = E>t VtEt be the (thin) singular value decomposition.
Since we assume (31) is bounded, we must have

Im(Mt) ⊆ Im(Gt) = Im(E>t ). (32)

Otherwise, the component of ut in Im(Gt)
⊥ depends de-

terministically on xt and (31) is unbounded. Now, define
yt , Etỹt = EtMtxt + Etgt, gt ∼ N (0, Gt). Then, we
have

E>t yt = E>t EtMtxt + E>t Etgt, gt ∼ N (0, Gt)

= Mtxt + gt = ỹt.

In the second line, we used the facts that E>t EtMt = Mt

and E>t Etgt = gt under (32). Thus, we have yt = Etỹt and
ỹt = E>t yt. This implies that yt and ỹt contain statistically
equivalent information, and that

I(xt; ỹt|ỹt−1) = I(xt;yt|yt−1). (33)

Also, since ut depends linearly on ỹt by (30), there exists a
linear map lt such that

ut = lt(y
t). (34)

Setting Ct , EtMt, construct a policy γ1 ∈ Γ1 using yt ,
Etỹt = Ctxt +vt with vt ∼ N (0, Vt) and a linear map (34).
Since joint distribution P(xT+1, uT ) is the same under γ1 and
γ2, we have Jγ1 = Jγ2 . From (31) and (33), we also have
(29).

D. Proof of inequality (22e)

Notice that for every γ ∈ Γ1, conditional mutual in-
formation can be written in terms of Pt|t = Cov(xt −
E(xt|yt,ut−1)):

Iγ(xt;yt|yt−1)

=Iγ(xt;yt|yt−1,ut−1)

=h(xt|yt−1,ut−1)− h(xt|yt,ut−1)

= 1
2 log det(At−1Pt−1|t−1A

>
t−1+Wt−1)− 1

2 log detPt|t. (35)



9

Moreover, for every fixed sensor equation (20), covariance
matrices are determined by the Kalman filtering formula

Pt|t = ((At−1Pt−1|t−1A
>
t−1+Wt−1)−1 + SNRt)

−1.

Hence, conditional mutual information (35) depends only on
the choice of {SNRt}Tt=1, and is independent of the choice
of a linear map lt. On the other hand, the LQG control cost
Jγ depends on the choice of lt. In particular, for every fixed
linear sensor (20), it follows from the standard filter-controller
separation principle in the LQG control theory that the optimal
lt that minimizes Jγ is a composition of a Kalman filter x̂t =
E(xt|yt,ut−1) and a certainty equivalence controller ut =
Ktx̂t. This implies that an optimal solution γ can always be
found in the class Γ0, establishing the inequality in (22e).

For a fixed linear sensor (20), an explicit form of the Kalman
filter and the certainty equivalence controller is given by Steps
1 and 3 in Section IV. Derivation is standard and hence is
omitted. It is also possible to write Jγ explicitly as

Jγ =Tr(N1P1|0) +
∑T

t=1

(
Tr(WtSt)+Tr(ΘtPt|t)

)
. (36)

Derivation of (36) is also straightforward, and can be found
in [44, Lemma 1].

E. Proof of inequality (22f)

For every fixed γ ∈ Γ0, by Lemma 1 we have

Iγ(xT→uT ) ≤ Iγ(xT → yT ‖uT−1
+ )

=
∑T

t=1
Iγ(xt;yt|yt−1,ut−1)

=
∑T

t=1
Iγ(xt;yt|yt−1)

=
∑T

t=1
Iγ(xt;yt|yt−1)+Iγ(xt−1;yt|xt,yt−1)

=
∑T

t=1
Iγ(xt;yt|yt−1).

The last equality holds since, by construction, yt = Ctxt+vt
is conditionally independent of xt−1 given xt.

F. SDP formulation of problem (22e)

Invoking (35) and (36) hold for every γ ∈ Γ0, problem
(22e) can be written as an optimization problem in terms of
{Pt|t,SNRt}Tt=1 as

min

T∑
t=2

(
1

2
log det(At−1Pt−1|t−1A

>
t−1+Wt)−

1

2
log detPt|t

)
+

1

2
log detP1|0 −

1

2
log detP1|1

s.t. Tr(N1P1|0)+
∑T

t=1

(
Tr(WtSt)+Tr(ΘtPt|t)

)
≤ D,

P−1
1|1 =P−1

1|0 + SNR1,

P−1
t|t =(At−1Pt−1|t−1A

>
t−1+Wt−1)−1+SNRt, t = 2, ..., T

SNRt � 0, t = 1, ..., T.

This problem can be reformulated as a max-det problem as
follows. First, variables {SNRt}Tt=1 are eliminated from the

Plant 
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡 

𝑦𝑦𝑡𝑡= 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑔𝑔𝑡𝑡 

Decision Policy 
ℙ(𝑢𝑢𝑡𝑡|𝑦𝑦𝑡𝑡,𝑢𝑢𝑡𝑡−1) 

𝑦𝑦𝑡𝑡 𝑢𝑢𝑡𝑡 

Fig. 7. LQG control of partially observable plant with minimum directed
information.

problem by replacing the last three constraints with equivalent
conditions

0 ≺ P1|1 � P1|0,

0 ≺ Pt|t � At−1Pt−1|t−1A
>
t−1 +Wt−1, t = 2, ..., T.

Second, the following equalities can be used for t = 1, ..., T−
1 to rewrite the objective function:

1

2
log det(AtPt|tA

>
t +Wt)−

1

2
log detPt|t

=
1

2
log det(P−1

t|t +A>t W
−1
t At) +

1

2
log detWt (37a)

= inf
Πt

1

2
log det Π−1

t +
1

2
log detWt (37b)

s.t. 0 ≺ Πt � (P−1
t|t +A>t W

−1
t At)

−1

= inf
Πt

1

2
log det Π−1

t +
1

2
log detWt (37c)

s.t. Πt � 0,

[
Pt|t −Πt Pt|tA

>
t

AtPt|t AtPt|tA
>
t +Wt

]
� 0.

In step (37a), we have used the matrix determinant theorem
[56, Theorem 18.1.1]. An additional variable Πt is introduced
in step (37b). The constraint is rewritten using the matrix
inversion lemma in (37c).

These two techniques allow us to formulate the above
problem as a max-det problem (12). Thus, we have shown
that Steps 1-3 in Section IV provide an optimal solution to
problem (22d), which is also an optimal solution to the original
problem (22a).

