
Fast Approximate Dynamic Programming

for Input-Affine Dynamics

M. A. S. Kolarijani and P. Mohajerin Esfahani

Abstract. We propose two novel numerical schemes for approximate implementation of the dy-

namic programming (DP) operation concerned with finite-horizon optimal control of discrete-time

systems with input-affine dynamics. The proposed algorithms involve discretization of the state and

input spaces, and are based on an alternative path that solves the dual problem corresponding to the

DP operation. We provide error bounds for the proposed algorithms, along with a detailed analyses

of their computational complexity. In particular, for a specific class of problems with separable data

in the state and input variables, the proposed approach can reduce the typical time complexity of

the DP operation from O(XU) to O(X+U), where X and U denote the size of the discrete state and

input spaces, respectively. This reduction in complexity is achieved by an algorithmic transformation

of the minimization in DP operation to an addition via discrete conjugation.

Keywords: approximate dynamic programming, conjugate duality, input-affine dynamics, compu-

tational complexity

1. Introduction

Dynamic programming (DP) is one of the most common tools used for tackling sequential decision

with applications in, e.g., optimal control, operation research, and machine learning. The basic idea

of DP is to solve the Bellman equation

(1) Jt(xt) = min
ut

{
C(xt, ut) + Jt+1(xt+1)

}
,

backward in time t for the costs-to-go Jt, where C(xt, ut) is the cost of taking the control action ut

at the state xt (value iteration). Arguably, the most important drawback of DP is in its high

computational cost in solving problems with a large scale finite state space, which are usually

described as Markov decision processes (MDPs). Indeed, in [4], the authors show that for a finite-

horizon MDP, the problem of determining whether a control action u0 is an optimal action at a given

initial state x0 using value iteration is EXPTIME-complete. For problems with a continuous state

space, which is commonly the case in engineering applications, solving the Bellman equation requires

solving infinite number of optimization problems. This usually renders the exact implementation

of the DP operation impossible, except for a few cases with an available closed form solution, e.g.,

linear quadratic regulator [7, Sec. 4.1]. To address this issue, various schemes have been introduced,

Date: May 11, 2021.

The authors are with Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands.

Email: {M.A.SharifiKolarijani, P.MohajerinEsfahani}@tudelft.nl.

The authors would like to thank G. F. Max for several fruitful discussions.

This research was supported by the European Research Council (ERC) under the European Unions Horizon 2020

research and innovation programme (TRUST-949796).

1

2

commonly known as approximate dynamic programming; see, e.g., [9, 29]. A common scheme is to

use a sample-based approach accompanied by some form of function approximation. This usually

amounts to deploying a brute force search over the discretizations/abstractions of the state and

input spaces, leading to a time complexity of at least O(XU), where X and U are the cardinality

of the discrete state and input spaces, respectively.

For some DP problems, it is possible to reduce this complexity by using duality, i.e., approaching

the minimization problem in (1) in the conjugate domain. For instance, for the deterministic linear

dynamics xt+1 = Axt +But with the separable cost C(xt, ut) = Cs(xt) + Ci(ut), we have

(2) Jt(xt) ≥ Cs(xt) +
[
C∗i (−B>·) + J∗t+1

]∗
(Axt),

where the operator [·]∗ denotes the Legendre-Fenchel transform, also known as (convex) conjugate

transform. Under some technical assumptions (including, among others, convexity of the func-

tions Ci and Jt+1), we have equality in (2); see, e.g., [8, Prop. 5.3.1]. Notice how the minimization

operator in (1) transforms to a simple addition in (2). This observation signals the possibility of a

significant reduction in the time complexity of solving the Bellman equation, at least for particular

classes of DP problems.

Approaching the DP problem through the lens of the conjugate duality goes back to Bellman [5].

Further applications of this idea for reducing the computational complexity were later explored in

[16] and [20]. Fundamentally, these approaches exploit the operational duality of infimal convolution

and addition with respect to (w.r.t.) the conjugate transform [30]: For two functions f1, f2 : Rn →
[−∞,∞], we have (f1�f2)∗ = f∗1 + f∗2 , where f1�f2(x) := inf{f1(x1) + f2(x2) : x1 + x2 = x} is

the infimal convolution of f1 and f2. This is analogous to the well-known operational duality of

convolution and multiplication w.r.t. the Fourier transform. Actually, Legendre-Fenchel transform

plays a similar role as Fourier transform when the underlying algebra is the max-plus algebra, as

opposed to the conventional plus-times algebra. Much like the extensive application of the latter

operational duality upon introduction of the fast Fourier transform, “fast” numerical algorithms

for conjugate transform can facilitate efficient applications of the former one. Interestingly, the

first fast algorithm for computing (discrete) conjugate functions, known as fast Legendre transform,

was inspired by fast Fourier transform, and enjoys the same log-linear complexity in the number

of data points; see [13, 22] and the references therein. Later, this complexity was reduced by

introducing a linear-time algorithm known as linear-time Legendre transform (LLT) [23]. We refer

the interested reader to [25] for an extensive review of these algorithms (and other similar algorithms)

and their applications. In this regard, we also note that recently, in [34], the authors introduced

a quantum algorithm for computing the (discrete) conjugate of convex functions, which achieves a

poly-logarithmic time complexity in the number of data points.

One of the first and most widespread applications of these fast algorithms has been in solving

Hamilton-Jacobi equation [1, 13, 14]. Another interesting area of application is image processing,

where the Legendre-Fenchel transform is commonly known as distance transform [17, 24]. Recently,

in [18], the authors used these algorithms to tackle the optimal transport problem with strictly

convex costs, with applications in image processing and in numerical methods for solving partial

differential equations. However, surprisingly, the application of these fast algorithms in solving

discrete-time optimal control problems seems to remain largely unexplored. An exception is [12],

3

where the authors use LLT to propose the “fast value iteration” algorithm for computing the fixed-

point of the Bellman operator arising from a specific class of infinite-horizon, discrete-time DP

problems. Indeed, the setup in [12] corresponds to a subclass of problems considered in our study,

which allows for a “perfect” transformation of the minimization in the DP operation in the primal

domain to an addition in the dual (conjugate) domain; this connection will be discussed in detail

in Section 7.1. Let us also note that the algorithms developed in [17, 24] for distance transform

can also potentially tackle the (discretized) optimal control problems similar to the ones considered

in this study. In particular, these algorithms require the stage cost to be reformulated as a convex

distance function of the current and next states. While the this property might arise naturally, it

can generally be restrictive as it is in our case.

Another line of work, closely related to ours, involves algorithms that utilize max-plus algebra

in solving, continuous-time, continuous-space, deterministic optimal control problems; see, e.g.,

[27, 26, 2]. These works exploit the compatibility of the Bellman operation with max-plus operations,

and approximate the value function as a max-plus linear combination. In particular, recently in [3, 6],

the authors used this idea to propose an approximate value iteration algorithm for deteministic

MDPs with continuous state space. In this regard, we note that the proposed algorithms in the

current study also implicitly involve representing cost functions as max-plus linear combinations,

yielding piece-wise affine approximations. The key difference of the proposed algorithms is however

to choose a dynamic, grid-like (factorized) set of slopes in the dual space in order to control the

error and reduce the computational cost; we will discuss this point in more details in Section 7.2

Paper organization and summary of main results. In this study, we consider the approximate

implementation of the DP operation arising in the finite-horizon optimal control of discrete-time

systems with continuous state and input spaces. The proposed approach involves discretization of

the state space, and is based on an alternative path that solves the dual problem corresponding to

the DP operation by utilizing the LLT algorithm for discrete conjugation. After presenting some

preliminaries in Section 2, we provide the problem statement and its standard solution via the d-DP

algorithm (in the primal domain) in Section 3. Sections 4 and 5 contain our main results on the

proposed alternative approach for solving the DP problem in the conjugate domain:

(i) From minimization in primal domain to addition in dual domain: In Section 4,

we introduce the discrete conjugate DP (d-CDP) algorithm (Algorithm 1) for problems

with deterministic input-affine dynamics; see Figure 1a for the sketch of the algorithm. In

particular, we use the linearity of the dynamics in the input to effectively incorporate the

operational duality of addition and infimal convolution, and transform the minimization in

the DP operation to a simple addition at the expense of three conjugate transforms. This, in

turn, leads to transferring the computational cost from the input domain U to the state dual

domain Y (Theorem 4.4). Moreover, the extension of this algorithm for stochastic dynamics

is discussed in Section 4.3.1.

(ii) From quadratic to linear time complexity: In Section 5, we modify the proposed d-

CDP algorithm (Algorithm 2) and reduce its time complexity (Theorem 5.2) for a subclass of

problems with separable data in the state and input variables; see Figure 1b for the sketch of

the algorithm. In particular, for this class, the time complexity of computing the costs-to-go

at each step is of O(X + U), compared to the standard complexity of O(XU).

