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Abstract. The main objective of this article is to develop scalable dynamic anomaly detectors with high-

fidelity simulators of power systems. On the one hand, models in high-fidelity simulators are typically

“intractable” if one opts to describe them in a mathematical formulation in order to apply existing model-

based approaches from the anomaly detection literature. On the other hand, pure data-driven methods

developed primarily in the machine learning literature neglect our knowledge about the underlying dynamics

of power systems. In this study, we combine tools from these two mainstream approaches to develop a

data-assisted model-based diagnosis filter utilizing both the knowledge from a picked abstract model and also

the data of simulation results from high-fidelity simulators. The proposed diagnosis filter aims to achieve

two desired features: (i) performance robustness with respect to model mismatch; (ii) high scalability. To

this end, we propose a tractable (convex) optimization-based reformulation in which decisions are the filter

parameters, the model-based information introduces feasible sets, and the data from the simulator forms the

objective function to-be-minimized regarding the effect of model mismatch on the filter performance. To

validate the theoretical results, we implement the developed diagnosis filter in DIgSILENT PowerFactory

to detect false data injection attacks on the Automatic Generation Control measurements in the three-area

IEEE 39-bus system.

1. Introduction

The principle of anomaly detection in power system cyber security is to generate a diagnostic signal (e.g.,

residual) that keeps sensitive to malicious intrusions and simultaneously robust against other unknowns, given

the available data from system outputs [25, 15]. The detection methods can be mainly classified into two

categories: (i) the approaches that exploit an explicit mathematical model of the system dynamics (referred

to model-based methods in this article); (ii) the data-driven approaches that try to automatically learn the

system characteristics from the output data [2, 40]. Our work in [23] has developed a scalable diagnosis tool

to detect the class of multivariate false data injection (FDI) attacks which may remain stealthy in view of a

static detector, by capturing the dynamics signatures of such a disruptive intrusion. This method is, indeed,

model-based that the dynamics of the system trajectories under multivariate FDI attacks are described via

an explicit mathematical model representation (i.e., linear differential-algebraic equations (DAEs)). The

numerical results in [23] have proven its effectiveness in the given linear mathematical model. Now here

comes another question:

Can the power of scalable model-based diagnosis tools be still utilized in real-world applications such as

electric power systems for which there are reliable datasets from high-fidelity but complex simulators?

We aim to address the question by designing a scalable diagnosis tool with high-fidelity simulators. To

do that, we need two important pieces of information: (i) the knowledge of an abstract model; (ii) the
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system trajectories provided by a high-fidelity simulator. The abstract model-based knowledge is utilized for

a scalable design such that the design parameters (e.g., the order of the diagnosis tool) should be adjustable

depending on the size or degree of the studied system. The high-fidelity simulator is a stand-in for actual

measurements to be fitted into the diagnosis tool. Let us further clarify the terminologies adopted above. An

abstract model refers to an explicit, but perhaps reduced-order, mathematical description of power system

dynamics, e.g., a linear DAE. The actual measurements now refer to the reliable datasets of simulation results

from a high-fidelity simulator like DIgSILENT PowerFactory. A simulator is said to be high-fidelity when

it is the closest to the reality and may consist of several complex nonlinear DAEs as parts [30]. However,

unfortunately, one may not have access to the mathematical description of such simulator. The reasons behind

come from many aspects, but particularly, many high-fidelity simulators are still commercial. Then, it is not

hard to observe that the source of challenge to answer the question above comes from the following aspect:

whatever abstract model we can pick, model mismatch is always reflected through the difference of the output

of the abstract model and the one from the high-fidelity simulator. It can be expected that this unknown

of model mismatch potentially affects the diagnostic performance. With that in mind, we propose a scalable

diagnosis tool that is robust with respect to model mismatch, by exploiting the information revealed to us

through the simulation data together with the abstract-model based knowledge, resulting a novel data-assisted

model-based design perspective. We will provide further details toward this objective in Section 2.

Literature on model-based and data-driven anomaly detection. Let us briefly overview the advan-

tages and limitations of the pure model-based and data-driven approaches. The model-based methods require

detailed information of the studied system. Some research papers deploy the statistical properties of system

outputs, such as the work in [14] using cumulative sum-type algorithms for a sequential detection and the

one in [44] using the measurement consistency assessment. These techniques can be essentially confined by

some prior assumptions on system output errors. Recently, approaches based on moving target defense have

been proposed to actively change the system configuration to detect various cyber attacks [35, 13], while the

additional defense cost has to be considered. Another major subclass of these schemes is the observer-based

residual generator that historically emerges from a control-theoretic perspective and has been extended to

linear DAEs by [19]. To our best of knowledge, the study [33] is the first attempt to apply observer-based

detectors to power system cyber security problem. Recently, a variant of observer-based method is employed

in [1] so as to deal with unknown exogenous inputs in the linear Automatic Generation Control (AGC) sys-

tem. Parameter estimation model-based approaches have also been extensively investigated. For instance,

the extended Kalman filter algorithm is used to perform such an estimation for anomaly detection [10]. In

[27], a comparison study is carried out for various Kalman filters and observers in power system dynamic state

estimation with model uncertainties and malicious cyber attacks. The residual generators above usually have

the same degree as the system dynamics, which can be problematic in the online implementation particularly

for large-scale power systems [6]. Our diagnosis filter in [23] provides a good alternative to detect multivariate

FDI attacks in a real-time operation. Still, the challenge remains as the power system models are mostly non-

linear, complex and high-dimensional. The work in [17] proposed an optimization-based filter for detecting

a single anomaly in the control system where the nonlinearity can be fully described in DAEs. However, as

noted earlier, having a detailed mathematical description of the model especially in the high-fidelity simulator

or a real electric power system is usually infeasible.

Another major technique for anomaly detection comes from data-driven approaches that do not require

an explicit mathematical model of system dynamics. Developments such as sensing technology, Internet-

of-Things and Artificial Intelligence have contributed to a more data-driven power system [22]. Anomaly

detection is mainly considered as a classification problem and there are supervised, unsupervised or semi-

supervised learning methods for that purpose. Many efforts have been made on supervised classifications
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among which deep neural networks (DNN) [41, 3], bayesian networks [38] and support vector machines (SVM)

[29] are the popular approaches. For unsupervised classifications to detect cyber attacks in smart grids, one

can find principle component analysis (PCA) and its extension [8], autoencoders [39], etc. Some other research

works have developed semi-supervised learning type anomaly detectors: in [21], a semi-supervised SVM is

first proposed; a semi-supervised mixture Gaussian distribution based formulation is introduced in [7]; the

recent study [43] shows a promising semi-supervised method by integrating the autoencoders into an advanced

generative adversarial network (GAN). In addition to the approaches above, it is noteworthy that the study

of [12] has deployed a reinforcement learning based algorithm for online attack detection in smart grids

without a prior knowledge of system models or attack types. Overall, data-driven methods are suitable for

real implementations in complex and large-scale systems. However, their performance highly depends on the

quantity and quality of the accessible data1, and thus can be intractable in many cases [36]. Besides, the

required pre-processing stage (e.g., data training) may have a high computational cost.

