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Abstract—We revisit the linear programming approach to de-
terministic, continuous time, infinite horizon discounted optimal
control problems. In the first part, we relax the original problem
to an infinite-dimensional linear program over a measure space
and prove equivalence of the two formulations under mild as-
sumptions, significantly weaker than those found in the literature
until now. The proof is based on duality theory and mollification
techniques for constructing approximate smooth subsolutions to
the associated Hamilton-Jacobi-Bellman equation. In the second
part, we assume polynomial data and use Lasserre’s hierarchy
of primal-dual moment-sum-of-squares semidefinite relaxations
to approximate the value function and design an approximate
optimal feedback controller. We conclude with an illustrative
example.

Index Terms—optimal control, discounted occupation mea-
sures, moments, sum-of-squares, infinite linear programming

I. INTRODUCTION

WE study the infinite horizon optimal control problem
(OCP) with discounted payoff subject to state con-

straints. A comprehensive theoretical framework has been
developed over the years to tackle such OCPs, e.g., via the
Pontryagin’s maximum principle and the associated Hamilton-
Jacobi-Bellman equation (HJB) [1, Sections III.2, IV.5]. How-
ever, these sophisticated and mathematically elegant methods
are not always easy to implement in practice. Several ap-
proaches, including shooting methods [2], model predictive
control [3], direct methods [4] and neural-network-based al-
gorithms [5], have been proposed in the literature to alleviate
this difficulty.

In this work, we study an approximate dynamic program-
ming approach based on infinite-dimensional linear program-
ming (LP). The LP formulation of deterministic and stochastic
optimal control problems has been studied extensively in the
literature [6], [7], [8], [9], [10]. The main idea is to embed
the set of admissible controls for the original problem in a
new space, a space of measures. In our particular setting, we
identify each admissible control with a discounted occupa-
tion measure and observe that it satisfies a linear equation
that provides a measure-theoretic interpretation of the system
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dynamics. In this way, we introduce an infinite-dimensional
LP (primal) over an appropriate space of measures. The
optimal value of the primal LP is no greater than the optimal
value of the OCP and, under mild assumptions described in
Theorem III.1, the two are equal. Using duality theory, we
introduce the dual LP, which involves finding the supremum
of all smooth subsolutions to the associated Hamilton-Jacobi-
Bellman (HJB) equation, and prove that there is no duality
gap. As a result, we derive a characterization of the value
function as the upper envelope of the smooth subsolutions
to the HJB equation. It is worth mentioning that the LP
approach is particularly appealing for dealing with unconven-
tional problems involving additional constraints or secondary
costs, where traditional dynamic programming techniques are
not applicable. In particular, in the OCP of our interest, the
state and input constraints are directly incorporated into the
measure space associated with the primal program and the
function space associated with the dual program.

We then, use finite-dimensional approximations of the pri-
mal LP and its dual to approximate the optimal value function
and extract a near optimal feedback control. In the literature,
several works propose finite LP approximations based on
state-and-control-space gridding [7], [11]. On the other hand,
more recently, Lasserre et al. in [12], [13], used convex
optimization methods and proposed a hierarchy of finite-
dimensional semidefinite programming (SDP) relaxations to
tackle nonlinear finite horizon OCPs with polynomial data.
We extend the latter approach to the infinite horizon case.

Contribution. This paper is inspired and extends the tech-
niques discussed in [12], [13] and [8]. We show equivalence of
the LP formulation to the OCP (Theorem III.1) under weaker
assumptions than those known in the literature [7]; in particu-
lar, our assumptions do not require Lipschitz continuity of V YδC
with respect to δ [7, Theorem 4.4], a technical assumption that
usually cannot be checked even for simple OCPs. Moreover
Assumption 1 in [7], needs to hold only for the cost function
of the OCP and not for all continuous functions. Our proof
of equivalence is based on duality theory and mollification
techniques for constructing approximate smooth subsolutions
to the HJB equation, also proposed in [8] for finite horizon
differential inclusions and in [10] for controlled diffusions.
Our finite-dimensional optimization approximations are based
on Lasserre’s hierarchy of semidefinite relaxations [12] instead
of the grid-based LP approximations proposed in [7]. However,
unlike [12], we treat the infinite horizon polynomial OCP



by introducing the notion of discounted occupation measures.
Finally, recently Korda et al. [14] have presented a new
approach, where the primal LP is tightened and optimization
is carried out over polynomial densities of measures. In this
way, they are able to provide a controller design with strong
convergence guarantees. However, their initial assumptions
restrict significantly the class of OCPs for which their method
is applicable. Although in our controller extraction, which
follows closely the reasoning in [13], we do not provide
convergence guarantees, our simulation results show better
performance in the presented numerical example.