4

J(x+) T [J](x)

J∗(y) φx(y)

φ∗x
(
fs(x)

)
T̂ [J](x)

Dual domain

Primal domain

=

min
u
{C(x, u) + J(x+)}

[·]∗

+C∗x(−fi(x)>y)

[·]∗

(a)

J(x+) T [J](x)

J∗(y) φ(y)

φ∗
(
fs(x)

)
T̂ [J](x)

Dual domain

Primal domain
min
u
{C(x, u) + J(x+)}

[·]∗

+C∗i (−B>y)

[·]∗

+Cs(x)

(b)

Figure 1. Sketch of the proposed algorithms – the standard DP operation in the primal domain (up-

per red paths) and the conjugate DP (CDP) operation through the dual domain (bottom blue paths):

(a) Setting 1 with dynamics x+ = fs(x) + fi(x) · u and generic convex cost C(x, u); (b) Setting 2 with

dynamics x+ = fs(x) +B · u and separable convex cost C(x, u) = Cs(x) + Ci(u).

(iii) Error bounds and construction of discrete dual domain: We analyze the error of the

proposed d-CDP algorithm and its modification (Theorems 4.6 and 5.3). The error analysis

is based on two preliminary results on the error of discrete conjugation (Lemma 2.5) and

approximate conjugation (Lemma 2.6 and Corollary 2.7). Moreover, we use the results of

our error analysis to provide concrete guidelines for the construction of a dynamic discrete

dual space in the proposed algorithms (Remark 4.7).

In Section 6, we validate our theoretical results and compare the performance of the proposed

algorithms with the benchmark d-DP algorithm through multiple numerical examples. Further

numerical examples (and descriptions of the extensions of the proposed algorithms) are provided in

Appendix C. Moreover, in order to facilitate the application of the proposed algorithms, we provide

a MATLAB package:

(iv) The d-CDP MATLAB package: The algorithms presented in this study and their exten-

sions are available in the d-CDP MATLAB package [21]. A brief description of this package

is provided in Appendix D. The numerical examples of this study are also included in the

package and reproducible.

Section 7 concludes the paper by providing further remarks on the proposed algorithms such as

its limitations and its relation to the existing schemes and algorithms in the literature. In particular,

we discuss a potential significance of the conjugate dynamic programming framework proposed in

this study towards quantum-mechanical implementation of DP:

(v) Towards quantum dynamic programming: Motivated by the recent quantum speedup

for discrete conjugation [34], we envision that the proposed d-CDP Algorithm 2 paves the way

for developing a quantum DP algorithm. In Section 7.6, we discuss how such an algorithm

can potentially address the infamous “curse of dimensinality” in DP.

5

2. Notations and Preliminaries

2.1. General notations

We use R to denote the real line and R = R ∪ {∞}, R = R ∪ {±∞} to denote its extensions.

The standard inner product in Rn and the corresponding induced 2-norm are denoted by 〈·, ·〉 and

‖·‖, respectively. We also use ‖·‖ to denote the operator norm (w.r.t. the 2-norm) of a matrix;

i.e., for A ∈ Rm×n, we denote ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}. We use the common convention in

optimization whereby the optimal value of an infeasible minimization (resp. maximization) problem

is set to +∞ (resp. −∞). Arbitrary sets (finite/infinite, countable/uncountable) are denoted as

X,Y, For finite (discrete) sets, we use the superscript d as in Xd,Yd, . . . to differentiate them

form infinite sets. Moreover, we use the superscript g to differentiate grid-like (factorized) finite

sets. Precisely, a grid Xg ⊂ Rn is the Cartesian product Xg = Πn
i=1X

g
i = Xg

1 × . . .×Xg
n, where Xg

i is

a finite set of real numbers x1i < x2i < . . . < xXi
i . Assuming Xi ≥ 3 for all i = 1, . . . , n, we define

Xg
sub := Πn

i=1X
g
subi

, where Xg
subi

= Xg
i \ {x1i , x

Xi
i }; that is, Xg

sub is the sub-grid derived by omitting

the smallest and largest elements of Xg in each dimension. The cardinality of a finite set Xd (or Xg)

is denoted by X. Let X,Y be two arbitrary sets in Rn. The convex hull of X is denoted by co(X).

The diameter of X is defined as ∆X := supx,y∈X ‖x− y‖. We use d(X,Y) := infx∈X,y∈Y ‖x− y‖ to

denote the distance between X and Y. The one-sided Hausdorff distance from X to Y is defined

as dH(X,Y) := supx∈X infy∈Y ‖x− y‖. For an extended real-valued function h : Rn → R, the

effective domain of h is defined by dom(h) := {x ∈ Rn : h(x) < +∞}. The Lipschtiz constant of h

over a set X ⊂ dom(h) is denoted by L(h;X) := supx,y∈X |h(x) − h(y)|/ ‖x− y‖. We also denote

L(h) := L
(
h; dom(h)

)
and L(h) := Πn

i=1

[
L−i (h),L+

i (h)
]
, where L+

i (h) (resp. L−i (h)) is the maximum

(resp. minimum) slope of the function h along the i-th dimension, i.e.,

L+
i (h) := sup

{
h(x)− h(y)

xi − yi
: x, y ∈ dom(h), xi > yi, xj = yj (j 6= i)

}
,

L−i (h) := inf

{
h(x)− h(y)

xi − yi
: x, y ∈ dom(h), xi > yi, xj = yj (j 6= i)

}
.

The subdifferential of h at a point x ∈ Rn is defined as ∂h(x) :=
{
y ∈ Rn : h(x̃) ≥ h(x) +

〈y, x̃− x〉 ,∀x̃ ∈ dom(h)
}

. We report the complexities using the standard big O notations O and

Õ, where the latter hides the logarithmic factors. In this study, we are mainly concerned with the

dependence of the computational complexities on the size of the finite sets involved (discretization of

the primal and dual domains). In particular, we ignore the possible dependence of the computational

complexities on the dimension of the variables, unless they appear in the power of the size of those

discrete sets; e.g., the complexity of a single evaluation of an analytically available function is

taken to be of O(1), regardless of the dimension of its input and output arguments. For reader’s

convenience, we also provide the list of the most important objects used throughout this article in

the Table 1.

2.2. Extension of discrete functions

Consider an extended real-valued function h : Rn → R, and its discretization hd : Xd → R,

where Xd is a finite subset of Rn. We use the superscript d, as in hd, to denote the discretization

of h. We particularly use this notation in combination with a second operation to emphasize that

6

Table 1. List of the most important notational conventions.

Notation & Description Definition

LERP Multilinear interpolation & extrapolation –

LLT Linear-time Legendre Transform –

hd Discretization of the function h –

h̃d Extension of the discrete function hd –

hd LERP extension of the discrete function hd (with grid-like domain) –

h∗ Conjugate of h (3)

hd∗ Discrete conjugate of h (conjugate of hd) (4)

h∗∗ Biconjugate of h (5)

hd∗d∗ Discrete biconjugate of h (6)

T Dynamic Programming (DP) operator (16) & (29)

T d Discrete DP (d-DP) operator [for Setting 1] (18)

T̂ Conjugate DP (CDP) operator [for Setting 1] (23)

T̂ d Discrete CDP (d-CDP) operator (24) & (30)

T̂ d
m Modified d-CDP operator [for Setting 2] (31)

the second operation is applied on the discretized version of the operand. In particular, we use

h̃d : Rn → R to denote the extension of the discrete function hd : Xd → R. The extension can

be realized, for example, as a linear approximation of the form J̃d(x) =
∑B

i=1 αi · bi(x), where bi’s

are the basis functions, and αi are the corresponding coefficients. These coefficients are determined

by minimizing the squared error of the approximation over the discrete space, i.e.,
∑

x∈Xd [Jd(x)−
J̃d(x)]2. Another possibility is to use kernel-based approximators with one kernel per sample, i.e.,

J̃d(x) =
∑

y∈Xd αy · r(x, y), where r is the kernel function.

Remark 2.1 (Complexity of extension operation). We use E to denote the complexity of a generic

extension operator. That is, for each x ∈ Rn, the time complexity of the single evaluation h̃d(x) is

assumed to be of O(E), with E (possibly) being a function of X.

A kernel-based approximator of interest in this study is the multilinear interpolation & extrapo-

lation (LERP) of a discrete function with a grid-like domain. Hence, we denote this operation with

the different notation hd : Rn → R for the discrete function hd : Xg → R. Notice that the LERP

extension preserves the value of the function at the discrete points, i.e, hd(x) = hd(x) for all x ∈ Xg.