VII. EXTENSION TO PARTIALLY OBSERVABLE PLANTS

So far, our focus has been on a control system in Figure 1 in
which the decision policy has an access to the state xt of the
plant. Often in practice, the state of the plant is only partially
observable through a given physical sensor mechanism. We
now consider an extension of the control synthesis to partially
observable plants.

Consider a control system in Figure 7 where a state space
model (1) and a sensor model yt = Htxt + gt are given. We
assume that initial state x1 ∼ N (0, P1|0), P1|0 � 0 and noise
processes wt ∼ N (0,Wt), Wt � 0, gt ∼ N (0, Gt), Gt � 0,
t = 1, ..., T are mutually independent. We also assume that
Ht has full row rank for t = 1, ..., T . Consider the following
problem:

min
γ∈Γ

Iγ(yT → uT ) (38a)

s.t. Jγ(xT+1,uT ) ≤ D. (38b)
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Plant 
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑡𝑡 𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡  

𝑦𝑦𝑡𝑡= 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑔𝑔𝑡𝑡  

+ 

𝑢𝑢𝑡𝑡 

𝐶𝐶𝑡𝑡 

𝐶𝐶𝑡𝑡 

𝐿𝐿𝑡𝑡 

1
𝑧𝑧 

𝐴𝐴𝑡𝑡 

𝐵𝐵𝑡𝑡  

𝐾𝐾𝑡𝑡 

𝑥𝑥�𝑡𝑡|𝑡𝑡−1 𝑥𝑥�𝑡𝑡+1|𝑡𝑡 

one-step 
delay 

 

𝑣𝑣𝑡𝑡~ 
𝑁𝑁(0,𝑉𝑉𝑡𝑡) 

𝑥𝑥�𝑡𝑡 𝑧𝑧𝑡𝑡 

𝑦𝑦𝑡𝑡  

+ 

+ 

− 

+ 

+ 

+ 
+ 

𝐻𝐻𝑡𝑡 

𝐿𝐿�𝑡𝑡 

1
𝑧𝑧 

𝐴𝐴𝑡𝑡 

𝐵𝐵𝑡𝑡  
𝑥𝑥�𝑡𝑡|𝑡𝑡−1 𝑥𝑥�𝑡𝑡+1|𝑡𝑡 

one-step 
delay 

 
𝑥𝑥�𝑡𝑡 + 

+ 

+ 
+ 

Pre-Kalman Filter 
𝑥𝑥�𝑡𝑡 = 𝔼𝔼(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡 ,𝑢𝑢𝑡𝑡−1) 

Virtual Sensor 
𝑧𝑧𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑥𝑥�𝑡𝑡 + 𝑣𝑣𝑡𝑡 

Post-Kalman Filter 
𝑥𝑥�𝑡𝑡 = 𝔼𝔼(𝑥𝑥�𝑡𝑡|𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡−1) 

Controller 
𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑥𝑥�𝑡𝑡 

+ 

− 

Fig. 8. Structure of optimal control policy for problem (38). Matrices L̃t, Ct, Vt, Lt and Kt are determined by SDP-based algorithm in Section VII.

where Γ is the space of policies γ = P(uT ‖yT ). Relevant
optimization problems to (38) are considered in [22]–[24] in
the context of Section III. Based on the control synthesis de-
veloped so far for fully observable plants, it can be shown that
the optimal control policy can be realized by the architecture
shown in Figure 8. Moreover, as in the fully observable cases,
the optimal control policy can be synthesized by an SDP-based
algorithm.

Step 1. (Pre-Kalman filter design) Design a Kalman filter

x̃t = x̃t|t−1 + L̃t(yt −Htx̃t|t−1) (39a)
x̃t+1|t = Atx̃t +Btut, x̃1|0 = 0 (39b)

where the Kalman gains {L̃t}T+1
t=1 are computed by

L̃t = P̃t|t−1H
>
t (HtP̃t|t−1H

>
t +Gt)

−1

P̃t|t = (I − L̃tHt)P̃t|t−1

P̃t+1|t = AtP̃t|tA
>
t +Wt.

Matrices Ψt = L̃t+1(Ht+1P̃t+1|tH
>
t+1 + Gt+1)L̃>t+1 will be

used in Step 3.
Step 2. (Controller design) Determine feedback control

gains Kt via the backward Riccati recursion:

St =

{
Qt if t = T

Qt +Nt+1 if t = 1, · · · , T − 1
(40a)

Mt = B>t StBt +Rt (40b)

Nt = A>t (St − StBtM−1
t B>t St)At (40c)

Kt = −M−1
t B>t StAt (40d)

Θt = K>t MtKt (40e)

Positive semidefinite matrices Θt will be used in Step 3.
Step 3. (Virtual sensor design) Solve a max-det problem

with respect to {Pt|t,Πt}Tt=1:

min
1

2

∑T

t=1
log det Π−1

t + c1 (41a)

s.t.
∑T

t=1
Tr(ΘtPt|t) + c2 ≤ D (41b)

Πt � 0, (41c)
P1|1 � P1|0, PT |T = ΠT , (41d)

Pt+1|t+1 � AtPt|tA>t + Ψt, (41e)[
Pt|t−Πt Pt|tA

>
t

AtPt|t AtPt|tA
>
t + Ψt

]
�0. (41f)

The constraint (41c) is imposed for every t = 1, · · · , T , while
(41e) and (41f) are for every t = 1, · · · , T − 1. Constants c1
and c2 are given by

c1 =
1

2
log detP1|0 +

1

2

∑T−1

t=1
log det Ψt

c2 = Tr(N1P1|0) +
∑T

t=1
Tr(ΨtSt).

If Ψt is singular for some t, consider an alternative max-det
problem suggested in Remark 1. Set rt = rank(P−1

t|t −P
−1
t|t−1),

where

Pt|t−1 , At−1Pt−1|t−1A
>
t−1 +Wt−1, t = 2, · · · , T.

Choose matrices Ct ∈ Rrt×nt and Vt ∈ Srt++ so that

C>t V
−1
t Ct = P−1

t|t − P
−1
t|t−1 (42)

for t = 1, · · · , T . In case of rt = 0, Ct and Vt are considered
to be null (zero dimensional) matrices.

Step 4. (Post-Kalman filter design) Design a Kalman filter

x̂t = x̂t|t−1 + L̂t(zt − Ctx̂t|t−1) (43a)
x̂t+1|t = Atx̂t +Btut. (43b)

where Kalman gains L̂t are computed by

L̂t = Pt|t−1C
>
t (CtPt|t−1C

>
t + Vt)

−1. (44)

If rt = 0, Lt is a null matrix and (43a) is simply replaced by
x̂t = x̂t|t−1.