Basic definitions and notations. Let X be a normed vector
space. The weak* topology on its topological dual X∗ is the
smallest topology with respect to which the linear functionals
in {X∗ 3 x∗ → 〈x∗, x〉 := x∗(x) : x ∈ X} are continuous.
Let X be a metrizable topological space and let B(X ) be
its Borel σ-algebra. Let C(X ) be the Banach space of real-
valued bounded continuous functions on X together with the
sup-norm ‖ ‖∞. We denote by M(X ) the Banach space of
finite signed Borel measures on X equipped with the total
variation norm and by P(X ) the set of Borel probability
measures. Let δx ∈ P(X ) be the Dirac measure centred
on x ∈ X . When X is compact, C(X )∗ ' M(X ). In
particular, we identify each µ ∈ M(X ) with the bounded
linear functional 〈µ, ·〉 : C(X )→ R, 〈µ, l〉 :=

∫
X l dµ, for all

l ∈ C(X ). Moreover, if M(X )+ is the convex cone of finite
nonnegative Borel measures on X , then its dual convex cone
is the set C(X )+ of nonnegative continuous functions on X .
The support of a measure µ ∈M(X )+ is the smallest closed
set whose complement has zero measure and is denoted by spt
µ. If X ⊂ Rn, we consider the Banach space C1(X) = {φ ∈
C(X) : ∂φ

∂xi
∈ C(X), for all i = 1, . . . , n}, with ‖φ ‖1∞ =

‖φ ‖∞+
∑n
i=1

∥∥∥ ∂φ
∂xi

∥∥∥
∞
. Let R[x] be the space of polynomi-

als of the variable x ∈ Rn. Let α = (α1, . . . , αn)> ∈ Nn be a
multi-index. A monomial is defined as xα := xα1

1 xα2
2 . . . xαnn

and its degree is |α| :=
∑n
i=1 αi. A polynomial p ∈ R[x]

of degree deg(p) = d is given by p(x) :=
∑
|α|≤d pαx

α.
Similarly, let R[x, u] be the space of polynomials of the
variable (x, u) ∈ Rn × Rm. Then a polynomial q ∈ R[x, u]
of degree d has the form q(x, u) :=

∑
γ∈Nn×Nm
|γ|≤d

qγ (x, u)γ =∑
α∈Nn, β∈Nm
|α|+|β|≤d

qαβ x
αuβ . Let X ⊂ Rn and Y ⊂ Rm be com-

pact subsets. Given a measure µ ∈M(X×U)+, the real num-
ber zγ :=

∫
X×U (x, u)γ dµ(x, u) =

∫
X×U x

αuβ dµ(x, u), is
called its moment of order γ = (α, β) ∈ Nn × Nm. Given a
real sequence z = (zγ)γ∈Nn×Nm , the Riesz linear functional
Lz : R[x, u] → R is defined by Lz(q) :=

∑
γ∈Nn×Nm qγzγ ,

for each polynomial q(x, u) =
∑
γ∈Nn×Nm qγ (x, u)γ . Let

νd(x, u) := ((x, u)γ)|γ|≤d. The moment matrix of order d
is given by Md(z) := Lz(νd(x, u) νd(x, u)>), where the
latter notation means that Lz is applied entrywise on the
input matrix. Similarly, given h ∈ R[x, u] the localizing
matrix of order d w.r.t. z and h is defined by Md(h z) :=
Lz(h(x, u) νd(x, u) νd(x, u)>). A polynomial h ∈ R[x, u] is
a sum of squares (s.o.s.) if it can be written as h(x, u) =∑
j∈J h

2
j (x, u), for some finite index set J , and {hj : j ∈

J} ⊂ R[x, u]. We denote by Σ[x, u] ⊂ R[x, u], the space of
s.o.s. polynomials.