Contributions and outline. This article aims to develop a scalable and robust diagnosis filter with high-

fidelity simulators like PowerFactory. To achieve that, we propose a tractable optimization-based reformula-

tion where the abstract model-based information introduces feasible sets, and the simulation data forms the

objective function to minimize the effect of model mismatch on the filter residual. In this way, the diagnosis

filter can be “trained” in the normal operations (without attacks) to have performance robustness with respect

to model mismatch. Then it can be “tested” in PowerFactory to detect FDI attacks. Our main contributions

are:

(i) Firstly, we develop a data-assisted model-based approach that utilizes both the model-based knowl-

edge and also the simulation data from the simulator, for a scalable and robust design (Definition 3.1

and the program (9)). Instead of using any existing machine learning algorithms, we propose our own

optimization-based characterization to “train” the filter under multiple mismatch signatures obtained

through the simulation data (Remark 3.2). As far as we know, this is the first study that builds on

such a perspective. In the optimization-based reformulation, the objective is to minimize the effect of

model mismatch on the filter residual. We show that, the resulted optimization programs are convex

and hence tractable, indicating that the proposed filter is not computational expensive compared to

many pure data-driven methods.

(ii) We investigate optimization-based characterizations of the developed diagnosis filter in both scenarios

of univariate and multivariate attacks. A square of L2-inner product with corresponding norm is

proposed to quantify the effect of model mismatch. Then the L2-norm of the residual part introduced

by model mismatch is reformulated as a quadratic function. We prove that, the characterization of

the filter under a univariate attack becomes a family of convex quadratic programs (QPs), and the

developed filter can even have the capability of tracking the attack magnitude through its non-zero

steady-state residual (Theorem 3.3). We also extend to the scenario of multivariate attack, and it

appears that a standard QP can be derived. Besides, we provide conditions under which the filter

can detect all the plausible multivariate attacks in an admissible set (Corollary 3.5).

The process of diagnosis filter construction and validation is concluded in Algorithm 1 and 2. The effectiveness

of the proposed approach is validated on the three-area IEEE 39-bus system. Numerical results from the case

study illustrate that the developed data-assisted model-based filter with the PowerFactory simulator can

successfully generate alerts in the presence of disruptive univariate or multivariate FDI attacks, while a pure

model-based detector may fail.

1To be noted, there are methods like the semi-supervised ones that can help in reducing the quantity of labeled data for the

training [43].
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Figure 1. Three-area power system with AGC functions modeled in DIgSILENT Power-

Factory.

Section 2 shows the outline of our proposed solution. Both the motivating case study and the mathemat-

ical framework of our solution are detailed presented. Section 3 proposes the tractable optimization-based

characterization of the developed diagnosis filter which has high scalability and performance robustness to

model mismatch. Numerical results of the developed filter comparing with other pure model-based ones are

reported in Section 4. Conclusions are drawn in Section 5.

2. Outline of the Proposed Solution

In this section, we start from a case study motivating the setting of our work. Then the mathematical

framework of our proposed solution to design a diagnosis filter that can be applied to the high-fidelity simulator

is presented.

2.1. Motivating case study

For a detailed description of a real electric power system, high-fidelity simulators are always exploited to

predict its behavior. Let us consider a multi-area power system equipped with AGC functions in Figure 1.

The three-area IEEE 39-bus system is modeled in DIgSILENT PowerFactory. In PowerFactory, the dynamic

generator model would consist of a synchronous machine, along with a voltage regulator for the exciter,

and also the turbine-governor unit. We also implement AGC in each area for secondary frequency control.

The AGC is a typical automatic control loop that regulates the system frequency and the power exchanges

between areas by controlling the power settings of the generators participating in AGC to follow load changes.

Looking into the system behavior of electromechanical dynamics, we can describe the formal mathematical

model of the studied system in the high-fidelity simulator by a set of DAEs,

ẋ(t) = f(x(t), a(t), f(t)) , (1a)

0 = g(x(t) ,a(t) ,d(t)), (1b)
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where x ∈ Rnx is the vector of augmented state variables including the ones of synchronous machines (e.g.,

damper-windings, mechanical equations of motion, exciter, voltage regulator, turbine-governor unit) and AGC

controllers. The vector a ∈ Rna represents the algebraic variables. The vector d ∈ Rnd denotes the (load)

disturbances. The vector f ∈ Rnf characterizes the possible anomalies that affect the dynamics of system

trajectories, which will be detailed in Section 2.2. We note that (1a) consists of both synchronous generator

dynamics and AGC controller dynamics of the multi-area power system in PowerFactory.

In the nonlinear DAE formulation of (1), the function f : Rnx+na+nf → Rnx in (1a) captures the dynamics

of synchronous generators and AGC controllers. The function g : Rnx+na+nd → Rna in (1b) models the elec-

trical network. These nonlinear functions involve saturation, sinusoidal terms and possibly other nonlinearity

in the power system. Since (1) is for a model description in the high-fidelity simulator like PowerFactory, one

may not have access to the detailed DAE of (1). In what follows, we show that, to design a diagnosis filter

with the high-fidelity simulator, we do not need an explicit model of (1), however, it is this simulator that

gives us the trajectory of the system and the output from the simulations to be fitted into the diagnosis filter

for anomaly detection.

First, if the model in (1) is known, a common practice for the analysis is to linearize (1) under an assumption

that the system works closely around the nominal operating point; one can find such treatments in many

literature sources like [33, 42]. Next, though (1) in PowerFactory is unknown to the diagnosis filter design, we

can pick an model whose parameters are obtained from a simplified version of the system. If the mathematical

description of the complex DAE model (1) would be available, then a reasonable choice of this abstract model

could be the linearized DAE around the operating point. However, we emphasize that here this choice does

not need to be a linearized version of the DAE, particularly in view of the robustification technique introduced

in the next step. Such an abstract model can be picked as

˙̃x(t) = Ac,xx̃(t) +Bc,dd(t) +Bc,ff(t),

y(t) = Cx̃(t) +Dff(t),
(2)

where x̃ ∈ Rnx̃ is the state vector of the abstract model including the dynamics of the multi-area system

and also AGC. The vector y ∈ Rny denotes the system output of (2). In (2), Ac,x ∈ Rnx̃×nx̃ is the state

matrix; Bc,d ∈ Rnx̃×nd and Bc,f ∈ Rnx̃×nf relate disturbances and anomalies to the system; C ∈ Rny×nx̃ is

the output matrix; Df ∈ Rny×nf characterizes the corrupted system outputs by anomalies.

The model (2) is picked because, as noted by [11], in AGC we pay more attention on collective performance

of all generators, and hence we assume that generators in each area have the same characteristics and each

area can be represented by an aggregated model comprised of equivalent turbine-governor units and generators

[28]. AGC acts as the secondary frequency control of a multi-area system, and has relatively slow dynamics.

Thus, from the timescales of interest, the frequency response of AGC can be decoupled from the loop of

automatic voltage regulator. This is due to the fact that the time constant of voltage regulator dynamics

is quite smaller than that of AGC [1]. It is feasible to use a quasi-state model that assumes a steady-state

operating point of the voltage regulator loop ignoring its fast dynamics. Correspondingly, x̃ in (2) may be

a reduced-order one comparing with x in (1). Of course, the model (2) is not meant to be “low-fidelity”,

instead, as explained above regarding the interested collective performance of generators and the time scales

in system dynamics, the model (2) decoupled from voltage regulator loops with certain level of abstractions

can be sufficiently accurate especially for analytical analysis [23, 1]. However, as mentioned in Section 1,

the challenge is, regardless of the choice of the abstract model (2), there would always exist model mismatch

between (1) and (2).