Theorem 3: An optimal policy for the problem (38) exists
if and only if the max-det problem (41) is feasible, and the
optimal value of (38) coincides with the optimal value of (41).
If the optimal value of (38) is finite, an optimal policy can
be realized by an interconnection of a pre-Kalman filter, a
virtual sensor, post-Kalman filter, and a certainty equivalence
controller as shown in Figure 8. Moreover, each of these
components can be constructed by an SDP-based algorithm
summarized in Steps 1-4 above.
Proof: See Appendix G.

VIII. CONCLUSION

In this paper, we considered an optimal control problem
in which directed information from the observed output of
the plant to the control input is minimized subject to the
constraint that the control policy achieves the desired LQG
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control performance. When the state of the plant is directly
observable, the optimal control policy can be realized by
a three-stage structure comprised of (1) linear sensor with
additive Gaussian noise, (2) Kalman filter, and (3) certainty
equivalence controller. An extension to partially observable
plants was also discussed. In both cases, the optimal policy is
synthesized by an efficient numerical algorithm based on SDP.

APPENDIX

A. Data-processing inequality for directed information

Lemma 1 is shown as follows. Notice that the following
chain of equalities hold for every t = 1, · · · , T .

I(xt;at|at−1,ut−1)− I(xt;ut|ut−1)

=I(xt;at,ut|at−1,ut−1)− I(xt;ut|ut−1) (45a)

=I(xt;at|ut)− I(xt;at−1|ut−1) (45b)

=I(xt;at|ut)− I(xt−1;at−1|ut−1)

− I(xt;a
t−1|xt−1,ut−1) (45c)

=I(xt;at|ut)− I(xt−1;at−1|ut−1). (45d)

When t = 1, the above identity is understood to mean
I(x1;a1) − I(x1;u1) = I(x1;a1|u1) which clearly holds
as x1–a1–u1 form a Markov chain. Equation (45a) holds
because I(xt;at,ut|at−1,ut−1) = I(xt;at|at−1,ut−1) +
I(xt;ut|at,ut−1) and the second term is zero since xt–
(at,ut−1)–ut form a Markov chain. Equation (45b) is ob-
tained by applying the chain rule for mutual information in
two different ways:

I(xt;at,ut|ut−1)

= I(xt;at−1|ut−1) + I(xt;at,ut|at−1,ut−1)

= I(xt;ut|ut−1) + I(xt;at|ut).

The chain rule is applied again in step (45c). Finally, (45d)
follows as at−1–(xt−1,ut−1)–xt form a Markov chain.

Now, the desired inequality can be verified by computing
the right hand side minus the left hand side as∑T

t=1

[
I(xt;at|at−1,ut−1)− I(xt;ut|ut−1)

]
=
∑T

t=1

[
I(xt;at|ut)− I(xt−1;at−1|ut−1)

]
(46a)

=I(xT ;aT |uT ) ≥ 0. (46b)

In step (46a), the identity (45) is used. The telescoping sum
(46a) cancels all but the final term (46b).

B. Some basic lemmas for probability measures

Lemma 4: Let Px,y be a joint probability measure on
(X ×Y,BX ⊗BY). Let Px and Py be the marginal probability
measures, Px⊗Py be the product measure, and Px|y be a Borel
measurable stochastic kernel such that

Px,y(BX ×BY ) =

∫
BY

Px|y(BX |y)Py(dy) (47)

for every BX ∈ BX and BY ∈ BY . If Px,y � Px ⊗ Py, then
Px|y � Px,Py − a.e., and

dPx,y

d(Px ⊗ Py)
=

dPx|y

dPx
,Py − a.e..

Proof: Suppose Px,y � Px⊗Py, and let f(x, y) =
dPx,y

d(Px⊗Py)

be the Radon-Nikodym derivative. For every BX ∈ BX and
BY ∈ BY , we have

P(BX ×BY ) =

∫
BX×BY

f(x, y)d(Px ⊗ Py)(x, y)

=

∫
BY

[∫
BX

f(x, y)dPx(x)

]
dPy(y) (48)

The first line is by definition of the Radon-Nikodym derivative.
The second equality holds due to the Fubini’s theorem [57],
since clearly f ∈ L1(Px ⊗ Py). Comparing (47) and (48), we
have

Px|y(BX |y) =

∫
BX

f(x, y)dPx(x),Py − a.e.. (49)

It follows from (49) that Px(BX) = 0 ⇒ Px|y(BX |y) = 0

holds Py−a.e.. Also, (49) implies f(x, y) =
dPx|y
dPx

,Py−a.e..

Lemma 5: Let Px,y,z be a zero-mean Borel probability
measure on X × Y × Z , where X , Y , and Z are Euclidean
spaces. Suppose Px,y,z has a covariance matrix Σx,y,z , and
there exists a matrix L such that z − Ly is independent of
x and y on Px,y,z. (This implies x–y–z form a Markov
chain on Px,y,z.) Let Gx,y,z be a zero-mean, jointly Gaussian
probability measure with the same covariance matrix Σx,y,z .
Then x–y–z form a Markov chain on Gx,y,z.
Proof: See [58, Lemma 3.2].

Lemma 6: Let x be an (Rn,BRn)-valued zero mean random
variable with covariance Σx � 0. Define an (Rm,BRm)-valued
random variable y by y = Ax+v where A is a matrix and v ∼
N (0,Σv) is a random variable independent of x. Let (xG,yG)
be zero-mean, jointly Gaussian random variables, and suppose
that (x,y) and (xG,yG) have the same covariance matrix.
Then yG can be written as yG = AxG+v with v ∼ N (0,Σv)
independent of xG.
Proof: Observe

cov
[

x
y

]
=

[
Σx ΣxA

>

AΣx AΣxA
> + Σv

]
. (50)

Since it must be that xG ∼ N (0,Σx), introducing a matrix
R with full column rank such that Σx = RR>, xG can be
written as xG = RzG with zG ∼ N (0, I). Since (xG,yG) are
jointly Gaussian, there exists a matrix Ā such that

yG = ĀxG + v, v ∼ N (0, Σ̄v) (51)

where v̄ is independent of xG. Thus

cov
[

xG
yG

]
=

[
Σx ΣxĀ

>

ĀΣx ĀΣxĀ
> + Σ̄v

]
. (52)

By comparing (50) and (52), it can be seen that Ā = A + S
with S satisfying SR = 0, and Σ̄v = Σv . Then from (51),

yG = (A+ S)xG + v

= (A+ S)RzG + v

= ARzG + v

= AxG + v, v ∼ N (0,Σv).
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Lemma 7: Let Px,y be a zero-mean joint probability
measure on (X × Y,BX ⊗ BY), X = Rn, Y = Rm, with a
covariance matrix Σx,y . Let Gx,y be a zero-mean Gaussian
joint probability measure with the same covariance matrix
Σx,y . If there exists a subset Cy ⊆ Rm with Py(Cy) > 0
such that Px|y admits density for every y ∈ Cy , then Gx|y
admits density for every y ∈ supp(Gy).
Proof: Suppose Px,y(x, y) and Gx,y(x, y) share a covariance
matrix

Σx,y =

[
Σxx Σxy
Σyx Σyy

]
� 0.