II. PROBLEM STATEMENT

Let X ⊂ Rn and U ⊂ Rm. We consider the following
infinite horizon control problem:

ẋ(t) = f(x(t), u(t)), t > 0

x(0) = x0,
(1)

where x0 ∈ X and f : Rn × U → Rn. A control is a Borel
measurable function u(·) : [0,∞)→ U . The set of controls is
denoted by U0. Under Assumption II.1 (H1) and (H2) below,
for each u(·) ∈ U0, the control system (1) admits a unique
solution x(·|x0, u(·)). We impose the state constraint

x(t|x0, u(·)) ∈ X, for all t ≥ 0. (2)

The set of admissible controls is given by UX(x0) := {u(·) ∈
U0 : (2) holds}. The OCP is described by

VX(x0) := inf
u(·)∈UX(x0)

∫ ∞
0

e−λtg(x(t|x0, u(·)), u(t)) dt,

(3)
where λ > 0 is the discount factor and g : Rn × U → R.
Consider the following conditions:

Assumption II.1 (Control model).
(H1) f, g are bounded and continuous, Lipschitz in x uniformly

in u;
(H2) X and U are compact;
(H3) λ > L, where L is the Lipschitz constant for f ;
(H4) UX(x0) 6= ∅.

Under suitable assumptions [1, Thm. 5.10], the value func-
tion VX is the unique constrained viscosity solution of the
Hamilton-Jacobi-Bellman (HJB) equation

λφ(x) + sup
u∈U
{−f(x, u) · ∇xφ(x)− g(x, u)} = 0, x ∈ IntX.

In general, the infimum in (3) is not attained, so our next step
is to consider a relaxation of the OCP. A relaxed control or a
Young measure is a measurable map m(·) : [0,∞) → P(U),
i.e., for each h ∈ C(U), the scalar-valued function [0,+∞) 3
t →

∫
U
h(u) dmt(du) is Lebesgue measurable. The set of

relaxed controls is denoted by V0. We consider the relaxed
control system

ẋ(t) =

∫
U

f(x(t), u) dmt(u), t ≥ 0,

x(0) = x0.

(4)

Given a relaxed control m(·), we denote by x(·|x0,m(·)) the
solution of the system (4). We impose the state constraint

x(t|x0,m(·)) ∈ X, for all t ≥ 0. (5)

The set of admissible relaxed controls is given by VX(x0) :=
{m(·) ∈ V0 : (5) holds}. Note that UX(x0) ⊂ VX(x0) by



identifying each control u(·) with the Dirac measure-valued
function t→ δu(t). The relaxed OCP is described by

V RX (x0) := min
m(·)∈V(x0)

∫ ∞
0

e−λt
∫
U

g(x(t), u) dmt(u) dt. (6)

By using the weak* compactness of P(X) one can prove
that the minimum is indeed attained. Moreover, V RX (x0) ≤
VX(x0). We add the following assumption.

Assumption II.2 (No relaxation gap). VX(x0) = V RX (x0), for
all x0 ∈ X such that UX(x0) 6= ∅.

Sufficient conditions under which Assumption II.2 is satis-
fied are given e.g., by the assumptions of Filipov-Wazewski
type theorems with state constraints [15] or by conditions
described in [16, Prop. 4.3]. In particular, Assumption II.2
is satisfied in case of invariance of X w.r.t. the solutions of
the OCP or in case of uncontrolled dynamics. Morover in
the case of input-affine dynamics, Assumption II.2 is satisfied
under Assumption II.1 and if U is convex. For a related
discussion on sufficient conditions see also the paragraph
following Assumption 1 in [16].

III. LINEAR PROGRAMMING FORMULATION

For each u(·) ∈ UX(x0), we define the discounted occupa-
tion measure Mu ∈M(X × U)+,

Mu(E) :=

∫ ∞
0

e−λtδ(x(t|x0,u(·)),u(t))(E) dt, (7)

for all E ∈ B(X × U). Moreover, for each m(·) ∈ VX(x0),
we define the discounted relaxed occupation measure Nm ∈
M(X × U)+,

Nm(E) :=

∫ ∞
0

e−λt
∫
U

δ(x(t|x0,m(·)),u)(E) dmt(u) dt, (8)

for all E ∈ B(X × U). Note that for every l ∈ C(X × U),

〈Mu, l〉 =

∫ ∞
0

e−λt l(x(t|x0, u(·)), u(t)) dt (9)

〈Nm, l〉 =

∫ ∞
0

e−λt
∫
U

l(x(t|x0,m(·)), u) dmt(u) dt. (10)

By setting MX := {Mu : u(·) ∈ UX(x0)} and RX :=
{Nm : m(·) ∈ VX(x0)}, we can rewrite the OCP (3) as
VX(x0) = inf{〈µ, g〉 : µ ∈ MX}, and the relaxed OCP (6)
as V RX (x0) = inf{〈µ, g〉 : µ ∈ RX}.