Remark 2.1 (Model mismatch sources). The sources of model mismatch between (1) and (2) emerge from

various aspects. For instance, we notice that the assumption of operating point can be violated due to switches
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and disturbances. Some nonlinear parts like saturation, sinusoidal terms are not considered in (2), resulting

another part of model reduction “error”. Various types of inputs, such as processing and measurement noises,

parameter variations, bad data, along with the exogenous ones of load changes and cyber attacks particularly

noted in (1) and (2), could also contribute to the model mismatch.

2.2. Anomalies: univariate or multivariate FDI attacks

We continue to present the anomaly scenario of our motivating case study. In the AGC of a multi-area

system, the AGC controller collects the information of grid frequency and power exchange on the tie-line

(e.g., L1-2 in Figure 1) that connects areas to form the area control error (ACE) to be minimized. Then

the power settings are computed for the generation allocation logic of the generators participating in AGC.

In practice, the data to form the ACE signal are usually transmitted through unprotected channels [34, 24].

Thus in this article, we mainly consider an anomaly scenario where FDI attacks are corrupting the frequencies

and power exchanges as parts of the ACE signal (and hence the AGC controller dynamics). In particular,

we take the instance of stationary FDI attack, i.e. the attack occurs as a constant bias injection f during

system operations at a specific time instance and it remains unchanged since then.

An advanced attack attends to pursue a desired impact on the system dynamics and also achieve un-

detectability from some possible data quality checking programs2. Thus, an adversary would try to inject

”smart” false data. The next definition opts to formalize this class of attack.

Definition 2.2 (Disruptive univariate or multivariate FDI attack). Consider a stationary FDI attack with

f ∈ Rnf . In the scenario of univariate attack (nf = 1, only one signal channel is corrupted), we call an FDI

attack f ∈ F disruptive attack if F is a set of {f ∈ Rnf=1 : fmin ≤ f ≤ fmax} where fmin,fmax ∈ Rnf=1

are non-zero variables. We call the set F plausible as it reflects the disruptive attack’s targets on attack impact

and undetectability. Similarly, in the scenario of multivariate attack (nf > 1, multiple signal channels are

corrupted), we introduce the plausible set as

F =
{
f ∈ Rnf : f = F⊤

b α, α ∈ A
}
,

where Fb := [f1, f2, . . . , fd] represents a finite basis for the set of multivariate attacks, and fi ∈ Rnf for

i ∈ {1, . . . , d}, and α := [α1, α2, · · · , αd]
⊤ ∈ Rd contains the coefficients. A := {α ∈ Rd | Aα ≥ b}

with A ∈ Rnb×d and b ∈ Rnb is polytopic to reflect attack targets on attack impact and undetectability. We

emphasize that F can be adjusted according to different anomaly scenarios where the convexity of the set is

particularly desired from a computational perspective in the subsequent analysis.

The disruptive univaraite and multivariate attacks to be detected are modeled and implemented in the

PowerFactory simulator. In Appendix, we present the modeling of univariate and multivariate FDI attacks

against AGC functions in PowerFactory. Further details of system modeling in PowerFactory and an instance

of the abstract model (2), for the part of Section 2.1, are also given.

2.3. Mathematical framework of the proposed solution

To alleviate the impact of model mismatch, we propose our solution outlined in Figure 2. We denote the

system output from the simulation results of the high-fidelity simulator (PowerFactory in this case) as yp.

Our proposed solution builds on a new perspective that the diagnosis filter utilizes not only the abstract

model-based information for a scalable design but also the simulation data to “train” the filter to achieve

2For instance, to avoid triggering data quality alarms, generally the calculated ACE in an area should not exceed a permitted

value [5, 32].
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Figure 2. Configuration of the proposed solution.

performance robustness with respect to model mismatch. Note that model mismatch is reflected through the

difference of yp from the high-fidelity simulator and y from the abstract model (2); such mismatch signature

is characterized by ε in Figure 2.

Let us start with the first approach that builds on the model-based information. In a realistic framework,

the output data are applied to the diagnosis filter in discrete-time samples. Thus firstly, we would like to

express the discrete-time version of (2) as a more compact linear DAE (here it refers to difference algebraic

equation) formulation,

H(q)x̄[k] +L(q)y[k] + F (q)f [k] = 0, ∀k ∈ N, (3)

where q is a time-shift operator such that qx̃[k] → x̃[k + 1]. The augmented vector x̄ := [x̃⊤ d⊤]⊤ consists

of both the state variables and the load disturbances. We denote nr as the number of rows in (3). Then

H, L, F are polynomial matrices in terms of the operator q with nr rows and nx, ny, nf columns, respectively,

by defining,

H(q) :=

[
−qI +Ax Bd

C 0

]
,L(q) :=

[
0

−I

]
,F (q) :=

[
Bf

Df

]
,

where Ax, Bd and Bf are from a zero-order hold (ZOH) discretization of (2) for a given sampling time Ts

[20, page 314]. Here we clarify that Ts is chosen based on the timescales of interest. In our motivating case

study, we consider the AGC process that performs as the secondary frequency control of a multi-area system

and has relatively slow dynamics (the timescale of secondary frequency response is in the range of seconds)

[11]. We note that Ts differs from the simulation time step set in the high-fidelity simulator whose time step

resolution can be very high for power system dynamics simulation. Thus in the following, the simulation

results from PowerFactory initially with a very small time step also need to be ”sampled” first according to

Ts.

Next, we further explain the setting of our proposed solution. For the filter design in Figure 2, yp from the

simulation results of PowerFactory is available as the input to the diagnosis filter. In this article, we propose

a diagnosis filter as a type of residual generator having a linear transfer operation,

r[k] := Rε(q)yp[k], (4)

ε[k] = yp[k]− y[k], (5)

where r is the residual signal (generally with one dimension for the sake of diagnosis) in Figure 2, Rε(q) with

a predefined degree is the design variable of the diagnosis filter, which will depend on the information of the

abstract model in the preceding subsection and also the simulation data through the mismatch signature ε

introduced in (5).
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3. Optimization-based Characterization of the Diagnosis Filter

3.1. Robust diagnosis filter

Considering the model-based information in the compact formulation of (3) from (2), the residual generator

can be represented through polynomial matrix equations. Thus for Rε(q) in (4), we introduce Rε(q) :=

a(q)−1N(q)L(q), where N(q) :=
∑dN

i=1 Niq
i in which Ni ∈ R1×nr (note that the dimension of the residual

signal is 1) for i ∈ {1, . . . , dN} and dN is the predefined degree. Now N(q) becomes the filter design variable,

if the scalar polynomial a(q) with sufficient order to make Rε(q) physically realizable is determined. Note

that dN is adjustable to be much less than the order of system dynamics in (2). From (3) to (5), we can

further have

r[k] = a(q)−1N(q)L(q)yp[k]