In order to facilitate our complexity analysis in subsequent sections, we discusses the computational

complexity of LERP in the following remark.

Remark 2.2 (Complexity of LERP). Given a discrete function hd : Xg → R with a grid-like

domain Xg ⊂ Rn, the time complexity of a single evaluation of the LERP extension hd at a point x ∈
Rn is of O(2n + logX) = Õ(1) if Xg is non-uniform, and of O(2n) = O(1) if Xg is uniform. To

see this, note that, in the case Xg is non-uniform, LERP requires O(logX) operations to find the

position of x w.r.t. the grid points, using binary search. If Xg is a uniform grid, this can be done in

O(n) time. Upon finding the position of x, LERP then involves a series of one-dimensional linear

interpolations or extrapolations along each dimension, which takes O(2n) operations.

7

For a convex function h : Rn → R, we have ∂h(x) 6= ∅ for all x in the relative interior of X [8,

Prop. 5.4.1]. This characterization of convexity can be extended to discrete functions. A discrete

function hd : Xd → R is called convex-extensible if ∂hd(x) 6= ∅ for all x ∈ dom(h) = Xd. Equiva-

lently, hd is convex-extensible, if it can be extended to a convex function h̃d : Rn → R such that

h̃d(x) = hd(x) for all x ∈ Xd; we refer the reader to, e.g., [28] for different extensions of the notion

of convexity to discrete functions.

2.3. Legendre-Fenchel Transform

Consider an extended-real-valued function h : Rn → R, with a nonempty effective domain

dom(h) = X. The Legendre-Fenchel transform (convex conjugate) of h is the function

(3) h∗ : Rn → R : y 7→ sup
x∈X
{〈y, x〉 − h(x)} .

Note that the conjugate function h∗ is convex by construction. In this study, we particularly consider

discrete conjugation, which involves computing the conjugate function using the discretized version

hd : Xd → R of the function h, where Xd∩X 6= ∅. We use the notation [·]d∗, as opposed the standard

notation [·]∗, for discrete conjugation; that is,

(4) hd∗ = [hd]∗ : Rn → R : y 7→ max
x∈Xd

{〈y, x〉 − h(x)} .

The biconjugate of h is the function

(5) h∗∗ = [h∗]∗ : Rn → R : x 7→ sup
y∈Rn
{〈x, y〉 − h∗(y)} = sup

y∈Rn
inf
z∈X
{〈x− z, y〉+ h(z)} .

Using the notion of discrete conjugation [·]d∗, we also define the (doubly) discrete biconjugate

(6) hd∗d∗ = [hd∗]d∗ : Rn → R : x 7→ max
y∈Yd

{〈x, y〉 − hd∗(y)} = max
y∈Yd

min
z∈Xd

{〈x− z, y〉+ h(z)} ,

where Xd and Yd are finite subsets of Rn such that Xd ∩ X 6= ∅.
The Linear-time Legendre Transform (LLT) is an efficient algorithm for computing the discrete

conjugate over a finite grid-like dual domain. Precisely, to compute the conjugate of the function h :

X → R, LLT takes its discretization hd : Xd → R as an input, and outputs hd∗d : Yg → R, for the

grid-like dual domain Yg. That is, LLT is equivalent to the operation [·]d∗d. We refer the interested

reader to [23] for a detailed description of the LLT algorithm. We will use the following result for

analyzing the computational complexity of the proposed algorithms.

Remark 2.3 (Complexity of LLT). Consider a function h : Rn → R and its discretization over a

grid-like set Xg ⊂ Rn such that Xg ∩ dom(h) 6= ∅. LLT computes the discrete conjugate function

hd∗d : Yg → R using the data points hd : Xg → R, with a time complexity of O
(
Πn
i=1(Xi + Yi)

)
,

where Xi (resp. Yi) is the cardinality of the i-th dimension of the grid Xg (resp. Yg). In particular,

if the grids Xg and Yg have approximately the same cardinality in each dimension, then the time

complexity of LLT is of O(X + Y) [23, Cor. 5].

Hereafter, in order to simplify the exposition, we consider the following assumption.

Assumption 2.4 (Grid sizes in LLT). The primal and dual grids used for LLT operation have

approximately the same cardinality in each dimension.

8

2.4. Preliminary results on conjugate transform

In what follows, we provide two preliminary lemmas on the error of discrete conjugate transform

and its approximate version. Although tailored for the error analysis of the proposed algorithms, we

present these results in a generic format in order to facilitate their possible application/extension

beyond this study. To this end, we recall some of the notations introduced so far. For a function

h : Rn → R with effective domain X = dom(h), let hd : Xd → R be its discretization of h, where

Xd ⊂ X. Also, let h∗ : Rn → R be the conjugate (3) of h, and hd∗ : Rn → R be the discrete

conjugate (4) of h, using the primal discrete domain Xd.

Lemma 2.5 (Conjugate vs. discrete conjugate). Let h : Rn → R be a proper, closed, convex function

with a nonempty domain X = dom(h). For each y ∈ Rn, it holds that

(7) 0 ≤ h∗(y)− hd∗(y) ≤ min
x∈∂h∗(y)

{[
‖y‖+ L

(
h; {x} ∪ Xd

)]
· d(x,Xd)

}
=: ẽ1(y, h,Xd).

If, moreover, X is compact and h is Lipschitz continuous, then

(8) 0 ≤ h∗(y)− hd∗(y) ≤
[
‖y‖+ L(h)

]
· dH(X,Xd) =: ẽ2(y, h,Xd), ∀y ∈ Rn.

Proof. See Appendix B.1. �

The preceding lemma indicates that discrete conjugation leads to an under-approximation of

the conjugate function, with the error depending on the discrete representation Xd of the primal

domain X. In particular, the inequality (7) implies that for y ∈ Rn, if Xd contains x ∈ ∂h∗(y), which

is equivalent to y ∈ ∂h(x) by the assumptions, then hd∗(y) = h∗(y).

We next present another preliminary however vital result on approximate conjugation. Let h∗d :

Yg → R be the discretization of h∗ over the grid-like dual domain Yg ⊂ Rn. Also, let h∗d : Rn → R
be the extension of h∗d using LERP. The approximate conjugation is then simply the approximation

of h∗(y) via h∗d(y) for y ∈ Rn. This approximation introduces a one-sided error:

Lemma 2.6 (Approximate conjugation using LERP). Consider a function h with a compact domain

X = dom(h). For all y ∈ co(Yg), it holds that

(9) 0 ≤ h∗d(y)− h∗(y) ≤ ∆X · d(y,Yg).

If, moreover, the dual grid Yg is such that co(Yg
sub) ⊇ L(h), then, for all y ∈ Rn, it holds that

(10) 0 ≤ h∗d(y)− h∗(y) ≤ ∆X · dH

(
co(Yg),Yg

)
.

Proof. See Appendix B.2. �

As expected, the error due to the discretization Yg of the dual domain Y depends on the resolution

of the discrete dual domain. We also note that the condition co(Yg
sub) ⊇ L(h) in the second part

of the preceding lemma (which implies that h is Lipschitz continuous), essentially requires the dual

grid Yg to more than cover the range of slopes of the function h.

The algorithms developed in this study use LLT to compute discrete conjugate functions. How-

ever, as we will see, we sometimes require the value of the conjugate function at points other than

the dual grid points used in LLT. To solve this issue, we use the same approximation described

9

above, but now for discrete conjugation. In this regard, we note that the result of Lemme 2.6 also

holds for discrete conjugation. To be precise, let hd∗d : Yg → R be the discretization of hd∗ over the

grid-like dual domain Yg ⊂ Rn, and hd∗d : Rn → R be the extension of hd∗d using LERP.

Corollary 2.7 (Approximate discrete conjugation using LERP). Consider a discrete function hd :

Xd → R. For all y ∈ co(Yg), it holds that

(11) 0 ≤ hd∗d(y)− hd∗(y) ≤ ∆Xd · d(y,Yg).

If, moreover, the dual grid Yg is such that co(Yg
sub) ⊇ L(hd), then, for all y ∈ Rn, it holds that

(12) 0 ≤ hd∗d(y)− hd∗(y) ≤ ∆Xd · dH

(
co(Yg),Yg

)
.

Proof. See Appendix B.3. �

3. Problem Statement and Standard Solution

In this study, we consider the optimal control of discrete-time systems

(13) xt+1 = f(xt, ut), t = 0, . . . , T − 1,

where f : Rn ×Rm → Rn describes the dynamics, and T ∈ N is the finite horizon. We also consider

state and input constraints of the form{
xt ∈ X ⊂ Rn for t ∈ {0, . . . , T},
ut ∈ U ⊂ Rm for t ∈ {0, . . . , T − 1}.