Since Gx,y is a zero-mean Gaussian distribution, we know

Gx|y ∼ N (x̂(y),Σe) ∀y ∈ Y (53)

with x̂(y) = ΣxyΣ†yyy, Σe = Σxx − ΣxyΣ†yyΣyx, where Σ†yy
is the Moore–Penrose pseudoinverse of Σyy. To show con-
trapositive, assume that there exists y ∈ supp(Gy) such that
Gx|y(x|y) does not admit a density. From (53), this means that
Σe is a singular matrix. For every y ∈ Y , define a covariance
matrix M(y) ,

∫
X (x− x̂(y))(x− x̂(y))>dPx|y(x|y). Observe

that∫
Y
M(y)dP(y) =

∫
X ,Y

(x− x̂(y))(x− x̂(y))>dP(x, y)

=

∫
X ,Y

(x− x̂(y))(x− x̂(y))>dG(x, y)

=Σe. (54)

Since Σe is singular, there exists a full row rank matrix U ∈
Rr×n, 1 ≤ r ≤ n such that UΣeU

> = 0. From (54), it
follows that UM(y)U> = 0,Py − a.e.. For every y ∈ Y ,
define a subset Cx|y ⊂ Rn by

Cx|y = {x ∈ Rn : U(x− x̂(y)) = 0}.

By construction, Px|y(Cx|y|y) = 1, Py − a.e.. However,
clearly Lx(Cx|y) = 0, where Lx(x) is the Lebesgue measure
on Rn. Thus Px|y � Lx fails to hold Py − a.e.. Hence, Px|y
fails to admit a density Py − a.e.. This is a contradiction
to the assumption that there exists a subset Cy ⊆ Rm with
Py(Cy) > 0 such that Px|y admits density for every y ∈ Cy .

C. Proof of Lemma 2

Lemma 8: Let P be a zero-mean Borel probability measure
on Rn with covariance matrix Σ. Suppose G is a zero-mean
Gaussian probability measure on Rn with the same covariance
matrix Σ. Then supp(P) ⊆ supp(G).
Proof: When Σ is positive definite, the claim is trivial since
supp(G) = Rn. So assume that Σ is singular. Then, there
exists an orthonormal matrix

U =

[
U1

U2

]
with U1 ∈ Rp×n, U2 ∈ R(n−p)×n, p < n

such that UΣU> = diag(Σzz, 0), where Σzz ∈ Rp×p is a
positive definite matrix. Notice that U2x = 0 for every x ∈
supp(G), and U2x 6= 0 for every x ∈ supp(G)c. Suppose

supp(P) ⊆ supp(G) does not hold, i.e., there exists a closed
set C ⊆ supp(G)c such that P(C) > 0. Then

U2ΣU>2 =

∫
U2xx

>U>2 dP(x)

=

∫
supp(G)

U2xx
>U>2 dP(x) +

∫
supp(G)c

U2xx
>U>2 dP(x)

=

∫
supp(G)c

U2xx
>U>2 dP(x) �

∫
C
U2xx

>U>2 dP(x)

Since U2x 6= 0 for every x ∈ C, the last expression is a non-
zero positive semidefinite matrix. However, by construction,
we have U2ΣU>2 = 0. Thus, the above inequality leads to a
contradiction.

Lemma 9: Let P(xT+1, uT ) be a joint probability measure
generated by a policy γP = {P(ut|xt, ut−1)}Tt=1 and (1).
(a) For each t = 1, · · · , T , P(xt+1|ut) and P(xt+1|xt, ut)

are non-degenerate Gaussian probability measures for
every xt and ut.

Moreover, if IP(xt;ut|ut−1) < +∞ for all t = 1, · · · , T , then
the following statements hold.
(b) For every t = 1, · · · , T ,

P(xt|ut)� P(xt|ut−1), P(ut)− a.e., and

IP(xt;ut|ut−1) =

∫
log

(
dP(xt|ut)

dP(xt|ut−1)

)
dP(xt, u

t).

(c) For every t = 1, · · · , T ,

P(xt|xt+1, u
t)� P(xt|ut−1), P(xt+1, u

t)− a.e..

Moreover, the following identity holds P(xt+1, u
t)−a.e.:

dP(xt|ut)
dP(xt|ut−1)

=
dP(xt+1|ut)

dP(xt+1|xt, ut)
dP(xt|xt+1, u

t)

dP(xt|ut−1)
. (55)

Proof:
(a) This is clear since P(xT+1, uT ) is constructed using (1).
(b) By definition of conditional mutual information,

IP(xt;ut|ut−1) < +∞ requires IP(xt;ut|ut−1) <
+∞,Put−1 − a.e.. For a fixed ut−1, IP(xt;ut|ut−1) < +∞
requires Pxt,ut|ut−1 � Pxt|ut−1 ⊗ Put|ut−1 by definition of
mutual information. By Lemma 4, this implies

Pxt|ut � Pxt|ut−1 and (56)
dPxt,ut|ut−1

d(Pxt|ut−1 ⊗ Put|ut−1)
=

dPxt|ut

dPxt|ut−1

(57)

must hold P(ut|ut−1)−a.e.. Since this is the case P(ut−1)−
a.e., we have both (56) and (57) P(ut)− a.e.. Hence

IP(xt;ut|ut−1)

=

∫
log

(
dPxt,ut|ut−1

d(Pxt|ut−1 ⊗ Put|ut−1)

)
dP(xt, u

t)

=

∫
log

(
dPxt|ut

dPxt|ut−1

)
dP(xt, u

t).