= a(q)−1N(q)L(q)(y[k] + ε[k])

= − a(q)−1N(q)H(q)x̄[k]︸ ︷︷ ︸
(I)

− a(q)−1N(q)F (q)f [k]︸ ︷︷ ︸
(II)

+ a(q)−1N(q)L(q)ε[k]︸ ︷︷ ︸
(III)

, (6)

where term (II) is the only desired contribution from the anomaly f . Ideally, we would like to let the residual

keep robust against the unknowns of term (I) and (III). For that purpose, first we need to quantify the effect

of model mismatch (reflected through the mismatch signature ε) on the filter residual. For all k ∈ N, let us
define

rε[k] := a(q)−1N(q)L(q)ε[k] . (7)

Next, let us further denote the space of a discrete-time signal taking values in Rn over the horizon of T (i.e.,

k ∈ {1, · · · , T}) by Wn
T . We equip this space with an inner product and a corresponding norm as

∥v∥2L2
:=

〈
v, v

〉
,

〈
v, w

〉
:=

T∑
k=1

v⊤[k]w[k], (8)

where v, w are some elements in the space Wn
T .

The main objective of applying a diagnosis filter in the high-fidelity simulator for anomaly detection is

to make the filter residual r as sensitive to anomaly f as possible and simultaneously as robust as possible

against other unknowns in term (I) and (III). To achieve that, we introduce a scalable and robust diagnosis

filter characterized by a class of residual generator that has the following features.

Definition 3.1 (Robust diagnosis filter). Consider the residual generator represented via a polynomial vec-

tor N(q) for a given a(q) in (6). This residual generator is robust with respect to model mismatch and can

detect all the plausible disruptive attacks, if N(q) is the optimal solution from

min
N(q)

∥rε∥2L2

s.t. N(q)H(q) = 0 , (9)

N(q)F (q)f ̸= 0, ∀f ∈ F .

The first constraint in (9) ensures rejection of the unknown of term (I) in the filter residual; the second

constraint guarantees the filter sensitivity to all the admissible disruptive FDI attacks in the plausible set F
of Definition 2.2 ; the objective function seeks to reduce the impact of model mismatch on the filter residual

(term (III)).
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3.2. Tractable optimization-based characterization under univariate attack

In light of (9) in Definition 3.1 for the robust diagnosis filter design, let us first consider the univariate

attack scenario (nf = 1). Note that when there is no attack, the system output yp from the PowerFactory

simulations and y from the abstract model (2) only depend on the input of load disturbances d. Thus for one

instance of load disturbances, di, one can have a specific mismatch signature εi according to (5). For each

εi ∈ Wny

T , a matrix Ei ∈ Rny×T can be introduced,

Ei :=
[
εi[1], εi[2], · · · , εi[T ]

]
. (10)

Recall that the operator q acts as a time-shift operator: q εi[k] → εi[k+ 1]. This operator is linear, and it

can be translated as a matrix left-shift operator for matrix Ei: qEi = EiD where D is a square matrix of

order T . Following the definition of the residual rε in (7), we have

a(q)rε = N(q)L(q)Ei = N̄L̄


I

qI
...

qdN I

Ei = N̄L̄Di , (11)

where the matrices are defined as N̄ := [N0, N1, · · · , NdN
], L̄ := diag[L, L, · · · , L] and L = L(q), and

Di := [ET
i , (EiD)T , · · · , (EiD

dN )T ]T . Given a particular disturbance pattern di, then the L2-norm of the

residual signal as defined in (8) can be reformulated as a quadratic function,

∥rεi∥2L2
= N̄QiN̄

⊤, Qi = (L̄Di)G(L̄Di)
⊤, (12)

where G is a positive semi-definite matrix with a dimension of T such that G(i, j) =
〈
a(q)−1ui, a(q)−1uj

〉
in which ui, uj ∈ W1

T are the discrete-time unit impulses. It can be observed from (12) that the matrix

Qi is also positive semi-definite since Qi is symmetric and for all non-zero row vector N̄ , we can have

N̄QiN̄
⊤ = ∥rεi∥2L2

≥ 0. We call Qi the mismatch signature matrix resulting from a specific mismatch

signature under a particular load disturbance instance.

Remark 3.2 (Training with multiple model mismatch signatures). In order to robustify the diagnosis filter,

it can be “trained” by utilizing the information of multiple instances of load disturbances, i.e.,
{
di

}m

i=1
, under

normal system operations (without attacks). For each disturbance signature di, the mismatch signature εi and

also the mismatch signature matrices Qi can be computed from (10) to (12). Next, according to (9) in Defini-

tion 3.1, the robust diagnosis filter has an optimization-based characterization where the objective function can

be formulated to minimize N̄((1/m)
∑m

i=1 Qi)N̄
⊤ (average-cost viewpoint) or maxi≤m(N̄QiN̄

⊤) (worst-case

viewpoint). We note that from computational perspective the average-cost is much more preferred. It is worthy

mentioning here that the training number m may have a significant impact on the diagnosis performance of

the proposed filter. As a general rule, the smaller the training number m, the worse the proposed filter may

behave in detecting anomalies by performing more misdiagnoses.

Theorem 3.3 (Tractable quadratic programming characterization). Consider the polynomial matrices H(q) =

H0 + qH1 and F (q) = F where H0,H1 ∈ Rnr×nx̃ and F ∈ Rnr×nf are constant matrices. The robust di-

agnosis filter introduced in (9) of Definition 3.1 for the univariate attack can be obtained by solving the

optimization program,

min
N̄

N̄(
1

m

m∑
i=1

Qi)N̄
⊤

s.t. N̄H̄ = 0 , (13)
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∥∥
∞ ≥ 1 ,

where ∥ · ∥∞ denotes the infinite vector norm, and

H̄ :=


H0 H1 0 · · · 0

0 H0 H1 0
...

... 0
. . .

. . . 0

0 · · · 0 H0 H1

 .

Similar to the matrix L̄ in (12), F̄ in (13) is defined as F̄ := diag[F , F , · · · , F ]. Besides, a robust diagnosis

filter from the program (13) but simply adding the following linear constraint can have non-zero steady-state

residual that could approximate the attack value of f ,

−a(1)−1
dN∑
i=0

NiF = 1. (14)

Proof. The key step is to observe that in (9) we can rewrite,

N(q)H(q)= N̄H̄[I, qI, · · · , qdN+1I]⊤,

N(q)F (q)= N̄F̄ [I, qI, · · · , qdN I]⊤.
(15)

In the scenario of univariate attack (nf = 1), the last constraint of (9) can be translated into N(q)F (q) ̸= 0 to

ensure a nonzero transfer function from the univariate attack to the residual signal (i.e., a non-zero response

when the univariate attack occurs). Then looking at the linear structure of N(q)F (q) ̸= 0, from (15), one

can scale this inequality to arrive at the one of ∥N̄F̄ ∥∞ ≥ 1 in (13). Next, the constraint N(q)H(q) = 0

in (9) can be recast as N̄H̄ = 0 in (13), following (15). Then, when N̄H̄ = 0 satisfies, the diagnosis

filter becomes r[k] = −a(q)−1N(q)F (q)f [k] + a(q)−1N(q)L(q)ε[k]. If there is no model mismatch (ε ≡ 0),

as a discrete-time signal, the steady-state value of the filter residual under the univariate attack would be