In both cases, the cost is linear over µ but RX and MX

are nonconvex sets. To transform the OCP into a convex
program, we define the linear operator A : C1(X) →
C(X × U) by (Aφ)(x, u) := λφ(x) − ∇xφ(x) · f(x, u),
for all (x, u) ∈ X × U, φ ∈ C1(X). Since ‖Aφ ‖∞ ≤(
λ+ sup(x,u)∈X×U |f(x, u)|

)
‖φ ‖1∞ , for all φ ∈ C1(X),

A is bounded and in particular it is weakly continuous. Let
A∗ : M(X × U) → C1(X)∗ be the adjoint map of A,
defined by 〈A∗µ, φ〉 = 〈µ,Aφ〉 =

∫
X×U Aφ dµ, for all

µ ∈ M(X × U) and φ ∈ C1(X). By the weak continuity of

A, A∗ is well defined and weakly* continuous. We introduce
the linear program:

J (x0) := inf{〈µ, g〉 : µ ∈ FX}, (11)

where, FX := {µ ∈ M(X × U)+ : A∗µ = δx0} and δx0 is
identified as an element of C1(X)∗. The following proposition
establishes the relationship between the above programs and
asserts that the infinite LP (11) admits a minimizer.

Proposition III.1. MX ⊂ RX ⊂ FX and so J (x0) ≤
V RX (x0) ≤ VX(x0). Moreover, if FX 6= ∅, then the infimum
in (11) is attained.

Proof. Since UX(x0) ⊂ VX(x0), we get MX ⊂ RX
and V RX (x0) ≤ VX(x0). Moreover, if m(·) ∈ V(x0), then
for each φ ∈ C1(X) it holds that ∇xφ(x(t|x0,m(·))) ·∫
U
f(x(t|x0, u)) dmt(u) = d

dtφ(x(t|x0,m(·))), for almost
all t ≥ 0. Integration by parts gives 〈Nu, Aφ〉 =
φ(x0), for all φ ∈ C1(X). Equivalently, A∗Nu = δx0

and
thus RX ⊂ FX and J (x0) ≤ V RX (x0). Next, note that
FX = M(X × U)+ ∩ (A∗)−1({δx0}) ⊂ {µ ∈ M(X × U) :
‖µ ‖ ≤ 1

λ}. By the Banach-Alaoglu Theorem and weak*
continuity of A∗, we get that FX 6= ∅ is weakly* compact
in M(X × U). The solvability of (11) follows by the weak*
continuity of M(X × U) 3 µ→ 〈µ, g〉.

The dual linear program of (11) is

J ∗(x0) := sup
φ∈C1(X)

{φ(x0) : Aφ ≤ g on X × U}. (12)

The following notion will be valuable for the interpretation of
the feasible solutions of (12).

Definition III.1. A function φ ∈ C1(X) is called a smooth
subsolution to the HJB equation if Aφ ≤ g on X × U .

Notice that the dual program (12) is always feasible.
Indeed, the function φ(x) := C, x ∈ X with C ≤
− sup(x,u)∈X×U |g(x,u)|

λ is feasible for the dual program. More-
over, any smooth subsolution to the HJB equation, gives a
global lower bound for the value function in (3).

Lemma III.1 (Lower bound). If φ ∈ C1(X) is a feasible
solution for the dual program (12), then φ ≤ VX on X .

Proof. Let x ∈ X s.t. UX(x) 6= ∅. Since 〈Mu, Aφ〉 = φ(x),
for all u(·) ∈ UX(x) and Aφ ≤ g, we get φ(x) ≤ 〈Mu, g〉,
for all u(·) ∈ UX(x). Thus, φ(x) ≤ VX(x).