(c) Let BXt ∈ BXt , BXt+1
∈ BXt+1

, BUt ∈ BUt be
arbitrary Borel sets. Since both P(xt+1|ut) and P(xt+1|xt, ut)
are non-degenerate Gaussian probability measures, there exists
a continuous map f : Xt ×Xt+1 × U t → (0,+∞) such that
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k(xt, xt+1, u
t) =

dP(xt+1|ut)
dP(xt+1|xt, ut)

, or (58a)∫
BXt+1

k(xt, xt+1, u
t)dP(xt+1|xt, ut) =

∫
BXt+1

dP(xt+1|ut). (58b)

In what follows, we suppress the arguments of k(xt, xt+1, u
t)

and simply write it as k. Next, we express∫
BXt×BXt+1

×BUt
kdP(xt, xt+1, u

t) (59)

in two different ways:

(59) =

∫
BXt+1

×BUt

∫
BXt

kdP(xt|xt+1, u
t)dP(xt+1, u

t); (60a)

(59) =

∫
BXt×BUt

∫
BXt+1

kdP(xt+1|xt, ut)dP(xt, u
t) (60b)

=

∫
BXt×BUt

∫
BXt+1

dP(xt+1|ut)dP(xt, u
t) (60c)

=

∫
BUt

∫
BXt

∫
BXt+1

dP(xt+1|ut)dP(xt|ut)dP(ut) (60d)

=

∫
BXt+1

×BUt

∫
BXt

dP(xt|ut)dP(xt+1, u
t) (60e)

=

∫
BXt+1

×BUt
Pxt|ut(BXt |u

t)dP(xt+1, u
t). (60f)

Notice that (58b) is used in step (60c). Comparing (60a) and
(60f), we have the following identity P(xt+1, u

t)− a.e.:∫
BXt

kdP(xt|xt+1, u
t) = Pxt|ut(BXt |u

t). (61)

Since k(xt, xt+1, u
t) assumes values in (0,+∞), the first

claim follows from (61).
Now, the next equalities hold P(xt+1, u

t) − a.e., which
establishes the second claim.∫

BXt

dP(xt+1|ut)
dP(xt+1|xt, ut)

dP(xt|xt+1, u
t)

dP(xt|ut−1)
dP(xt|ut−1)

=

∫
BXt

k(xt, xt+1, u
t)dP(xt|xt+1, u

t)

= Pxt|ut(BXt |u
t).

The identity (58a) is used in the first step, and (61) is used in
the second step.

Lemma 10: Let P(xT+1, uT ) be a joint probability measure
generated by a policy γP = {P(ut|xt, ut−1)}Tt=1 and (1),
and G(xT+1, uT ) be a zero-mean jointly Gaussian probability
measure having the same covariance as P(xT+1, uT ). For
every t = 1, · · · , T , we have
(a) ut−1–(xt,ut)–xt+1 form a Markov chain in G. Moreover,

for every t = 1, · · · , T , we have

G(xt+1|xt, ut) = G(xt+1|xt, ut)
= P(xt+1|xt, ut)
= P(xt+1|xt, ut)

all of which have a nondegenerate Gaussian distribution
N (Atxt +Btut,Wt).

(b) For each t = 1, · · · , T , G(xt|xt+1, u
t) is a non-

degenerate Gaussian measure for every (xt+1, u
t) ∈

supp(G(xt+1, u
t)).

Proof: (a) Since ut−1–(xt,ut)–xt+1 form a Markov chain
in P, and xt+1 and (xt,ut) are related by a linear map (1),
by Lemma 5 (borrowed from [58]), ut−1–(xt,ut)–xt+1 form
a Markov chain also in G. Notice that P(xt+1|xt, ut) =
P(xt+1|xt, ut) and G(xt+1|xt, ut) = G(xt+1|xt, ut) hold
since ut−1–(xt,ut)–xt+1 form a Markov chain both in P and
G. Since P(xt+1, xt, ut) and G(xt+1, xt, ut) have the same
covariance, by Lemma 6, a linear relationship (1) holds both
in P and G. Thus G(xt+1|xt, ut) = P(xt+1|xt, ut).

(b) From Lemma 9 (c), P(xt|xt+1, u
t) admits a density

P(xt+1u
t)− a.e.. Thus, by Lemma 7, G(xt|xt+1, u

t) admits
density for every (xt+1, u

t) ∈ supp(G(xt+1, u
t)).

If the left hand side of (23) is finite, by Lemma 9, it can
be written as follows.

∑T

t=1
IP(xt;ut|ut−1)

=
∑T

t=1

∫
log

(
dP(xt|ut)

dP(xt|ut−1)

)
dP(xT+1, uT )

=

∫
log

(
T∏
t=1

dP(xt|ut)
dP(xt|ut−1)

)
dP(xT+1, uT )

=

∫
log

(
T∏
t=1

dP(xt|xt+1, u
t)

dP(xt|ut−1)

dP(xt+1|ut)
dP(xt+1|xt, ut)

)
dP(xT+1, uT )

=

∫
log

(
dP(x1|x2, u1)

dP(x1)

)
dP(x2, u1) (62a)

+

T∑
t=2

∫
log

(
dP(xt|xt+1, u

t)

P(xt|xt−1, ut−1)

)
dP(xt+1, ut) (62b)

+

∫
log

(
dP(xT+1|uT )

dP(xT+1|xT , uT )

)
dP(xT+1, uT ) (62c)

The result of Lemma 9 (c) is used in the third equality. In
the final step, the the chain rule for the Radon-Nikodym
derivatives [57, Proposition 3.9] is used multiple times for
telescoping cancellations. We show that each term in (62a),
(62b) and (62c) does not increase by replacing the probability
measure P with G. Here we only show the case for (62b), but
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a similar technique is also applicable to (62a) and (62c).∫
log

(
dP(xt|xt+1, u

t)

dP(xt|xt−1, ut−1)

)
dP(xt+1, ut)

−
∫

log

(
dG(xt|xt+1, u

t)

dG(xt|xt−1, ut−1)

)
dG(xt+1, ut) (63a)

=

∫
log

(
dP(xt|xt+1, u

t)

dP(xt|xt−1, ut−1)

)
dP(xt+1, ut)

−
∫

log

(
dG(xt|xt+1, u

t)

dG(xt|xt−1, ut−1)

)
dP(xt+1, ut) (63b)

=

∫
log

(
dP(xt|xt+1, u

t)

dP(xt|xt−1, ut−1)

dG(xt|xt−1, u
t−1)

dG(xt|xt+1, ut)

)
dP(xt+1, ut)

=

∫
log

(
dP(xt|xt+1, u

t)

dG(xt|xt+1, ut)

)
dP(xt+1, ut) (63c)

=

∫ [∫
log

(
dP(xt|xt+1,u

t)

dG(xt|xt+1,ut)

)
dP(xt|xt+1,u

t)

]
dP(xt+1, u

t)

=

∫
D
(
P(xt|xt+1, u

t)‖G(xt|xt+1, u
t)
)

dP(xt+1, u
t)

≥ 0.