−a(q)−1N(q)F (q)f |q=1. Note that N(1)F (1) =
∑dN

i=0 NiF . Thus when there exists model mismatch, with

the linear constraint of (14), the residual in its steady-state value could approximate f . □

For the last constraint of (13), as indicated by [17, Lemma 4.3], ∥N̄F̄ ∥∞ ≥ 1 if and only if there exists a

coordinate j that N̄F̄ vj ≥ 1 or N̄F̄ vj ≤ −1. Here vj = [0, · · · , 1, · · · , 0]T(dN+1) in which the only non-zero

element of the vector is the j-th element. Thus, one can view (13) as a family of dN + 1 standard QPs with

linear constraints that for each QP the last constraint becomes N̄F̄ vj ≥ 1 (or N̄F̄ vj ≤ −1 since the set for

the solutions of N̄ in (13) is symmetric). In addition, recall that the matrix Qi in the objective function is

positive semi-definite, which implies that the resulted standard QPs are also convex, and hence tractable.

Remark 3.4 (Computational complexity). For the family of dN + 1 convex QPs, each of them contains

2 constraints and nr(dN + 1) decision variables (recall the dimension of N̄). Here nr, as the number of

rows in the compact model (3), depends on the number of state variables and system outputs of the picked

abstract model (2) (i.e., nr = nx̃ + ny). In our motivating case study of Section 2, such number is indeed

determined by the abstract model of the studied power system (e.g., the number of areas, transmission lines

called tie-lines that connect areas, and generators participating in AGC). But, notably, another parameter

dN , as the degree of the diagnosis filter, also affects the number of resulted QPs and decision variables. The

value of dN is adjustable and can be much less then the dimension of system dynamics. That is to say,

our optimization-based characterization for the proposed diagnosis filter results in highly scalable optimization

programs. Besides, a convex QP can be solved in polynomial time and there are very efficient toolboxes (e.g.,

CPLEX, MOSEK) for that purpose [37]. Thus, considering that the training phase of our approach is a

matter of matrix computation and the QPs are convex, we would say that our approach is not computational
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Algorithm 1 Diagnosis filter validation for univariate attack.

(i) Training phase

Input: yp, y under normal operations, dN , a(q)

Output: N̄ , Rε(q)

1 For each di, from yp and y, compute the mismatch signature matrix Qi according to (10) - (12).

2 For a number of m instances of di, perform the first step to get m signature matrices.

3 Solve the family of convex QPs from (13) with the derived Qi. Build Rε(q) based on the solution

N̄ from solving QPs and also dN , a(q).

(ii) Testing phase:

Input: yp under univariate attacks, Rε(q)

Output: r for anomaly detection

1 Let yp be the input of the diagnosis filter with Rε(q). Check the residual r for anomaly detection.

expensive especially comparing with many machine-learning type methods, but scalable for different studied

systems.

For a better illustration, Algorithm 1 concludes the diagnosis filter construction and validation process for

an implementation in PowerFactory to detect the univariate attack.

3.3. Extension to multivariate attack scenarios

Inspired by the techniques developed in [23], we further extend the preceding design of the robust diagnosis

filter to the scenario of multivariate attacks.

Corollary 3.5 (Robust diagnosis filter under multivariate attacks). Consider the diagnosis filter in Defini-

tion 3.1 where the set of multivariate attacks is defined as F = {f ∈ Rnf : f = F⊤
b α, α ∈ A} in which

A = {α ∈ Rd | Aα ≥ b} (see Definition 3.1 for the denotation of these variables). Given j ∈ {1, . . . , 2dN+2},
for each j, consider a family of the following quadratic programs,

min
N̄ ,λ

N̄(
1

m

m∑
i=1

Qi)N̄
⊤ ,

s.t. b⊤λ ≥ γj , (QPj)

(−1)jN⌊j/2⌋FFb = λ⊤A ,

N̄H̄ = 0, λ ≥ 0 ,

where ⌊ · ⌋ is the ceiling function that maps the argument to the least integer. Then, the best solution of the

quadratic programs (QPj) among j ∈ {1, . . . , 2dN + 2} solve the problem (9) in Definition 3.1 of robust

diagnosis filter for the scenario of multivariate attacks.

Proof. In the scenario of multivariate attacks, the two constraints in (9) can be characterized by the maximin

program,

γ⋆ := max
N̄∈N

min
α∈A

{
J (N̄ ,α)

}
, (16)

where the set N :=
{
N̄ ∈ R(dN+1)nr | N̄H̄ = 0

}
. The source of the cost function J (N̄ ,α) is referred to

[23, Section IV.B]. Then, according to [23, Theorem IV.3], we know that the maximin program (16) can be

reformulated and relaxed to a set of linear programs (LPs),

γ⋆
j := max

N̄ ,λ
b⊤λ
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s.t. (−1)jN⌊j/2⌋FFb = λ⊤A, (LPj)

N̄H̄ = 0, λ ≥ 0 ,

Namely, the solution to the program (LPj) is a feasible solution to the maximin program (16), and it satisfies

max{j≤2dN+2} γ
⋆
j ≤ γ⋆. Then it is easy to obtain the finite (QPj) for the multivariate attack scenario. We

conclude the proof by noting that if there is a γ⋆
j being positive3, then a resulted filter from (LPj) could

detect all the multivariate attacks in the set F . □

From Corollary 3.5, we can see that for any j ∈ {1, . . . , 2dN +2}, if one can find a γj > 0 that (QPj) is still

feasible, then the solution to QPj offers a robust diagnosis filter in the type of Definition 3.1 for multivariate

attacks. It is worth mentioning that the obtained (QPj) in Corollary 3.5 is also a standard convex QP.

Along the same lines as Remark 3.4, each program of (QPj) (j ∈ {1, . . . , 2dN + 2}) in Corollary 3.5 has

nr(dN + 1) + nb decision variables and can be solved in polynomial time. Thus it can be observed that for

the scenario of multivariate attacks, our proposed approach can also achieve high scalability.

Algorithm 2 concludes the filter construction and validation process of our proposed solution in the scenario

of multivariate attacks. In the “pre-training”, one needs to solve (LPj) for each j to see if there exists γ⋆
j > 0.

If yes, next in the “training phase”, similar to the process in Algorithm 1, the mismatch signature matrices can

be computed according to (10) - (12). Then the program (QPj) needs to be solved and the resulted robust di-

agnosis filter can be “tested” in PowerFactory. We would like to highlight that, the robust diagnosis filter from

(QPj) does not necessarily enforce a non-zero steady-state residual under multivariate attacks. Regarding its

steady-state behavior, the program (16) can be modified into µ⋆ := max{N̄∈N} min{α∈A} |N̄F̄α| which has

an exact convex reformulation. Then a similar treatment as the one in Corollary 3.5 can be deployed.

In the end, we summarize the filter features under univariate or multivariate attacks and in the pure

model-based or our proposed data-assisted model-based methods, in Table 1.

3To remark, as noted in Definition 2.2, the parameter b, A and Fb are scenario-specific. There is no need that the elements

of b are fully positive; however, if all of them are negative, there may not exist a positive γ⋆
j .