(14)

Let C : X × U → R and CT : X → R be the stage and terminal cost functions, respectively. In

particular, notice that we let the stage cost C take ∞ for (x, u) ∈ X × U so that it can embed

the state-dependent input constraints. For an initial state x0 ∈ X, the cost incurred by the state

trajectory x = (x0, . . . , xT) in response to the input sequence u = (u0, . . . , uT−1) is given by

J(x0,u) =
∑T−1

t=0 C(xt, ut) + CT (xT).

The problem of interest is then to find an optimal control sequence u?(x0), that is, a solution to the

minimization problem

(15) J?(x0) = min
u
{J(x0,u) : (13) & (14)} .

In order to solve this problem using DP, we have to solve the Bellman equation

Jt(xt) = min
u
{C(xt, ut) + Jt+1(xt+1) : (13) & (14)} , xt ∈ X,

backward in time t = T − 1, . . . , 0, initialized by JT = CT . The iteration finally outputs J0 = J? [7,

Prop. 1.3.1]. In order to simplify the exposition, let us embed the state and input constraints in the

cost functions (C and Jt) by extending them to infinity outside their effective domain. Let us also

drop the time subscript t and focus on a single step of the recursion by defining the DP operator

(16) T [J](x) := min
u

{
C(x, u) + J

(
f(x, u)

)}
, x ∈ X,

so that Jt = T [Jt+1] = T (T−t)[JT] for t = T − 1, . . . , 0. The main focus of this study is to use

conjugate duality in order to develop “fast” schemes for the numerical implementation of the DP

10

operator (16) for particular classes of optimal control problems. Notice, however, the DP opera-

tion (16) requires solving an infinite number of optimization problems for all x ∈ X. Except for

a few cases with an available closed form solution, the exact implementation of DP operation is

impossible. A standard approximation scheme is then to incorporate function approximation tech-

niques and solve (16) for a finite sample (i.e., a discretization) of the underlying continuous state

space. Precisely, we consider solving the optimization in (16) for a finite number of x ∈ Xg, where

Xg ⊂ X is a grid-like discretization of the state space:

Problem 3.1 (Value iteration). Given the discretization Xg ⊂ X of the state space, find the discrete

costs-to-go Jd
t : Xg → R for t = 0, 1, . . . , T − 1.

Notice that the DP operator T now takes the discrete function Jd : Xg → R as an input. However,

in order to compute the output [T [J]]d : Xg → R, we require evaluating J at points f(x, u) for

(x, u) ∈ Xg × U, which do not necessarily belong to the discrete state space Xg. Hence, along with

the discretization of the state space, we also need to consider some form of function approximation

for the cost-to-go function, that is, an extension J̃d : X→ R of the function Jd : Xg → R.

What remains to be addressed is the issue of solving the minimization

(17) min
u∈U

{
C(x, u) + J̃d

(
f(x, u)

)}
,

for each x ∈ Xg, where the next step cost-to-go is approximated by the extension J̃d. Here, again,

we consider an approximation that involves enumeration over a proper discretization Ug ⊂ U of the

inputs space. These approximations introduce some error which, under some regularity assump-

tions, depends on the discretization of the state and input spaces and the extension operation; see

Proposition A.1. Incorporating these approximations, we can introduce the discrete DP (d-DP)

operator as follows

(18) T d[Jd](x) := min
u∈Ug

{
C(x, u) + J̃d

(
f(x, u)

)}
, x ∈ Xg.

The d-DP operator/algorithm will be our benchmark for evaluating the performance of the alter-

native algorithms developed in this study. To this end, we discuss the time complexity of the d-DP

operation in the following remark.

Remark 3.2 (Complexity of d-DP). Let the time complexity of a single evaluation of the extension

operator [̃·] in (18) be of O(E). Then, the time complexity of the d-DP operation (18) is of O
(
XUE

)
.

Moreover, for solving the T -step value iteration Problem 3.1, the time complexity of d-DP algorithm

increases linearly with the horizon T .

Let us clarify that the scheme described above essentially involves approximating a continuous-

state/action MDP with a finite-state/action MDP, and then applying the value iteration algorithm.

In this regard, we note that O(XU) is the best existing time-complexity in the literature for finite

MDPs; see, e.g., [3, 32]. Indeed, regardless of the problem data, the d-DP algorithm involves solving

a minimization problem for each x ∈ Xg, via enumeration over u ∈ Ug. However, as we will see in

the subsequent sections, for certain classes of optimal control problems, it is possible to exploit the

structure of the underlying continuous setup to avoid the minimization over the input and achieve

a lower time complexity.

11

We finish this section with some remarks on using the output of the d-DP algorithm, for finding

a suboptimal control sequence u?(x0) for a given instance of the optimal control problem with

initial state x0. Upon solving the value iteration Problem 3.1, we have the discrete costs-to-go

Jd
t : Xg → R, t = 0, 1, . . . , T − 1, at our disposal. Then, in order to find u?(x0), we can use the

greedy policy w.r.t. to computed costs Jd
t by solving T minimization problems forward in time, i.e.,

(19) u?t ∈ argmin
ut∈Ug

{
C(xt, ut) + J̃d

t+1

(
f(xt, ut)

)}
, t = 0, 1, . . . , T − 1.

This leads to an additional computational burden of O(TUE) in solving a T -step optimal control

problem using the d-DP algorithm, where E represents the complexity of the extension operation

used in (19). On the other hand, the backward value iteration using the d-DP algorithm also

provides us with control laws µdt : Xg → Ug, t = 0, 1, . . . , T − 1. Hence, alternatively, we can use

these laws, accompanied by a proper extension operator, to produce a suboptimal control sequence,

i.e.,

(20) u?t (xt) = µ̃dt (xt), t = 0, 1, . . . , T − 1.

The second method (using control laws) then has a time complexity of O(TE), where E represents

the complexity of the extension operation used in (20). This complexity can be particularly lower

than O(TUE) of the first method (using costs). However, generating control actions using the

control laws has a higher memory complexity for systems with multiple inputs, and is also usually

more sensitive to modelling errors due to its completely open-loop nature. Moreover, we note that

the total time complexity of solving an instance of the optimal control problem, i.e., backward

iteration for computing of costs Jd
t and control laws µdt , and forward iteration for computing of

control sequence u?(x0), is in both methods of O(TXUE). That is, computationally, the backward

value iteration is the dominating factor. We will see this effect in our numerical study in Section 6,

where we consider both of the methods described above.

4. Alternative Solution: DP in Conjugate Domain

In this section, we introduce a general class of problems that allow us to employ conjugate duality

for the DP problem and hence propose an alternative path for implementing the corresponding

operator. In particular, we analyze the performance of the proposed algorithm by considering its

time complexity and error. We also discuss the extensions of the proposed algorithm, which address

two of the assumptions in our development.

4.1. The d-CDP algorithm

For now, we focus on deterministic systems described by (13) and (14), and postpone the discus-

sion on the extension of the proposed scheme for stochastic systems to Section 4.3. Throughout this

study, we assume that the problem data satisfy the following conditions.

Setting 1. The dynamics, constraints and costs have the following properties:

(i) Dynamics. The dynamics is input-affine, that is, f(x, u) = fs(x) + fi(x) · u, where fs :

Rn → Rn is the “state” dynamics, and fi : Rn → Rn×m is the “input” dynamics.

12

(ii) Constraints. The sets X and U are compact and convex. Moreover, for each x ∈ X, the

set of admissible inputs U(x) := {u ∈ U : C(x, u) <∞, f(x, u) ∈ X} is nonempty.

(iii) Cost functions. The stage cost C is jointly convex in the state and input variables, with a

compact effective domain. The terminal cost CT is also convex.

Note that the properties laid out in Setting 1 imply that the set of admissible inputs U(x) is

a nonempty, compact, convex set for each x ∈ X. Hence, the optimal value in (15) is achieved.

Hereafter, we also assume that the joint discretization of the state-input space is “proper” in the

sense that the feasibility condition of Setting 1-(ii) holds for the discrete state-input space:

Assumption 4.1 (Feasibile discretization). The discrete state space Xg ⊂ X and input space Ug ⊂ U
are such that Ug(x) := U(x) ∩ Ug 6= ∅ for all x ∈ Xg.

Alternatively, we can approach the optimization problem in the DP operation (16) in the dual

domain. To this end, let us fix x ∈ Xg, and consider the following reformulation of the problem (16):

T [J](x) = min
u,z
{C(x, u) + J(z) : z = f(x, u)} .

Notice how for input-affine dynamics, this formulation resembles the infimal convolution. In this

regard, consider the corresponding dual problem

T̂ [J](x) := max
y

min
u,z
{C(x, u) + J(z) + 〈y, f(x, u)− z〉},(21)

where y ∈ Rn is the dual variable. Indeed, for input-affine dynamics, we can derive an equivalent

formulation for the dual problem (21), which forms the basis for the proposed algorithms.