Due to Lemma 10, log dG(xt|xt+1,u
t)

dG(xt|xt−1,ut−1) in (63a) is a quadratic
function of xt+1 and ut everywhere on supp(G(xt+1, ut)).
This is also the case everywhere on supp(P(xt+1, ut))
since it follows from Lemma 8 that supp(P(xt+1, ut)) ⊆
supp(G(xt+1, ut)). Since P and G have the same covariance,
dG(xt+1, ut) can be replaced by dP(xt+1, ut) in (63b). In
(63c), the chain rule of the Radon-Nikodym derivatives is
used invoking that P(xt|xt−1, u

t−1) = G(xt|xt−1, u
t−1) from

Lemma 10 (a).

D. Proof of Lemma 3

Clearly G(x1) = Q(x1) holds. Following an induction
argument, assume that the claim holds for t = k − 1. Then

dQ(xk+1, u
k)

=

∫
Xk

dQ(xk, xk+1, u
k)

=

∫
Xk

dP(xk+1|xk, uk)dQ(xk, u
k) (64a)

=

∫
Xk

dP(xk+1|xk, uk)dQ(uk|xk, uk−1)dQ(xk, u
k−1) (64b)

=

∫
Xk

dP(xk+1|xk, uk)dQ(uk|xk, uk−1)dG(xk, u
k−1) (64c)

=

∫
Xk

dP(xk+1|xk, uk)dG(xk, u
k) (64d)

=

∫
Xk

dG(xk, xk+1, u
k) (64e)

=dG(xk+1, u
k).

The integral signs “
∫
BXk+1

×B
Uk

” in front of each of the above
expressions are omitted for simplicity. Equations (64a) and
(64b) are due to (25) and (26) respectively. In (64c), the
induction assumption G(xk, u

k−1) = Q(xk, u
k−1) is used.

Identity (64d) follows from the definition (24). The result of
Lemma 10(b) was used in (64e).

E. Proof of Theorem 2 (Outline only)
First, it can be shown that the three-stage separation prin-

ciple continues to hold for the infinite horizon problem (6).
The same idea of proof as in Section VI is applicable; for
every policy γP = {P(ut|xt, ut−1)}t∈N, there exists a linear-
Gaussian policy γQ = {Q(ut|xt, ut−1)}t∈N which is at least
as good as γP. Second, the optimal certainty equivalence
controller gain is time-invariant. This is because, since (A,B)
is stabilizable, for every finite t, the solution St of the Riccati
recursion (11) converges to the solution S of (17) as T →∞
[59, Theorem 14.5.3]. Third, the optimal AWGN channel
design problem becomes an SDP over an infinite sequence
{Pt|t,Πt}t∈N similar to (12) in which “

∑T
t=1” is replaced

by “lim supT→∞
1
T

∑T
t=1” and parameters At,Wt, St,Θt are

time-invariant. It is shown in [60] that the optimality of
this SDP over {Pt|t,Πt}t∈N is attained by a time-invariant
sequence Pt|t = P,Πt = Π ∀t ∈ N, where P and Π are the
optimal solution to (18).

F. Proof of Corollary 1
We write v∗(A,W ) , limD→+∞R(D) to indicate its

dependency on A and W . From (18), we have
v∗(A,W ) = (65)

inf
P,Π

1
2 log det Π−1 + 1

2 log detW

s.t. Π�0, P �APA>+W,

[
P−Π PA>

AP APA>+W

]
�0.

Due to the strict feasibility, Slater’s constraint qualification
[61] guarantees that the duality gap is zero. Thus, we have an
alternative representation of v∗(A,W ) using the dual problem
of (65).
v∗(A,W ) = (66)

sup
X,Y

1
2 log detX11− 1

2 Tr(X22+Y )W + 1
2 log detW+ n

2

s.t. A>Y A−Y +X11+X12A+A>X21+A>X22A � 0,

Y � 0, X =

[
X11 X12

X21 X22

]
�0.

The primal problem (65) can be also rewritten as

v∗(A,W )

=

{
inf
P

1
2 log det(APA>+W )− 1

2 log detP

s.t. P � APA> +W,P ∈ Sn++

(67)

=


inf
P,C,V

− 1
2 log det(I−V − 1

2CPC>V −
1
2 )

s.t. P−1 − (APA> +W )−1 = C>V −1C

P ∈ Sn++, V ∈ Sn++, C ∈ Rn×n.

(68)

To see that (67) and (68) are equivalent, note that the feasible
set of P in (67) and (68) are the same. Also

1
2 log det(APA> +W )− 1

2 log detP

= − 1
2 log det(APA> +W )−1 − 1

2 log detP

= − 1
2 log det(P−1 − C>V −1C)− 1

2 log detP

= − 1
2 log det(I − P 1

2C>V −1CP
1
2 )

= − 1
2 log det(I − V − 1

2CPC>V −
1
2 )
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The last step follows from Sylvester’s determinant theorem.
1) Case 1: When all eigenvalues of A satisfy |λi| ≥ 1:

We first show that if all eigenvalues of A are outside the open
unit disc, then v∗(A,W ) =

∑
λi∈σ(A) log |λi|, where σ(A) is

the set of all eigenvalues of A counted with multiplicity. To
see that v∗(A,W ) ≤

∑
λi∈σ(A) log |λi|, note that the value∑

λi∈σ(A) log |λi| + ε with arbitrarily small ε > 0 can be
attained by P = kI in (67) with sufficiently large k > 0. To
see that v∗(A,W ) ≥

∑
λi∈σ(A) log |λi|, note that the value∑

λi∈σ(A) log |λi| is attained by the dual problem (66) with
X = [A − I]>W−1[A − I] and Y = 0.

2) Case 2: When all eigenvalues of A satisfy |λi| < 1: In
this case, we have v∗(A,W ) = 0. The fact that v∗(A,W ) ≥
0 is immediate from the expression (67). To see that
v∗(A,W ) = 0, consider P = P ∗ in (67) where P ∗ � 0 is the
unique solution to the Lyapunov equation P ∗ = AP ∗A>+W .