Algorithm 2 Diagnosis filter validation for multivariate attack.

(i) Pre-training

Input: A, b, Fb

Output: γ⋆
j

1 Solve (LPj) for each j ∈ {1, . . . , 2dN + 2}. Check if there exists γ⋆
j > 0 and find the maximum.

(i) Training phase

Input: yp, y under normal operations, dN , a(q)

Output: N̄ , Rε(q)

1 For each di, from yp and y, compute the mismatch signature matrix Qi according to (10) - (12).

2 For a number of m instances of di, perform the first step to get m signature matrices.

3 Set the initial value of γj to be max{j≤2dN+2} γ
⋆
j from pre-training. Solve (QPj) with the derived

Qi.

4 Tune the value of γj until it reaches maximum. Build Rε(q) based on the solution N̄ and dN ,

a(q).

(ii) Testing phase:

Input: yp under multivariate attacks, Rε(q)

Output: r for anomaly detection

1 Let yp be the input of the diagnosis filter with Rε(q). Check the residual r for anomaly detection.
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Table 1. A summary of filter features in different scenarios.

Attack scenario Model-based detection

univariate multivariate pure data-assisted

Filter features nf = 1 nf > 1
Qi = 0,

in [23]

Qi from (12),

this study

4. Numerical Results

4.1. Test system and robust filter description

To validate the effectiveness of our data-assisted model-based diagnosis filter, it has been implemented in

the high-fidelity simulator of DIgSILENT PowerFactory to detect FDI attacks on the ACE signal of AGC

in the three-area 39-bus system. The system parameters of the abstract model are referred to [4], and the

specifications of the model in PowerFactory are available at [26]. Following Algorithm 1 and 2, to obtain

model mismatch signatures, we run the simulations to obtain yp and y with the same input d of load

disturbances in normal operations. The adjustable degree of the residual generator is set to dN = 3 which is

much less than the order of the abstract model (it is a 19-order model of (2)); we set the scalar polynomial

a(q) = (q−p)dN /(1− p)
dN where p is a user-defined variable acting as the pole of Rε(q), and it is normalized

in steady-state value for all feasible poles. The simulation time step is set to 0.01 s in the RMS simulation tool

of PowerFactory. We let Ts = 0.5 s such that the simulation results from PowerFactory initially with the very

small time step are also ”sampled”, and thus for a simulation time ts = 10 s, T = 20 in (10). We also perform

a comparison study for the two methods: our data-assisted model-based filter and the pure model-based one

in [23].

4.2. Main simulation results

The first simulation considers the univariate attack where an attacker has manipulated the power exchange

between Area 1 and Area 2 from t = 30 s in the horizon of 60 s. To challenge the filter, the disturbances

are modeled as stochastic load patterns: load variation of Load 4 in Area 1 is a random zero-mean Gaussian

signal. A number of m = 100 load disturbance instances are generated for the “training phase” where for

each disturbance instance di, a simulation with ts = 10 s is conducted to obtain mismatch signatures εi .

Following Algorithm 1, the design variable N̄ of our diagnosis filter is derived. To compare, a pure model-

based filter is also obtained by letting Qi = 0 in Theorem 3.3 (see Table 1), which can be transformed into

finite LPs. The simulation results are referred to Figure 3. We can see that our data-assisted model-based

filter has significant improvements in the regards of mitigating the effect from model mismatch on the residual,

comparing with the pure model-based approach . Besides, from Figure 3f, it can track attack value through

its steady-state residual. The pure model-based filter fails by triggering false alarms, when applied directly

to the PowerFactory simulator. This can be expected since it utilizes the abstract model-based information

only and suits for the given model of (2). Figure 3g and 3h provide the residual results under 10 different

realizations of load disturbances in the “testing phase”. They depict the “energy” of the residual signals for

the last 10s under 10 load disturbance instances, namely ∥r∥L2
[ · ]. Note that in Figure 3h the threshold is set

to τ⋆ + 0.025, where the square of τ⋆ equals to the maximum value of N̄QiN̄ in the 100 training instances

(i ∈ {1, · · · , 100}); recall (12) that ∥rεi∥2L2
= N̄QiN̄

⊤. The added value is to avoid possible false alarms
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(b) Load disturbance and univariate attack.
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(f) Residual of single instance with model mismatch
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Figure 3. Left: pure model-based filter in [23] under univariate attack. It is derived by

letting Qi = 0 in Theorem 3.3, which can be transformed into finite LPs. Right: data-

assisted model-based filter. It is derived by solving (13) in Theorem 3.3 where Qi is from

(12), and in the end it is a family of convex QPs.

according to [18]. Then a univariate FDI attack is said to be detected when the value of ∥r∥L2
[ · ] is beyond

the threshold; we see successful detections by our proposed method in Figure 3h, while the pure model-based

one fails in Figure 3g. To conclude, our proposed diagnosis filter implemented in the high-fidelity simulator

(PowerFactory in our case study) can successfully generate residual “alerts” for the occurrence of FDI attacks,

and keep the impact o f model mismatch minimized.

In the second simulation, we move to the scenario of multivariate attacks. There are 5 power exchanges

between areas that are attacked, and correspondingly there exist 3 basis vectors in the spanning set F :

f1 = [0.1 0 0.1 0 0]T , f2 = [0.1 0.15 0.25 0 0]T , f3 = [0 0 0 0.1 0.1]T (all in p.u.). Besides, for

the set of disruptive multivariate attacks, the parameters are set to A = 1⊤ and b = [1.5]⊤ in A. We refer

to [23, Section V] for the specification of these values. Following Algorithm 2, the program (LPj) is solved

first. The optimal value achieves maximum for j = 2 that γ⋆
2 = 300, which implies that a diagnosis filter
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(b) Load disturbance and multivariate attack.
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Figure 4. Left: pure model-based filter in [23]. It is derived by letting Qi = 0 in Corol-

lary 3.5, and it is essentially a set of LPs. Right: Data-assisted model-based filter. It is

derived by solving (QPj) in Corollary 3.5 where Qi is from (12).

of our approach could be obtained. Next, in the “training phase”, a number of m = 100 load disturbance

instances are randomly generated. The program (QPj) in Corollary 3.5 is solved for the filter design. For

the derived optimal solution N̄ , the multivariate attack coordinate vector α is obtained by solving the inner

minimization of the program (16). In the “test phase”, simulations in PowerFactory are conducted that

several realizations of load disturbances have been implemented and the multivariate attacks with α have

been launched. The performance of the two filters (the filter of our approach and the pure model-based

filter from [23]) is validated with two sets of outputs: one from the abstract model (2) (i.e., without model

mismatch, ε ≡ 0) and another one from the PowerFactory simulations (i.e., with model mismatch, ε ̸= 0).

Figure 4 shows the simulation results of both diagnosis filters. We can see that both filters succeed for the case

ε ≡ 0. However, from Figure 4e and 4f, when there exists model mismatch, our data-assisted model-based

filter still works effectively, while the pure model-based filter in [23] totally fails by triggering false alarms.
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(c) Diagnosis of univariate attack (parameter variation
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(d) Diagnosis of multivariate attack (parameter varia-
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Figure 5. Data-assisted model-based filter. Variations on parameters (equivalent inertia

constants, damping coefficients, droop coefficients) of ±20% and ±40% are made on the

abstract model.