Theorem III.1 (Equivalence). Under Assumptions II.1
and II.2, VX(x0) = J (x0) = J ∗(x0).

Note that the assumptions in Theorem III.1 are weaker than
those in [7, Theorem 4.4], as indicated in the introduction.

The proof of Theorem III.1, is divided in several parts. The
first step is to prove that strong duality holds.

Lemma III.2 (Absence of duality gap). Under Assump-
tion II.1 (H1) and (H2), if (11) is feasible, then there is no
duality gap, i.e., J ∗(x0) = J (x0).



Proof. By virtue of [17, Th. 3.10], it suffices to prove that
the set D = {(A∗µ, 〈µ, g〉) : µ ∈ M(X × U)+} is
σ(C1(X)∗×R, C1(X)×R)-closed [18, Def. 8.2.1.]. Similarly
to [12, Theorem 2.3 (ii)], this follows by the Banach-Alaoglu
Theorem and the weak* continuity of A∗.

Next, we consider the case of unconstrained state space.
Let C0(Rn ×U) be the Banach space of bounded continuous
functions that vanish at infinity with the sup-norm. Then
M(Rn×U) is isometrically isomorphic to C0(Rn×U)∗ and
M(Rn × U) ⊂ C(Rn × U)∗. Let

V (x0) := inf
u(·)∈U0

∫ ∞
0

e−λtg(x(t|x0, u(·)), u(t)) dt. (13)

For each u(·) in U0, we define the corresponding discounted
occupation measure Mu ∈ M(Rn × U)+ by (7), for all
E ∈ B(Rn × U). Then, (9) holds for every l ∈ C(Rn × U).
We set M := {Mu : u(·) ∈ U0(x0)}. Then the OCP (13)
can be written as V (x0) = inf{〈µ, g〉 : µ ∈ M}. As before,
we define the linear operator B : C1(Rn) → C(Rn × U) by
(Bφ)(x, u) := λφ(x)−∇xφ(x)·f(x, u), for all (x, u) ∈ Rn×
U, φ ∈ C1(Rn). B is linear, bounded and weakly continuous.
Moreover, its adjoint B∗ : C(Rn × U)∗ → C1(Rn)∗ is
well defined and weakly* continuous. We consider the convex
optimization problem

P (x0) := inf{〈µ, g〉 : µ ∈ F},

where, F := {µ ∈ M(Rn × U)+ : B∗µ = δx0
}. Similarly

as before, M⊂ F and F is convex and weakly* compact in
M(Rn × U). In particular, the following is true.

Lemma III.3. Under Assumptions (H1) and (H3), F is the
weak* convex closure of M.

Proof. (H1) and (H3) imply that the value function V is Lip-
schitz continuous [1, Prop. 2.1]. By Rademacher’s Theorem,
V is almost everywhere differentiable. Therefore, BV ≤ g
for almost all x ∈ Rn and all u ∈ U . W.l.o.g., we assume
that g ∈ C0(Rn ×U). This assumption can be lifted after the
proof of Theorem. By using standard mollification techniques
as in [19, Lemma 3.2], we can construct a sequence of
approximate smooth subsolutions to the HJB equation for the
unconstrained OCP (13). That is, there exist {Vn}n ⊂ C1(Rn)
and {εn}n ⊂ [0,∞), such that limn→∞ ‖V − Vn ‖∞ = 0,
BVn ≤ g + εn on Rn × U and limn→∞ εn = 0. We
will use this result to prove that V (x0) = P (x0). Clearly,
P (x0) ≤ V (x0). Assume for the sake of contradiction that
P (x0) < V (x0). Then, there exists µ ∈ M(Rn × U)+, s.t.
B∗µ = δx0

and 〈µ, g〉 < V (x0). So, for all n ∈ N, Vn(x0) =
〈δx0 , Vn〉 = 〈B∗µ, Vn〉 = 〈µ,BVn〉 ≤ 〈µ, g + εn〉. By taking
n → ∞, we get V (x0) ≤ 〈µ, g〉, which is a contradiction.
Therefore, we have proved that V (x0) = P (x0). Finally,
assume for the sake of contradiction that conv(M)

∗
6= F . Let

ν ∈ F/conv(M)
∗
. By the separation theorem, there exists

g ∈ C0(Rn × U) and s ∈ R such that 〈Mu, g〉 ≥ s, for all
u ∈ U0 and 〈ν, g〉 < s. Since a function in C0(Rn × U) can
be uniformly approximated by a Lipschitz continuous function
in C0(Rn × U) [19, pg. 124], we can replace the function

g ∈ C0(Rn × U) with a new Lipschitz continuous function
in C0(Rn × U) and adjust s so that the separation property
still holds. Assume that this specific g is the cost function
of the OCP (13). Then, P (x0) < s ≤ V (x0), which is a
contradiction.