3) Case 3: General case: In what follows, we assume
without loss of generality that A has a structure (e.g., a Jordan
form)

A =

[
A1 0
0 A2

]
where all eigenvalues of A1 ∈ Rn1×n1 satisfy |λi| ≥ 1 and all
eigenvalues of A2 ∈ Rn2×n2 satisfy |λi| < 1. We first recall
the following basic property of the algebraic Riccati equation.

Lemma 11: Suppose V � 0 and (A,C) is a detectable pair
and 0 ≺ W1 � W2. Then, we have P̃ � Q̃ where P̃ and Q̃
are the unique positive definite solutions to

AP̃A>−P̃−AP̃C>(CP̃C>+V )−1CP̃A>+W1 =0 (69)

AQ̃A>−Q̃−AQ̃C>(CQ̃C>+V )−1CQ̃A>+W2 =0. (70)

Proof: Consider Riccati recursions

P̃t+1 =AP̃tA
>−AP̃tC>(CP̃tC

>+V )−1CP̃tA
>+W1 (71)

Q̃t+1 =AQ̃tA
>−AQ̃tC>(CQ̃tC

>+V )−1CQ̃tA
>+W2 (72)

with P̃0 = Q̃0 � 0. Since (RHS of (71)) � (RHS of (72)) for
every t, we have P̃t � Q̃t for every t (see also [62, Lemma
2.33] for the monotonicity of the Riccati recursion). Under the
detectability assumption, we have P̃t → P̃ and Q̃t → Q̃ as
t→ +∞ [59, Theorem 14.5.3]. Thus P̃ � Q̃.

Using the above lemma, we obtain the following result.
Lemma 12: 0 ≺W1 �W2, then v∗(A,W1) ≤ v∗(A,W2).

Proof: Due to the characterization (68) of v∗(A,W2), there
exist Q � 0, V � 0, C ∈ Rn×n such that v∗(A,W2) =
− 1

2 log det(I−V − 1
2CQC>V −

1
2 ) and

Q−1 − (AQA> +W2)−1 = C>V −1C. (73)

Setting Q̃ , AQA> + W2 � 0, it is elementary to show
that (73) implies Q̃ satisfies the algebraic Riccati equation
(70). Setting L̃ , AQ̃C>(CQ̃C> + V )−1, (70) implies a
Lyapunov inequality (A−L̃C)Q̃(A−L̃C)>−Q̃ ≺ 0, showing
that A − L̃C is Schur stable. Hence (A,C) is a detectable
pair. By Lemma 11, a Riccati equation (69) admits a positive
definite solution P̃ � Q̃. Setting P , (P̃−1 + C>V −1C)−1,
P satisfies

P−1 − (APA> +W1)−1 = C>V −1C (74)

Moreover, we have P � Q since

0 ≺ Q−1 = Q̃−1 + C>V −1C � P̃−1 + C>V −1C = P−1.

Since P satisfies (74), we have thus constructed a feasible
solution (P,C, V ) that upper bounds v∗(A,W1). That is,

v∗(A,W2) = − 1
2 log det(I−V − 1

2CQC>V −
1
2 )

≥ − 1
2 log det(I−V − 1

2CPC>V −
1
2 )

≥ v∗(A,W1).

Next, we prove that v∗(A,W ) is both upper and lower
bounded by

∑
λi∈σ(A1) log |λi|. To establish an upper bound,

note that the following inequalities hold with a sufficiently
large δ > 0 with W � δIn.

v∗(A,W ) ≤ v∗(A, δIn)

≤ v∗(A1, δIn1
) + v∗(A2, δIn2

) =
∑

λi∈σ(A1)

log |λi|.

Lemma 12 is used in the first step. To see the second inequal-
ity, consider the primal representation (65) of v∗(A, δIn). If
we restrict decision variables to have block-diagonal structures

P =

[
P1 0
0 P2

]
, Π =

[
Π1 0
0 Π2

]
according to the partitioning n = n1 + n2, then the original
primal problem (65) with (A, δIn) is decomposed into a
problem in terms of decision variables (P1,Π1) with data
(A1, δIn1

) and a problem in terms of decision variables
(P2,Π2) with data (A2, δIn2). Due to the additional structural
restriction, the sum of v∗(A1, δIn1) and v∗(A2, δIn2) cannot
be smaller than v∗(A, δIn). Finally, by the arguments in Cases
1 and 2, we have v∗(A1, δIn1

) =
∑
λi∈σ(A1) log |λi| and

v∗(A2, δIn2
) = 0.

To establish a lower bound, we show the following inequal-
ities using a sufficiently small ε > 0 such that εI �W .

v∗(A,W ) ≥ v∗(A, εIn)

≥ v∗(A1, εIn1
) + v∗(A2, εIn2

) =
∑

λi∈σ(A1)

log |λi|.

The first inequality is due to Lemma 12. To prove the second
inequality, consider the dual representation (66) of v∗(A, εIn).
By restricting decision variables X11, X12, X21, X22 and Y
to have block-diagonal structures according to the partitioning
n = n1 + n2, the original dual problem is decomposed into
two problems of the form (66) with (A1, εIn1

) and (A2, εIn2
).

Since the additional constraints in the dual problem never
increase the optimal value, we have the second inequality.
Discussions in Cases 1 and 2 are again used in the last step.

G. Proof of Theorem 3

To prove Theorem 3, we reduce the original problem (38)
for partially observable plants to a problem for fully observable
plants so that the results obtained in Section IV are applicable.
To this end, a key technique is the innovations approach
[63], which has been used in the context of zero-delay rate-
distortion theory for a similar purpose [64].
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Modified Decision Policy 
ℙ(𝑢𝑢𝑡𝑡|𝑥𝑥�𝑡𝑡,𝑢𝑢𝑡𝑡−1) 

𝑦𝑦𝑡𝑡 𝑢𝑢𝑡𝑡 

Decision Policy 

Pre-KF 

Plant 
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡 

𝑦𝑦𝑡𝑡= 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑔𝑔𝑡𝑡 

𝑥𝑥�𝑡𝑡 

Fig. 9. The space of original decision policy is parametrized by the modified
decision policies.