Besides, similar to Figure 3g and 3h, Figure 4g and 4h depict the “energy” of the residual signals for the last

10s under 10 load disturbance instances. In Figure 4h, the threshold is set to τ⋆ + 0.1 where the square of

τ⋆ equals to the maximum value of N̄QiN̄ in the 100 training instances (i ∈ {1, · · · , 100}), and the added

value is to avoid possible false alarms. Then a multivariate attack is said to be detected when the value of

∥r∥L2
[ · ] is beyond this threshold; we see successful detections by our proposed method in Figure 4h, while

the pure model-based one totally fails in Figure 4g. From Figure 4h and Figure 3h, one can observe that

the energy of residual varies slightly for the 10 different instances by our proposed diagnosis filter, compared

with the one by the pure model-based method in [23]. The major difference between these two approaches

is that we have utilized another important piece of information, the simulation data from PowerFactory to

reveal the model mismatch signatures, in addition to the abstract model-based knowledge. On one hand, this

phenomenon highlights the importance of considering possible model mismatches when applying model-based

diagnosis tool in practice; on the other hand, the results prove the effectiveness of our proposed solution for

tackling with that. In the end, note that when looking into the steady-state behavior of the filter, it turns

out that µ⋆ = 0, which indicates that the optimal multivariate attack in this case is a stealthy attack in the

long-term horizon, with or without considering the model mismatch impact. However, one can still detect

such attacks with a non-zero transient residual, as shown in Figure 4h. In conclusion, these simulation results

have validated the effectiveness of our proposed solution.

4.3. Additional simulation results and discussions

4.3.A. Robustness of the diagnosis filter to parameter variations in the abstract model and measurement noises

As highlighted in Remark 2.1, various sources may contribute to the model mismatch between (1) and

(2). Thus the following question comes: can the effectiveness of our proposed solution on the robustification
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Figure 6. Data-assisted model-based filter. Measurement noises are considered in the mea-

surements (outputs of simulation results from PowerFactory) in the filter design.

scheme against model mismatch be still ensured in the cases of other model mismatch sources in addition to

load disturbances and cyber attacks? To explore that, we have conducted the following simulations.

First, we would like to explore how the parameter variations in the abstract model could affect the diagnosis

performance, which is also a big concern when one needs to chose the abstract model for model-based informa-

tion in the filter design. Figure 5 shows the energy of residuals under univariate or multivariate attacks, while

different levels (±20%, ±40%) of parameter variations on equivalent inertia constants, damping coefficients

and droop coefficients of the three areas are considered. We can observe that the proposed diagnosis filter

still detects the univariate and multivariate attacks effectively without triggering false alarms when there is

no attack (in the period of 0 to 30s in Figure 5), even with parameter variation of ±40% on the abstract

model.

The second simulation considers possible measurement noises which are also among the sources contributing

to the model mismatch. Here the zero-mean Gaussian noise term added to the measurements (outputs of

simulation results from PowerFactory, all in p.u.) follows that the covariance of the frequency measurement

is 0.009 and the covariance of other measurements’ noise is 0.03 [1]. Then Figure 6 provides the results for

both scenarios of univariate and multivariate attacks, when the measurement noises are considered. It can be

seen that measurement noises do affect the diagnosis signal; however, we still see a successful detection by our

proposed diagnosis filter. But we notice that if the covariance in the noise term becomes much larger (which

may be not the case in reality since in general we can have accurate measurements with the development

of sensing technology), there may exist the case that our diagnosis filter generates false alarms when there

is no attack. This is due to the fact that too much “uncertainty” in the model mismatch may make our

robustification scheme fail to capture the “true pattern” of model mismatch signatures. To conclude in this

end, Figure 6 and Figure 5 still illustrate the effectiveness of our robustification scheme for possible model

mismatches caused by parameter variations and measurement noises.

4.3.B. The impact of training number on the diagnosis performance

In Remark 3.2, we have mentioned that the training number may affect the diagnosis performance of our

proposed filter. Here we decide to provide more numerical results in order to illustrate how the training

number impact the filter residual. To recall first, we have seen that in Section 4.2 our diagnosis filter achieves

successful detections for both scenarios of univariate and multivariate attacks when the training number is

set to 100. In Figure 7, we have conducted simulations under different training numbers in the scenario of

multivariate attacks. The results in Figure 7 generally follow the rule noted in Remark 3.2, i.e., the smaller

the training number m, the worse the proposed filter may behave in detecting anomalies by performing more
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Figure 7. Data-assisted model-based filter. The training number varies from m = 5 to

m = 65.

misdiagnoses. In particular, from Figure 7 we see that the diagnosis filter can perform much better when m

reaches 35 (Figure 7c), though there still exist misdiagnoses that false alarms may be triggered. When m

reaches 65, the diagnosis filter can perform all successful detections in the test set.

4.3.C. Detection of other types of cyber attacks

In this article, the motivating case study comes from the cyber security concerns of the multi-area power

system under AGC operations. The FDI attacks on AGC power flow or frequency measurements are essentially

acting as exogenous inputs to the system (see f in (2)). There are other types of attacks, e.g., missing data

attack (Denial-of-service attack), data repetition attack (replay attack), fault-resembling injection attack,

parameter manipulation attack, can be also modeled as the exogenous inputs to the system. Here we introduce

two types of them in brief:

• Denial-of-service (DoS) attack: A type of missing data attack where the attacker aims to prevent

some specific data from being delivered to the respective destinations.

• Replay attack: A type of data repetition attack that there exist two stages where the attacker gathers

a sequence of data packets at stage 1, and then replays the recorded data afterwards at stage 2.

From a detection point of view, DoS attacks are trivially detectable without any sophisticated mechanisms

as the absence of data is not stealthy. In the typical DoS attack modeling, the missing data is typically

replaced with the last received ones [31]. In such a mechanism, the DoS can be treated as an “injection”

attack. We investigate the performance of our filter in the presence of this type of attacks in Figure 8.

Numerical results confirm that our proposed filter can successfully detect the DoS attacks. In regard with

the replay attack, the articles [16, 9] offer sufficient conditions under which plausible attacks may remain

stealthy irrespective of the detection mechanism providing that the attacker has access all the necessary data

channels and excite attack of stage 2 at a suitable time. For instance, if the attacker has obtained all the

system outputs under one load disturbance instance and excite stage-2 attack, our proposed diagnosis filter

may fail to distinguish the replay attack from load disturbances.
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Figure 8. Data-assisted model-based filter in detecting DoS attacks which are launched at

30s, under multiple load disturbance instances.

4.3.D. Applicability of the proposed solution

It can be extended to other systems and anomaly scenarios if the anomalies are still acting as exogenous

inputs. Another instance can be the small-signal dynamics model of power systems under anomalies such as

cyber attacks or bad data on the measurements (e.g., terminal voltage/current phasor of each generator). The

mathematical description of the model can be a linear one considering a small perturbation over an operating

point, resulting an abstract model [33, Section III]. We see the effectiveness of our proposed solution with the

PowerFactory simulator in our case study, however, we need to clarify that the efficacy of our method is in

fact independent on a particular high-fidelity simulator.