Next, we consider for each m(·) ∈ V0, the corresponding
relaxed occupation measure Nm ∈ M(Rn × U)+ defined
by (8), for each E ∈ B(Rn × U) and satisfying (10), for
each l ∈ C(Rn × U). Set R := {Nm : m(·) ∈ V0}. It is a
known result that R is the weak* closure of M.

Corollary III.1. For each µ ∈ F , there exists Λ ∈ P(R) such
that 〈µ, l〉 =

∫
R 〈γ, l〉 dΛ(γ), for all l ∈ C(Rn × U).

Proof. Similar arguments as in [8, Cor. 1.4] prove the result
for all l ∈ C0(Rn×U). Since a bounded continuous function
can be approximated pointwise by an increasing sequence of
continuous functions with compact support, the application of
the monotone convergence theorem completes the proof.

We will now return to the state constrained OCP (3).
The following Lemma indicates the relation between all the
previously defined sets.

Lemma III.4. We make the convention that each measure
µ ∈ M(X × U)+ is a measure on the whole space Rn × U
with sptµ ⊂ X × U . The following hold,

MX = {µ ∈M : sptµ ⊂ X × U},
RX = {µ ∈ R : sptµ ⊂ X × U},
FX = {µ ∈ F : sptµ ⊂ X × U}.

Proof. We will prove the inclusion ⊃ in the first assertion.
Let Mu ∈ M, for some u(·) ∈ U0, such that sptMu ⊂
X × U . Note that ‖Mu ‖ = 1

λ . Therefore,
∫ +∞
0

e−λt dt =
1
λ = Mu(X × U) =

∫ +∞
0

e−λtδ(x(t),u(t))(X × U) dt. Thus,
(x(t), u(t)) ∈ X×U , for almost all t ≥ 0. So, u(·) ∈ UX(x0).

We are now ready to prove Theorem III.1.

Proof. By Proposition III.1, there exists a minimizer µ0 ∈ FX ,
such that 〈µ0, g〉 = JX(x0) ≤ V RX (x0). Then, by Corol-
lary III.1, there exists a Borel probability measure Λ on R
such that 〈µ0, l〉 =

∫
R 〈γ, l〉 dΛ(γ), for all l ∈ C(Rn × U).

We set l(x, u) = d(x,X), where d(x,X) is the euclidean
distance of x from X . Since, sptµ0 ⊂ X × U , we have
〈µ0, d(·, X)〉 = 0. Therefore, 〈γ, d(·, X)〉 = 0, for Λ-almost
all γ ∈ R. Equivalently, Λ(RX) = 1. So, JX(x0) =
〈µ0, g〉 =

∫
RX 〈γ, g〉 dΛ(γ). We have that 〈µ0, g〉 ≤ 〈γ, g〉,

for all γ ∈ RX . Assume for the sake of contradiction
that 〈µ0, g〉 < 〈γ, g〉, for all γ ∈ RX . Then, 〈µ0, g〉 <∫
RX 〈γ, g〉 dΛ(γ) which is a contradiction. Therefore, there

exists γ0 ∈ RX such that J (x0) = 〈µ0, g〉 = 〈γ0, g〉 ≥
V RX (x0). So, we have proved that J (x0) = V RX (x0) and that
the relaxed admissible control associated to γ0 is optimal for
the relaxed OCP (6). Finally, under Assumption II.2 we have
VX(x0) = V RX (x0) = J (x0).



IV. PRIMAL-DUAL MOMENT-S.O.S. LMIS, OPTIMAL
CONTROL SYNTHESIS AND NUMERICAL EXAMPLE

Throughout this section we make the following assumptions
on the data of the OCP (3).