Lemma 4.2 (CDP operator). Let

(22) C∗x(v) := max
u

{
〈v, u〉 − C(x, u)

}
, v ∈ Rm,

denote the partial conjugate of the stage cost w.r.t. the input variable u. Then, for the input-affine

dynamics of Setting 1-(i), the operator T̂ (21) equivalently reads as

T̂ [J](x) = φ∗x
(
fs(x)

)
, x ∈ Xg,(23a)

φx(y) := C∗x(−fi(x)>y) + J∗(y), y ∈ Rn.(23b)

Proof. See Appendix B.4. �

As we mentioned, the construction above suggests an alternative path for computing the output

of the DP operator through the conjugate domain. We call this alternative approach conjugate DP

(CDP). Figure 1a characterizes this alternative path schematically. Numerical implementation of

CDP operation requires computation of conjugate functions. In particular, as shown in Figure 1a,

CDP operation involves three conjugate transforms. For now, we assume that the partial conjugate

C∗x of the stage cost in (22) is analytically available. We will discuss the possibility of computing

this object numerically in Section 4.3.

Assumption 4.3 (Conjugate of stage cost). For each x ∈ Xg, the conjugate function C∗x (22) is

analytically available. That is, the time complexity of evaluating C∗x(v) for each v ∈ Rm is of O(1).

13

Algorithm 1 Implementation of the d-CDP operator (24) for Setting 1.

Input: dynamics fs : Rn → Rn, fi : Rn → Rn×m;

discrete cost-to-go (at t+ 1) Jd : Xg → R;

conjugate of stage cost C∗x : Xg × Rm → R;

grid Yg ⊂ Rn;

Output: discrete cost-to-go (at t) T̂ d[Jd](x) : Xg → R.

1: use LLT to compute Jd∗d : Yg → R from Jd : Xg → R;

2: for each x ∈ Xg do

3: ϕd
x(y)← C∗x(−fi(x)>y) + Jd∗d(y) for y ∈ Yg;

4: T̂ d[Jd](x)← max
y∈Yg
{〈fs(x), y〉 − ϕd

x(y)}.
5: end for

The two remaining conjugate operations of the CDP path in Figure 1a are handled numerically.

To be precise, first, for a grid-like discretization Yg of the dual domain, we employ LLT to compute

Jd∗d : Yg → R using the data points Jd : Xg → R. We will discuss the construction of Yg in

Section 4.2.2. Now, let

ϕd
x(y) = C∗x(−fi(x)>y) + Jd∗d(y), y ∈ Yg,

be an approximation of φx (23b), where we used the discrete conjugate Jd∗ instead of the con-

jugate J∗. Then, we can also handle the last conjugate transform numerically, and approximate

φ∗x
(
fs(x)

)
by

ϕd∗
x

(
fs(x)

)
= max

y∈Yg
{〈fs(x), y〉 − ϕx(y)},

via enumeration over y ∈ Yg. Based on the construction described above, we can introduce the

discrete CDP (d-CDP) operator as follows

T̂ d[Jd](x) := ϕd∗
x

(
fs(x)

)
, x ∈ Xg,(24a)

ϕd
x(y) := C∗x(−fi(x)>y) + Jd∗d(y), y ∈ Yg.(24b)

Algorithm 1 provides the pseudo-code for the numerical implementation of the d-CDP opera-

tion (24). In the next subsection, we analyze the complexity and error of Algorithm 1.

4.2. Analysis of d-CDP algorithm

4.2.1. Complexity. We begin with the computational complexity of Algorithm 1.

Theorem 4.4 (Complexity of d-CDP – Algorithm 1). Let Assumptions 2.4 and 4.3 hold. Then,

the implementation of the d-CDP operator (24) via Algorithm 1 requires O(XY) operations.

Proof. See Appendix B.5. �

Recall that the time complexity of the d-DP operator (18) is of O(XUE); see Remark 3.2.

Comparing this complexity to the one reported in Theorem 4.4, points to a basic characteristic of

CDP w.r.t. DP: CDP avoids the minimization over the control input in DP and casts it as a simple

addition in the dual domain at the expense of three conjugate transforms. Consequently, the time

complexity is transferred form the primal input domain Ug into the state dual domain Yg. This

observation implies that if Y < UE, then d-CDP is expected to computationally outperform d-DP.

14

We finish with some remarks on the application of the d-CDP algorithm for finding a suboptimal

control sequence u?(x0) for a given initial state x0. In this regard, first notice that in the T -step

application of Algorithm 1 for solving the value iteration Problem 3.1, the complexity increases

linearly with the horizon T (assuming that the dual grid Yg can be constructed with at most

O(X) operations; see also Remark 4.7). More importantly, note that, unlike the d-DP algorithm,

the backward value iteration using the d-CDP algorithm only provides us with the costs-to-go

Jd
t : Xg → R, t = 0, 1, . . . , T − 1. Hence, in order to find u?(x0), we can again use the greedy

policy (19) w.r.t. the costs Jd
t computed using the d-CDP algorithm. Hence, an additional burden

of O(TUE) must be considered for finding u?(x0) using the d-CDP algorithm, where E represents

the complexity of the extension operation used in (19). As a result, the total complexity of computing

a control sequence for a given initial state using the d-CDP Algorithm 1 is of O
(
T (XY + UE)

)
.

4.2.2. Error. We now consider the error introduced by Algorithm 1 w.r.t. the DP operator (16).

Let us begin with presenting an alternative representation of the d-CDP operator that sheds some

light on the main sources of error in the d-CDP operation.

Proposition 4.5 (d-CDP reformulation). The d-CDP operator (24) equivalently reads as

(25) T̂ d[Jd](x) = min
u

{
C(x, u) + Jd∗d∗(f(x, u)

)}
, x ∈ Xg,

where Jd∗d∗ is the discrete biconjugate of J , using the primal and dual grids Xg and Yg, respectively.

Proof. See Appendix B.6. �

Comparing the representations (16) and (25), we note that the d-CDP operator T̂ d differs from

the DP operator T in that it uses Jd∗d∗ as an approximation of J . This observation points to two

main sources of error in the proposed approach, namely, dualization and discretization. Indeed, T̂ d

is a discretized version of the dual problem (21). Regarding the dualization error, we note that the

d-CDP operator is “blind” to non-convexity; that is, it essentially replaces the cost-to-go J by its

convex envelop (the greatest convex function that supports J from below). The discretization error,

on the other hand, depends on the choice of the finite primal and dual domains Xg and Yg. In

particular, by a proper choice of Yg, it is indeed possible to eliminate the corresponding error due

to discretization of the dual domain. To illustrate, let Jd be a one-dimensional, discrete, convex-

extensible function with domain Xg = {xi}Ni=1 ⊂ R, where xi < xi+1. (By convex-extensible, we

mean that Jd can be extended to convex function J̃d such that J̃d(x) = Jd(x) for all x ∈ Xg).

Also, choose Yg = {yi}N−1i=1 ⊂ R with yi = Jd(xi+1)−Jd(xi)
xi+1−xi as the discrete dual domain. Then, for

all x ∈ co(Xg) = [x1, xN], we have Jd∗d∗(x) = Jd(x), where [·] is the LERP extension. Hence,

the only source of error under such construction is the discretization of the primal state space (i.e.,

approximation of the true J via Jd). However, a similar construction of Yg in dimensions n ≥ 2 can

lead to dual grids of size Y = O(Xn), which is computationally impractical; see Theorem 4.4. The

following result provides us with specific bounds on the discretization error that point to a more

practical way for construction of Yg.

Theorem 4.6 (Error of d-CDP – Algorithm 1). Consider the DP operator T (16) and the imple-

mentation of the d-CDP operator T̂ d (24) via Algorithm 1. Assume that J : X → R is a Lipschitz

15

continuous, convex function. Then, for each x ∈ Xg, it holds that

(26) − e2 ≤ T [J](x)− T̂ d[Jd](x) ≤ e1(x),

where

e1(x) =
[
‖fs(x)‖+ ‖fi(x)‖ ·∆U + ∆X

]
· d
(
∂T [J](x),Yg

)
,

e2 = [∆Yg + L(J)] · dH(X,Xg).
(27)

Proof. See Appendix B.7. �

Notice how the two terms e1 and e2 capture the errors due to the discretization of the state

dual space (Y) and the primal state space (X), respectively. In particular, the first error term

suggests that we choose choose Yg such that ∂T [J](x) ∩ Yg 6= ∅ for all x ∈ Xg. Even if we had

access to T [J], satisfying such a condition can again lead to dual grids of size Y = O(Xn). A

more realistic objective is then to choose Yg such that co(Yg) ∩ ∂T [J](x) 6= ∅ for all x ∈ Xg. With

such a construction, the distance d
(
∂T [J](x),Yg

)
and hence e1 decrease by using finer grids for the

dual domain. To this end, we need to approximate “the range of slopes” of the function T [J] for

x ∈ Xg. Notice, however, that we do not have access to T [J] since it is the output of the d-CDP

operation in Algorithm 1. What we have at our disposal as inputs are the stage cost C and the

next step (discrete) cost-to-go Jd. A coarse way to approximate the range of slopes of T [J] is to use

the extrema of the functions C and Jd, and the diameter of Xg in each dimension. The following

remark explains such an approximation for the construction of Yg.