4.3.E. Comparison with other pure model-based or data-driven detectors

As illustrated in simulation results, it can be expected that model mismatch would affect the diagnosis

of other pure model-based detectors like observers when applied to the high-fidelity simulator. Regarding

data-driven approaches, we admit that they may also be able to detect the anomalies of this article, while the

data training stage may require a high computational cost, comparing with our proposed tractable convex

optimization-based characterization.

5. Conclusion

We have proposed a feasible solution to the problem that arises from applying scalable model-based anomaly

detectors in practice: there always exist mismatches between the output from the picked abstract model and

the one from the simulator (or the real electric power system). In our final tractable reformulation, the abstract

model-based information introduces feasible sets, and the simulation data forms the objective function to

minimize the model mismatch effects, which could bridge the model-based and data-driven approaches.
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Figure 9. The diagram of the three-area 39-bus system [23].

Appendix

1.1. Parameters of the abstract model

An instance of the abstract model (2) is given as follows. Figure 9 depicts the schematic diagram of the

three-area 39-bus system used in the abstract model (2) in Section 2. Please also note the connection between

Figure 9 and Figure 1. For AGC analysis, we are interested in collective performance of all generators, and

thus we can rely on certain levels of abstraction that simplify some elements of the initial model in (1) and

utilize the possible decoupling between control loops. Then the mathematical description of an AGC system

in Area i can be presented in the linear formulation where each area of a power system is represented by a

model with equivalent governors, turbines and generators,

∆ω̇i =
1

2Hi
(∆Pmi

−∆Ptiei −∆Pdi
−Di∆ωi),

∆Pmi
=

Gi∑
g=1

∆Pmig
, ∆Ptiei =

∑
j∈Mi

∆Ptieij ,

∆Ṗmig = − 1

Tchig

(∆Pmig
+

1

Sig
∆ωi − ϕig∆Pagci),

∆Ṗtieij = Tij(∆ωi −∆ωj),

ACEi = βi∆ωi +
∑

j∈Mi

∆Ptieij ,

∆Ṗagci = −KIiACEi,

(17)

where Hi is the equivalent inertia constant of Area i, Di is the damping coefficient, ∆Pmi and ∆Ptiei are the

total generated power in Area i and the total tie-line power exchanges from Area i, and ∆Pdi denotes load

disturbance. The term Gi is the number of participated generators in Area i, and Mi is the set of areas that
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connect to Area i. Tchig
is the governor-turbine’s time constant, Sig is the droop coefficient, and Tij is the

synchronizing parameter between Area i and j.

In the AGC loop, note that ∆Pagci in (17) is the signal from the AGC controller for the participated

generators to track the load changes, and ϕi,g is the participating factor, i.e.,
∑Gi

g=1 ϕi,g = 1. After receiving

the frequency and tie-line power measurements, the ACE signal is computed for an integral action where βi

is the frequency bias and KIi represents the integral gain. Based on the equations in (17), the linear model

of Area i can be presented as

˙̃xi(t) = Ac,iix̃i(t) +Bd,idi(t) +
∑

j∈Mi

Ac,ijx̃j(t), (18a)

yi(t) = Cix̃i(t), (18b)

where x̃i :=
[
{∆Ptieij}j∈Mi

,∆ωi, {∆Pmig
}1:Gi

,∆Pagci

]⊤
is the state vector that consists of area frequency,

generator output, tie-line power exchange and AGC control signal of the close-loop system; di := [∆Pdi
]⊤

denotes load disturbances. Ac,ii is the system matrix of Area i, Ac,ij is a matrix whose only non-zero element

is −Tij in row 1 or 2 and column 3, Bd,i is the matrix for load disturbances. We can take an output model

with high redundancy that the measurements of frequency, tie-line power exchanges, generator outputs, and

AGC control signals are all measured. Then yi is the output of Area i and Ci is the output matrix with full

column rank. As noted earlier, vulnerabilities within the communication channels for frequencies and power

exchanges as parts of the ACE signal may allow FDI attacks. For instance, if an attack manipulates one of

tie-line power exchanges from Area i, say ftiei , then the ACE signal in (17) would be corrupted into

ACEi = βi∆ωi + (
∑

j∈Mi

∆Ptieij + ftiei), (19)

which implies that FDI corruptions would affect the dynamics of controllers and consequently the involved

physical system. In the end, using the state/output equation of each area, the continuous-time model of a

multi-area AGC system under FDI attacks can be described in the form of (2).
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Figure 10. The block definition of AGC in PowerFactory.
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1.2. AGC system and FDI attack modeling in PowerFactory

In a high-fidelity simulator like PowerFactory, a detailed simulation of power system dynamics can be

carried out that all the details of generators (e.g., synchronous machine, exciter, voltage regulator, turbine-

governor unit), electric network and also controllers such as AGC can be included. Figure 1 depicts the

three-area IEEE 39-bus system with AGC functions in the PowerFactory simulator. In the simulations, the

dynamic generator model can consist of a synchronous machine, along with voltage regulator for the excitation

system in the type of IEEE Type 1, and turbine-governor model in the type of IEEE Type G1 (steam turbine)

or IEEE Type G3 (hydro turbine).

The generators in red diagrams of Figure 1 are also participating AGC control. The AGC control loop

can be developed by PowerFactory’s own modeling language - DIgSILENT Simulation Language (DSL). For

instance, Figure 10 illustrates the block definition of AGC in Area 1, which has several sub-blocks that collect

frequencies and power exchanges between areas as the control inputs and perform AGC function to calculate

signals for power settings of the participated generators in Area 1. Moreover, we build another block definition

for the FDI attack model on the parts of the ACE signal. We have built the high-fidelity simulation model

in the simulator PowerFactory for the 39-bus system equipped with AGC functions. The composite frame of

AGC builds the connections between the inputs and outputs of the AGC model elements. Then the AGC

block definitions for all areas can be created. For Figure 10 of block definition of AGC in Area 1, the four

sub-blocks consist of

• frequency deviations block where the frequency deviations in p.u. multiplied by a bias factor are

calculated;

• tie-line power flows deviations block which computes the tie-line power flow deviations (normalized

in p.u.) on the side of Area 1 for the power part of ACE;

• AGC controller block which performs the ACE calculation and the integral action to generate the tun-

ing signal (∆Pagci) for power settings of participated generators. The saturation effects are considered

that the limits of Pmin
agc and Pmax

agc are added for the tuning signal.

• AGC output signals block where the tuning signals for the participated generators in Area 1 for AGC

are calculated based on each generator’s participating factor.

The above block definitions are modeled using the Standard Macros of PowerFactory’s global Library.

Moreover, in Figure 10, another block definition (in red diagram) corresponds to the FDI attack model for

the study of this article,

• FDI attacks block where the FDI attack is implemented. Each block captures the feature of the

stationary FDI attack, i.e., the attack occurs as a constant bias injection (f [k] = f) on measurements

at a specific time step, and it remains unchanged since then. This block can add an “false” injection

into the existing signal. One can specify the occurrence time and the attack values. This block

definition is achieved by using the digexfun interface. With digexfun, we can define a specific DSL

function (in C++) and create a dynamic link library digexfun *.dll that PowerFactory can load.
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