Assumption IV.1 (Polynomial Data).
(A1) g ∈ R[x, u] and {fk}nk=1 ⊂ R[x, u];
(A2) X×U is a compact basic semi-algebraic set of the form

X × U = {(x, u) ∈ Rn × Rm : qi(x, u) ≥ 0, i =
1, . . . , N}, for some N ∈ N and {qi}Ni=1 ⊂ R[x, u];

(A3) There exists ξ ∈ R[x, u] such that ξ ∈{
σ0 +

∑N
i=1 σi qi : {σi}Ni=0 ⊂ Σ[x, u]

}
and the

level set {(x, u) ∈ Rn × Rm : ξ(x, u) ≥ 0} is compact.

Assumption (A3) is not restrictive. Indeed, if necessary,
we can add in the representation of X × U the polynomial
inequality qN+1(x, u) := K−‖ (u, x) ‖22 ≥ 0 , where K is an
upper bound of X×U . Then, the new equivalent representation
satisfies Assumption (A3).

We now formulate Lasserre’s hierarchy of primal-dual
moment-s.o.s. semidefinite relaxations [20] for our specific
problem. Under Assumption (A3), we are able to apply
Putinar’s Postivstellensatz [21] and characterize in a computa-
tionally tractable way the moment-sequences of a finite Borel
measure on the compact basi semi-algebraic set X × U . So,
we conclude that the primal LP (11) is equivalent to an infinite
SDP problem. By optimizing over finite truncated sequences
of moments, we obtain a hierarchy of finite SDP relaxations.
In particular, let deg(g) = 2v0 or 2v0 − 1 and deg(qi) = 2vi
or 2vi−1, for all i = 1, . . . , N . For each r ≥ maxi=0,...,N vi,
we consider the LMI-relaxation of order r,

Jr(x0) :=


inf

z=(zγ)|γ|≤2r

Lz(g)

s.t. Lz(h
(α)) = b(α), for allα ∈ Ar

Mr(z) � 0,
Mr−vi(qi z) � 0, i = 1, . . . , N,

(14)
where h(α)(x, u) := λxα − ∇xα · f(x, u) and b(α) := x0

α,
for each α ∈ Nn and Ar := {α ∈ Nn : deg(h(α)) ≤ 2r}.
The dual of (14) is

J ∗r (x0) :=



sup
λα,σi

φ(x0)

s.t. φ(x) =
∑

deg h(α)≤2r λαx
α,

g −Aφ = σ0 +
∑n
i=1 σi qi,

λα ∈ R, σi ∈ Σ[x, u],
deg σi qi ≤ 2r, i = 0, . . . , N.

(15)

We highlight that the dual SDP (15) is a tightening of the dual
linear program (12), since its feasible solutions are polynomial
subsolutions to the HJB equation. Moreover, note that the
s.o.s. representation that g − Aφ is required to satisfy can
be expressed via SDP feasibility tests, since the degree of the
involved s.o.s. polynomials is fixed.

Note that the number of moments, i.e., the the size of the
vector z = (zγ)|γ|≤2r, in the LMI relaxation (14) of order
r is R :=

(
n+m+2r

2r

)
. Therefore, for a fixed state space with

dimension n and control space with dimension m, R grows as
O(rn+m). If the relaxation order r is fixed, then R grows as
O((n+m)r), that is polynomially in the size of the problem.
This means that taking into account the current performance
of general-purpose SDP solvers, the moment approach is
appealing for small to medium size OCPs. One can exploit
structure, (e.g., sparsity) of the specific instance OCP under
consideration to improve scalability and overcome this com-
putational limit [20, Sec. 4.6], [22]. Moreover, in our work,
we have chosen the monomial basis to represent polynomials.
However, other bases (e.g., Chebyshev) may be more efficient
from a computational point of view [14]. One other possible
strategy is to develop alternative positivity certificates, which
should be less computationally demanding [23].

Theorem IV.1 ([20, Thm. 4.3],[24, Lemma 5]). Under As-
sumption IV.1 and if (11) is feasible, then J ∗r (x0) = Jr(x0) ↑
J (x0) = J ∗(x0), as r →∞. If in addition, Assumptions II.1
and II.2 hold, then J ∗r (x0) = Jr(x0) ↑ VX(x0), as r →∞.

Some preliminary results regarding the convergence rate,
are available in the recent work [25].