ℙ(𝑢𝑢𝑡𝑡|𝑦𝑦𝑡𝑡,𝑢𝑢𝑡𝑡−1) 

𝑦𝑦𝑡𝑡 𝑢𝑢𝑡𝑡 

Decision Policy 

Pre-KF 

Plant 
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡 

𝑦𝑦𝑡𝑡= 𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑔𝑔𝑡𝑡 

𝑥𝑥�𝑡𝑡 
Pre−KF−1 

Modified Decision Policy 

𝑦𝑦𝑡𝑡 

Fig. 10. Proof of Lemma 15.

First, observe that the least-mean square error estimate
x̃t = E(xt|yt,ut−1) can be computed recursively by the
pre-Kalman filter (39). In particular, it is apparent from (39)
that the expectation E(xt|yt,ut−1) can be written as a linear
function LKFt of yt and ut−1, i.e.,∫

xtP(dxt+1|yt, ut−1) = LKFt (yt, ut−1). (75)

The Kalman filter is also known as the whitening filter since it
has a property that the innovation process ψt , L̃t+1(yt+1−
Ht+1x̃t+1|t) is white.

Lemma 13: The innovation ψt is a zero-mean, white (i.e.,
independent of x̃t,ut and ψt−1) Gaussian random variable
such that ψt ∼ N (0,Ψt) with Ψt = L̃t+1(Ht+1P̃t+1|tH

>
t+1 +

Gt+1)L̃>t+1.
Proof: See, e.g., [65, Section 10.1].

The next observation is important to show that the pre-Kalman
filter can be always introduced without loss of performance.

Lemma 14: The pre-Kalman filter (39) is causally in-
vertible; that is, for every t = 1, · · · , T , (yt,ut−1) can be
reconstructed from (x̃t,ut−1).
Proof: Since we are assuming Wt � 0 and Ht has full row
rank, L̃t has full column rank. Thus L̃†t , (L̃>t L̃t)

−1L̃>t exists
for every t = 1, · · · , T . From (39), it is clear that yt can be
constructed by

yt = L̃†t x̃t + L̃†t(L̃tHt − I)(At−1x̃t−1 +Bt−1ut−1). (76)

Lemma 15: Without loss of performance, one can assume
a decision architecture in Fig. 9, where the “Pre-KF” block
represents the pre-Kalman filter (39).
Proof: Suppose γ = P(uT ‖yT ) is an optimal solution to the
original problem (38). Construct a modified decision policy
block in Figure 9 as shown in Figure 10 using the optimal
policy γ = P(uT ‖yT ) for the original problem, where the
“Pre-KF−1” block represents the causal inverse (76) of the
pre-Kalman filter. Then, the “decision policy” block in Fig. 10
is equivalent to the “decision policy” block in the original

problem in Figure 7. Thus, we have shown by construction
that there exists a modified decision policy with which the
“decision policy” block in Figure 9 attains optimality in the
the original problem (38).

Lemma 16: For every t = 1, · · · , T ,

E‖xt+1‖2Qt = Tr(QtP̃t+1|t+1) + E‖x̃t+1‖2Qt .

Proof: Observe

E‖xt+1‖2Qt = E‖xt+1 − x̃t+1 + x̃t+1‖2Qt
= E‖xt+1−x̃t+1‖2Qt+E‖x̃t+1‖2Qt+2Ex̃>t+1Qt(xt+1−x̃t+1).

Since E‖xt+1 − x̃t+1‖2Qt = Tr(QtP̃t+1|t+1), it suffices to
prove Ex̃>t+1Qt(xt+1−x̃t+1) = 0. This can be directly verified
as in (77).

E
{
x̃>t+1Qt(xt+1 − x̃t+1)

}
=

∫
x̃>t+1Qt(xt+1 − x̃t+1)P(dxt+1, dy

t+1, dut)

=

∫
LKFt+1(yt+1, ut)>Qt

(
xt+1−LKFt+1(yt+1, ut)

)
× P(dxt+1, dy

t+1, dut)

=

∫
LKFt+1(yt+1, ut)>Qt

×
(∫ (

xt+1−LKFt+1(yt+1, ut)
)
P(dxt+1|yt+1, ut)

)
P(dyt+1, dut)

=

∫
LKFt+1(yt+1, ut)>Qt

×
(∫

xt+1P(dxt+1|yt+1, ut)−LKFt+1(yt+1, ut)

)
P(dyt+1, dut)

= 0 (77)

The last step is due to (75).

Finally, we are ready to reduce the original problem (38) for
partially observable plants to a problem for fully observable
plants. Let γ̃ = P(uT ‖x̃T ) be a modified decision policy
in Fig. 9, and let Γ̃ be the space of such policies. Notice
that if a policy γ̃ ∈ Γ̃ is fixed, then the system equation
(1) and the pre-Kalman filter equation (39) uniquely define
a joint probability measure P(xT+1, yT , x̃T , uT ). Expectation
and the mutual information with respect to this probability
measure will be denoted by Eγ̃ and Iγ̃ . By Lemma 15, our
main optimization problem (4) can be equivalently written as

min
γ̃∈Γ̃

∑T

t=1
Iγ̃(yt;ut|ut−1) (78a)

s.t.
∑T

t=1
Eγ̃
(
‖xt+1‖2Qt + ‖ut‖2Rt

)
≤ D. (78b)

By Lemma 14, given ut−1, yt can be reconstructed from
x̃t and vice versa. Thus, we have Iγ̃(yt;ut|ut−1) =
Iγ̃(x̃t;ut|ut−1). Therefore, using Lemma 16, problem (78)
can be further rewritten as

min
γ̃∈Γ̃

∑T

t=1
Iγ̃(x̃t;ut|ut−1) (79)

s.t.
∑T

t=1
Eγ̃
(
‖x̃t+1‖2Qt+‖ut‖

2
Rt

)
+Tr(QtP̃t+1|t+1)≤D.
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Now, notice that the terms Tr(QtP̃t+1|t+1) do not depend on
γ̃. Thus, by rewriting the pre-Kalman filter (39) equation as

x̃t+1 = Atx̃t +Btut +ψt (80)

and considering (80) as a new “system” with white Gaussian
process noise ψt ∼ N (0,Ψt), problem (79) can be written as

min
γ̃∈Γ̃

Iγ̃(x̃T → uT ) (81a)

s.t. Jγ̃(x̃T+1,uT ) ≤ D̃ (81b)

where D̃ = D−
∑T
t=1 Tr(QtP̃t+1|t+1). Since the state X̃t of

(80) is fully observable by the modified control policy γ̃, (81)
is now the problem for fully observable systems considered in
Section IV.
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