Remark 4.7 (Construction of Yg). Compute

CM = max
x∈Xg

max
u∈U(x)

C(x, u), Cm = min
x∈Xg

min
u∈U(x)

C(x, u), JM = max Jd, Jm = min Jd,

and then choose Yg = Πn
i=1Y

g
i ⊂ Rn such that for each dimension i = 1, . . . , n, we have

±α · C
M + JM − Cm − Jm

∆Xg
i

∈ co(Yg
i).

Here, α > 0 is a scaling factor mainly depending on the dimension n of the state space. This

construction has a linear time complexity w.r.t. the size X of the state space.

4.3. Extensions of d-CDP algorithm

In this section, we consider the extensions of the proposed d-CDP algorithm and their implications

on its complexity. In particular, the extension to stochastic systems with additive disturbance and

the possibility of numerical computation of the conjugate of the stage cost are discussed. The

pseudo-code for the multistep implementation of the extended d-CDP algorithm is provided in

Appendix C.1.

4.3.1. Stochastic systems. Consider the stochastic version of the dynamics (13) described by

xt+1 = f(xt, ut) + wt,

where wt, t = 0, . . . , T − 1, are independent, additive disturbances. Then, the stochastic version

of the CDP operator T̂ (23) still reads the same, except its takes Jw(·) := EwJ(· + w) as the

input, where Ew is the expectation operator w.r.t. w. In other words, we need to first pass the

16

cost-to-go J through the “expectation filter”, and then feed it to the CDP operator. The extension

of the d-CDP algorithm for handling this type of stochasticity involves similar considerations. To

illustrate, assume that the disturbances belong to a finite set Wd ⊂ Rn, with a known probability

mass function (p.m.f.) p : Wd → [0, 1]. The set Wd can indeed be considered as a discretization of

a bounded set of disturbances. Then, the corresponding extension of the d-CDP algorithm involves

applying T̂ d (24) to Jd
w(x) : Xg → R given by

(28) Jd
w(x) =

∑
w∈Wd p(w) · J̃d(x+ w),

where [̃·] is an extension operator such as LERP.

Assuming that a single evaluation of the employed extension operator in (28) requires O(E) op-

erations, the stochastic version of the d-CDP operation that utilizes the scheme described above

requires O
(
X(WE + Y)

)
operations. On the other hand, the stochastic version of the d-DP oper-

ation, described by

T d
s [Jd](x) := min

u∈Ug

{
C(x, u) + Ew

[
J̃d
(
f(x, u) + w

)]}
, x ∈ Xg,

has a time complexity of O(XUWE).

4.3.2. Numerical computation of C∗x. Assumption 4.3 on the availability of the conjugate func-

tion C∗x (22) of the stage cost can be restrictive. Alternatively, we can use the approximate discrete

conjugation to compute C∗x numerically as described by the following scheme:

• Step 1. For each x ∈ Xg:

1.a. compute/evaluate Cd
x = Cd(x, ·) : Ug → R, where Ug is a discretization of U;

1.b. construct the dual grid Vg(x) using the method described below; and,

1.c. apply LLT to compute Cd∗d
x : Vg(x)→ R using the data points Cd

x : Ug → R.

• Step 2. For each y ∈ Yg: use LERP to compute Cd∗d
x (−fi(x)>y) from the data points

Cd∗d
x : Vg(x)→ R, and use the result in Algorithm 1:3 as an approximation of C∗x(−fi(x)>y).

This scheme introduces some error that mainly depends on the grids Ug and Vg(x) used for the

discretization of the input space and its dual domain, respectively. Indeed, we can use Lemmas 2.5

and Corollary 2.7 to bound this error. We now use those results to provide some guidelines on the

construction of the dual grids Vg(x) for each x ∈ Xg. By Corollary 2.7, we can either (i) construct

Vg(x) dynamically such that co
(
Vg(x)

)
⊇ −fi(x)>Yg at each iteration, or (ii) construct a fixed grid

Vg(x) such that co
(
Vg
sub(x)

)
⊇ L(Cd

x). The former requires O(XY) operations per iteration, while

the latter has a one-time computational cost of O(XU) (assuming Cd
x : Ug → R is real-valued; see

also Remark 4.8). For this reason, we use the second construction. Then, the problem reduces to

computing the range of slopes of Cd
x . In this regard, notice that the function C(x, ·) is convex (see

Setting 1-(iii)), and hence its discretization is convex-extensible. Indeed, for such functions, it is

possible to compute the range of slopes with an acceptable cost as explained in the following remark.

Remark 4.8 (Construction of Vg(x) for x ∈ Xg). For the convex-extensible function Cd
x = Cd(x, ·) :

Ug → R, take L−i (Cd
x) (resp. L+

i (Cd
x)) to be the minimum finite first forward (resp. maximum finite

last backward) difference of Cd
x along each dimension i = 1, 2, . . . ,m. Then, construct the dual grid

Vg(x) = Πm
i=1V

g
i (x) ⊂ Rm such that in each dimension i, the set Vg

i (x) ⊂ R contains at least one

17

element that is less (resp. greater) than L−i (Cd
x) (resp. L+

i (Cd
x)), so that co

(
Vg
sub(x)

)
⊇ L(Cd

x). If

Cd
x : Ug → R is real-valued, this construction of Vg(x) has a complexity of O(U).

The proposed numerical scheme also increases the computational cost of the d-CDP algorithm.

However, considering the construction described above, the first step of the scheme is carried out

once in a multistep implementation of the d-CDP algorithm. In particular, assuming the grids

Vg(x), x ∈ Xg, are all of the same size V , for the T -step implementation of d-CDP algorithm which

uses the scheme described above to compute C∗x numerically,

• Step 1 introduces a one-time computational cost of O(X(U + V)), and,

• Step 2 increases the computational cost of the d-CDP algorithm to Õ(XY) per iteration.

Hence, the extension of the d-CDP Algorithm 1 that computes C∗x numerically has a complexity of

at most Õ
(
X(Y + U + V)

)
per iteration.

5. Reducing Complexity by Exploiting Structure

In this section, we focus on a specific subclass of the optimal control problems considered in

this study. In particular, we exploit the problem structure in this subclass in order to reduce the

computational cost of the d-CDP algorithm. In this regard, a closer look to Algorithm 1 reveals

a computational bottleneck in its numerical implementation: computing ϕd
x : Yg → R, and its

conjugate within the for loop over x ∈ Xg. This step is indeed the dominating factor in the time

complexity of O(XY) of Algorithm 1; see Appendix B.5 for the proof of Theorem 4.4. Hence, if

the structure of the problem allows for this computations to be carried out outside the for loop

over x ∈ Xg, then a significant reduction in the time complexity is achievable. This is indeed

possible for problems with separable data in the state and input variables. We again consider

deterministic systems in our development and assume that the conjugate of (input-dependent) stage

cost is analytically available (see Assumption 5.1 below). However, the same extensions discussed

in Section 4.3 for handling additive noise in the dynamics and numerical computation the conjugate

of (input-dependent) stage cost can be used for the modified d-CDP algorithm to be described. The

pseudo-code for the multistep implementation of the modified d-CDP algorithm including these

extensions is provided in Appendix C.1.

5.1. Modified d-CDP algorithm

Consider the following subclass of the problems described in Setting 1.

Setting 2. In addition to Setting 1, the dynamics and costs have the following properties:

(i) Dynamics. The input dynamics is state-independent, i.e., fi(·) = B ∈ Rn×m.

(ii) Cost functions. The stage cost is separable in the state and input variables, that is,

C(x, u) = Cs(x) + Ci(u), where Cs : X→ R and Ci : U→ R.