We next discuss how the resulting dual s.o.s. SDP relax-
ations can be used for the computation of an approximate
feedback controller. Numerical examples in [13] for the finite
horizon case, have shown that the optimal solution φ∗ of (15)
approximates well the value function V (·) along optimal
trajectories starting from x0, but it gives an unsatisfactory ap-
proximation for the other points. This observation was formal-
ized in [26, Theorem 1]. We would like to enlarge this region
and have a good approximation of the value function V on a
given set X0 ⊂ X . Assume that UX(x0) 6= ∅, for all x0 ∈ X0.
Let µ0 be the uniform probability measure on X0 and consider
the average value V (µ0) := 〈V, µ0〉 =

∫
X0
V (x) dµ0(x).

Consider the primal averaged linear program

J (µ0) := inf
µ∈M(X×U)+

{〈µ, g〉 : A∗µ = µ0}, (16)

with corresponding dual

J ∗(µ0) := sup
φ∈C1(X)

{〈µ0, φ〉 : Aφ ≤ g on X × U}. (17)

Intuitively, the primal averaged LP (16) describes a super-
position of a possibly uncountable set of OCPs. Under the
assumptions of Theorem III.1 and by linearity, we have
V (µ0) = J (µ0) = J ∗(µ0).

Assume that a relaxation of order r of the averaged dual pro-
gram (17) has an optimal solution φ. By routine modifications
in [26, Theorem 2], we get that φ is a good approximation of
the value function V along all optimal trajectories which start
from X0. A natural candidate for feedback control is derived
by the following minimization problem: For fixed x ∈ X

u∗(x) = arg min
u∈U

(g(x, u)−Aφ(x, u)). (18)

For each x ∈ X , consider a closed neighborhood Sx of x.
Similarly to [13], we propose the following heuristic iterative
algorithm.

1) Set x = x(t).



2) Solve the semidefinite relaxation of the averaged dual
program (17) (where X0 = Sx).

3) Apply the control law derived by (18) until x(t) /∈ Sx.
4) Go to step 1.

We conclude with an illustrative numerical example. Consider
the nonlinear double integrator

inf
u(·)

∫∞
0
e−0.1t(x1(t)2 + x2(t)2)dt

s.t. ẋ1(t) = x2(t) + 0.1x1(t)3,
ẋ2(t) = −0.3u(t),
x(0) = (0, 0.7)T,
x(t) ∈ X := {x : ||x||2 ≤ 1}, u(t) ∈ U := [−1, 1].

A problem with similar data was considered in [14, Section
7.1.]. The following table shows the approximation of the
optimal value for different relaxation orders of the moment
SDP (14). It seems that the sequence (Jr(x0))r converges to
2.2043, as r → ∞. Note that 2.2043 is a lower bound for
VX(x0).

TABLE I
NUMERICAL RESULTS FOR VARYING RELAXATION ORDER r.

r 2 3 4 5 6 7 11
Jr(x0) 0.1121 1.6465 2.1978 2.2042 2.2042 2.2043 2.2043

CPU time 0.79 0.92 1.24 2.65 6.77 17.73 677.73

For the design of an approximate feedback control law,
we use the averaged LP formulations (16) and (17), where
the initial condition is described by the uniform probability
measure µ0 on the whole state constraint set X . If an optimal
solution φ∗r of the averaged dual SDP relaxation of order r
is given, then by using (18) a feedback control is obtained
by ur(x) = sign ∂

∂x2
φ∗(x), x ∈ X. Let V ur be its

corresponding cost. Then V ur is an upper bound for VX(x0).
Figure 1 displays the trajectories obtained by the dual SDP
relaxations of order r = 3 and r = 4 . The corresponding
costs are V u3 = 2.2479 and V u4 = 2.2582. Since the OCP
of our example has no analytical solution, we evaluate the
performance of the extracted feedback controller by evaluating
the gap Gr = 100V

ur−2.2043
2.2043 . We have G3 = 1.98% and

G4 = 2.45%. This is a strong indication that the extracted
feedback controllers are near optimal. In fact, one can verify
that in the presented example, Assumptions II.1, II.2 and IV.1
are satisfied (input-affine polynomials dynamics with convex
control space). Therefore, Theorems III.1 and IV.1 hold.
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