Note that the separability of the stage cost C implies that the constraints are also separable, i.e,

there are no state-dependent input constraints. Under the conditions above, the state-dependent

part of the stage cost (Cs) can be taken out of the minimization in the DP operator (16) as follows

T [J](x) = Cs(x) + min
u

{
Ci(u) + J

(
f(x, u)

)}
, x ∈ Xg.(29)

18

Following the same dualization and then discretization procedure described in Section 4.1, we can

derive the corresponding d-CDP operator

T̂ d[Jd](x) = Cs(x) + ϕd∗(fs(x)
)
, x ∈ Xg,(30a)

ϕd(y) := C∗i (−B>y) + Jd∗d(y), y ∈ Yg.(30b)

Here, again, we assume that the conjugate of the (input-dependent) stage cost is analytically avail-

able (similar to Assumption 4.3, now in the context posed by Setting 2).

Assumption 5.1 (Conjugate of input-dependent stage cost). The conjugate function C∗i (v) =

maxu{〈v, u〉 − Ci(u)} is analytically available; that is, the complexity of evaluating C∗i (v) for each

v ∈ Rm is of O(1).

Notice how the function ϕd in (30b) is now independent of the state variable x. This means that

the computation of ϕd requires O(Y) operations; cf. the for loop over x ∈ Xg for the compu-

tation of ϕd
x in Algorithm 1. What remains to be addressed is the computation of the conjugate

function ϕd∗(fs(x)
)

= maxy∈Yg{〈fs(x), y〉 − ϕ(y)} for x ∈ Xg in (30a). The straightforward max-

imization via enumeration over y ∈ Yg for each x ∈ Xg (as in Algorithm 1) again leads to a time

complexity of O(XY). The key idea here is to again use approximate discrete conjugatation:

• Step 1. Use LLT to compute ϕd∗d : Zg → R from the data points ϕd : Yg → R, for a fixed

grid Zg.

• Step 2. For each x ∈ Xg, use LERP to compute ϕd∗d
(
fs(x)

)
from the data points ϕd∗d :

Zg → R, as an approximation of ϕd∗(fs(x)
)
.

We will discuss the construction of the grid Zg in Section 5.2.2. With such an approximation, the

d-CDP operator (30) modifies to

T̂ d
m [Jd](x) := Cs(x) + ϕd∗d

(
fs(x)

)
, x ∈ Xg,(31a)

ϕd∗d(z) := max
y∈Yg
{〈z, y〉 − ϕ(y)}, z ∈ Zg,(31b)

ϕd(y) := C∗i (−B>y) + Jd∗d(y), y ∈ Yg.(31c)

Algorithm 2 provides the pseudo-code for the numerical scheme described above.

5.2. Analysis of modified d-CDP algorithm

5.2.1. Complexity. We again begin with the time complexity of the proposed algorithm.

Theorem 5.2 (Complexity of modified d-CDP – Algorithm 2). Let Assumptions 2.4 and 5.1 hold.

Then, the computation of the modified d-CDP operator (31) via Algorithm 2 has a time complexity

of Õ(X + Y + Z).

Proof. See Appendix B.8. �

Once again, we note that in the T -step application of Algorithm 2 for solving the value iteration

Problem 3.1, the time complexity increases linearly with the horizon T (assuming that the grids Yg

and Zg can be constructed with at most O(X) operations; see also Remarks 4.7 and 5.4).

19

Algorithm 2 Implementation of the modified d-CDP operator (31) for Setting 2.

Input: dynamics fs : Rn → Rn, B ∈ Rn×m;

discrete cost-to-go (at t+ 1) Jd : Xg → R;

state-dependent stage cost Cs(x) : Rn → R;

conjugate of input-dependent stage cost C∗i : Rm → R;

grids Yg,Zg ⊂ Rn.

Output: discrete cost-to-go (at t) T̂ d
m [Jd](x) : Xg → R.

1: use LLT to compute Jd∗d : Yg → R from Jd : Xg → R;

2: ϕd(y)← C∗i (−B>y) + Jd∗d(y) for y ∈ Yg;

3: use LLT to compute ϕd∗d : Zg → R from ϕd : Yg → R;

4: for each x ∈ Xg do

5: use LERP to compute ϕd∗d
(
fs(x)

)
from ϕd∗d : Zg → R;

6: T̂ d
m [Jd](x)← Cs(x) + ϕd∗d

(
fs(x)

)
;

7: end for

We now compare the time complexity of d-CDP Algorithm 2 with that of d-DP algorithm and

d-CDP Algorithm 1. In order to explicitly observe the reduction from quadratic complexity to (log-

)linear complexity, let us assume that all the involved grids (Xg, Yg, and Zg) are of the same size, i.e.,

Y,Z = X (this is also consistent with Assumption 2.4). Then, the complexity of d-CDP Algorithm 1

is of O(X2), while the complexity of d-CDP Algorithm 2 is of Õ(X). The same reduction can be seen

in the complexity of finding a suboptimal control sequence for a given initial state. In particular,

if we use the greedy policy (19) w.r.t. the discrete costs-to-go Jd
t computed using Algorithm 2, the

total complexity of computing the control sequence is of Õ
(
T (X+Y +Z+UE)

)
= Õ

(
T (X+UE)

)
,

where E represents the complexity of the extension operation used in (19). This is a reduction from

quadratic to linear complexity compared to both d-DP algorithm and d-CDP Algorithm 1.

Finally, let us discuss the implications of the extensions of the Section 4.3 on the time complexity

of d-CDP Algorithm 2. Again, assume Y,Z = X. First, regarding handling additive noise in the

dynamics, we can follow the exact same procedure explained in Section 4.3.1. In particular, for a

disturbance with the finite support Wd, the stochastic version of the modified d-CDP operator (31)

requires Õ(XWE + Y + Z) = Õ(XWE) operations in each iteration. Second, for the extension

concerning numerical computation of the conjugate C∗i of the input-dependent cost, we can also

follow the scheme described in Section 4.3.2. However, since the function is now independent of

the state, the two steps of that scheme also become independent of x. This leads to a one-time

computational cost of O(U+V) for Step 1, and a per iteration computational cost of Õ(Y) for Step 2.

Hence, the extended version of the modified d-CDP Algorithm 2 that computes C∗i numerically, has

at most a complexity of Õ(X + Y + Z + U + V) = Õ(X + U), assuming also V = U . Once again,

in both cases, we see a reduction from quadratic complexity to linear complexity compared to both

d-DP algorithm and d-CDP Algorithm 1.

5.2.2. Error. We next consider the error of the proposed algorithm by providing a bound on the

difference between the modified d-CDP operator (31) and the DP operator (29).

20

Theorem 5.3 (Error of modified d-CDP – Algorithm 2). Consider the DP operator T (29) and the

implementation of the modified d-CDP operator T̂ d
m (31) via Algorithm 2. Assume that J : X→ R is

a Lipschitz continuous, convex function, and that the grid Zg in Algorthim 2 is such that co(Zg) ⊃
fs(Xg). Then, for each x ∈ Xg, we have

(32) −
(
e2 + e3

)
≤ T [J](x)− T̂ d

m [Jd](x) ≤ em1 (x),

where

em1 (x) :=
[
‖fs(x)‖+ ‖B‖ ·∆U + ∆X

]
· d
(
∂
(
T [J]− Cs

)
(x),Yg

)
,

e2 = [∆Yg + L(J)] · dH(X,Xg),

e3 = ∆Yg · dH

(
fs(Xg),Zg

)
.

(33)

Proof. See Appendix B.9. �

Once again, the three terms capture the errors due to discretization in y, x, and z, respectively. We

now use this result to provide some guidelines on the construction of the required grids. Concerning

the grid Yg, because of the error term em1 , similar guidelines to the ones provided in Section 4.2.2

apply here. In particular, notice that the first error term em1 (33) now depends on d
(
∂
(
T [J] −

Cs

)
(x),Yg

)
, and hence in the construction of Yg, we need to consider the range of slopes of T [J]−Cs.

This essentially means using CMi = maxu∈UCi and Cmi = minu∈UCi instead of CM and Cm,

respectively, in Remark 4.7. Next to be addressed is the construction of the grid Zg. Here, again,

we are dealing with the issue of constructing the dual grid for approximate discrete conjugation.

Then, by Corollary 2.7, we can either (i) construct a fixed grid Zg such that co(Zg) ⊃ fs(Xg), or

(ii) construct Zg dynamically such that co(Zg
sub) ⊇ L(ϕd) at each iteration. The former has a one-

time computational cost of O(X), while the latter requires O(Y) operations per iteration. For this

reason, as also assumed Theorem 5.3, we use the first method to construction Zg. The following

remark summarizes this discussion.

Remark 5.4 (Construction of Zg). Construct the grid Zg such that co(Zg) ⊃ fs(Xg). This can

be done by finding the vertices of the smallest hyper-rectangle that contains the set fs
(
Xg
)
. Such a

construction has a one-time computational cost of O(X).

6. Numerical Experiments

In this section, we examine the performance of the proposed d-CDP algorithms in comparison with

the d-DP algorithm through two synthetic numerical examples. In particular, we use these numerical

examples to verify our theoretical results on the complexity and error of the proposed algorithms.

Here, we focus on the performance of the basic algorithms for deterministic systems for which the

conjugate of the (input-dependent) stage cost is analytically available (see Assumptions 4.3 and 5.1).

The results of the numerical simulations of the extended versions of these algorithms are provided

in Appendix C.1. The application of these algorithms in solving the optimal control problem for

a simple epidemic model and a noisy inverted pendulum are showcased in Appendix C.2. Finally,

we note that all the simulations presented in this article were implemented via MATLAB version

R2017b, on a PC with Intel Xeon 3.60 GHz processor and 16 GB RAM.

21

Throughout this section, we consider a linear system with two states and two inputs described by

(34) xt+1 =

[
−0.5 2

1 3

]
xt +

[
1 0.5

1 1

]
ut,

over the finite horizon T = 10, with the following state and input constraints

(35) xt ∈ X = [−1, 1]2 ⊂ R2, ut ∈ U = [−2, 2]2 ⊂ R2.

Moreover, we consider quadratic state cost and exponential input cost as follows

(36) Cs(x) = CT (x) = ‖x‖2 , Ci(u) = e|u1| + e|u2| − 2.

We use uniform grid-like discretizations Xg ⊂ X and Ug ⊂ U for the state and input spaces,

respectively. All of the other grids (Yg and Zg) involved in the proposed d-CDP algorithms are

also constructed uniformly, according to the guidelines provided in Remarks 4.7 and 5.4. We are

particularly interested in the performance (error and time complexity) of the d-CDP algorithms

in comparison with the d-DP algorithm, as the size of these discrete sets increases. Considering

the fact that all the involved grids are constructed uniformly, and all the extension operations are

handled via LERP, we can summarize the computational complexities as follows.

Remark 6.1 (Comparison of complexities). Assume that all the finite sets involved in the d-DP

and d-CDP algorithms (Xg,Ug,Yg,Zg) are uniform grids, and that all the extension operations in

these algorithms are handled via LERP. Then, the complexity of finding a suboptimal input sequence

in a T -step optimal control problem for a given initial state is of

(i) O(TXU) for d-DP algorithm,

(ii) O
(
T (XY + U)

)
for d-CDP Algorithm 1,

(iii) O
(
T (X + Y + Z + U)

)
for d-CDP Algorithm 2.

6.1. Numerical study of Algorithm 1

In this section, in addition to the constraints (35), we also consider the following constraint

(37) h(xt, ut) = xt + ut − (2, 2)> ≤ 0,

where h : R2 × R2 → R describes the state-dependent input constraints. Corresponding to the

notation of Section 4, the stage and terminal costs are respectively given by (see (36))

C(x, u) = ‖x‖2 + e|u1| + e|u2| − 2, CT (x) = ‖x‖2 ,

subject to (35) and (37). The conjugate of the stage cost is also analytically available and given by

C∗x(v) = 1− ‖x‖2 + 〈û, v〉 − e|û1| − e|û2|, v ∈ R2,

where

ûi =

{
max

{
− 2, min {2− xi, sgn(vi) ln |vi|}

}
, vi 6= 0,

0, vi = 0,
i = 1, 2.

We note that, for construction of Yg, we use the method described in Remark 4.7 with α = 1.

We begin with examining the error in the d-DP and d-CDP algorithms w.r.t. the “reference”

costs-to-go J?t : X → R. These reference costs J?t are computed numerically via a high resolution

application of the d-DP algorithm with X,U = 812. Figure 2 depicts the maximum absolute error

22

10 5 0
0

1

2

3

10 5 0
0

1

2

3

Figure 2. Error of Algorithm 1: the maximum absolute error (over x ∈ Xg) in the computed discrete

costs-to-go for different grid sizes (X,Y, U = N). Notice the time axis is backward.

0
1

10

10

20

0
-1 -1

0
1

10

10

20

0
-1 -1

0
1

10

10

20

0
-1 -1

0
1

5

1

10

0

15

0
-1 -1

0
1

5

1

10

0

15

0
-1 -1

0
1

5

1

10

0

15

0
-1 -1

Figure 3. Error of Algorithm 1: the costs-to-go with N = 212 at t = 0 (top) and t = 9 (bottom).

in the discrete cost functions Jd
t computed using these algorithms over the horizon. As expected

and in line with our error analysis (Theorem 4.6 and Proposition A.1), using a finer discretization

scheme with larger N = X,Y, U , leads to a smaller error. Moreover, for each gird size, a general

increase is seen in the error, over the time steps in the backward iteration, due to accumulation of

error. For further illustration, Figure 3 shows the corresponding costs-to-go at t = 0 and t = 9, with

N = 212. Notice that, since the stage and terminal costs are convex and the dynamics is linear, the

costs-to-go are also convex. As can be seen in Figure 3, while the d-CDP algorithm preserves the

convexity, the d-DP algorithm outputs non-convex costs-to-go (due to the application of LERP). In

particular, notice how JDP
0 is not a convex-extensible function, while JCDP

0 is convex-extensible

We next compare the performance of the d-DP and d-CDP algorithms for solving instances of

the optimal control problem, using the cost functions derived from the backward value iteration. In

this regards, recall that the d-DP algorithm also provides us with the control laws µdt : Xg → Ug.

Hence, we report the performance of the d-DP algorithm for the two following cases:

23

(i) d-DP (J) denoting the case where the control sequence u?(x0) is derived according to (19),

i.e., using the greedy policy w.r.t. the costs Jd
t : Xg → R.

(ii) d-DP (µ) denoting the case where the control sequence u?(x0) is derived according to (20),

i.e., via LERP extension of the control laws µdt : Xg → Ug.

Table 2 reports the average relative cost (w.r.t. the trajectory cost of d-DP (µ) with N = 812) and

the average total run-time (the running time of the backward value iteration plus the running time

of the forward computation of control sequence for each initial condition) for different grid sizes. The

average is taken over ten instances of the optimal control problem with random initial conditions,

chosen uniformly from X = [−1, 1]2. Comparing the first two rows of Table 2, we see that d-CDP

has a slightly better performance compared to d-DP (J) w.r.t. both the trajectory cost and the

running time. Indeed, by Remark 6.1, the time complexity of both algorithms is of O(TN2), which

matches the reported running times. In this regard, we also note that the backward value iteration

is the absolutely dominant factor in the reported running times. (Effectively, the reported numbers

can be taken to be the run-time of the backward value iteration).

On the other hand, as reported in the last row of Table 2, d-DP (µ) achieves a significantly better

performance with regard to the cost of the controlled trajectories. This is because the control input

computed using this approach is smooth, while the control input computed using the cost functions

(in the first two rows of Table 2) is limited to the discrete input space considered in the forward

minimization problems. The d-CDP algorithm, however, gives us an extra degree of freedom for

the size Y of the dual grid. Then, if the the cost functions are “compactly representable” in the

dual domain via their slopes, we can reduce the time complexity by using a more coarse grid Yg,

with a limited effect on the “quality” of computed cost functions. Indeed, as reported in the first

Table 2. Performance of the d-CDP Algorithm 1 and the d-DP algorithm for different grid sizes

(X,Y, U = N): The reported numbers are the average relative trajectory cost (left – blue), and the

average total running time (right – red); see the text for more details.

Relative trajectory cost / Running time (seconds)

Alg. \ N 112 212 412 812

d-CDP 2.06 / 3.4e0 1.49 / 3.8e1 1.13 / 5.5e2 1.04 / 8.1e3

d-DP (J) 2.30 / 6.3e0 1.56 / 8.0e1 1.15 / 1.2e3 1.04 / 1.8e4

d-DP (µ) 1.55 / 6.2e0 1.20 / 8.0e1 1.04 / 1.2e3 1 / 1.8e4

Table 3. Performance of the d-CDP Algorithm 1 using modified grid sizes (X,Y, U); cf. Table 2.

Relative trajectory cost / Running time (seconds)

(X,Y, U) (112, 72, 112) (212, 112, 212) (412, 212, 412)

d-CDP 2.07 / 1.9e0 1.52 / 1.5e1 1.13 / 1.9e2

(X,Y, U) (112, 72, 212) (212, 112, 412) (412, 212, 812)

d-CDP 1.48 / 2.6e0 1.12 / 2.5e1 1.02 / 3.5e2

24

three cases in Table 3, for solving the same ten instances of the considered optimal control problem,

we can reduce the size of the dual grid by a factor of 4, and hence reduce the running time of

d-CDP algorithm, while achieving approximately the same average relative cost in the controlled

trajectories. This, in turn, allows us to increase the size U of the discrete input space Ug in order

to generate a finer control input. Doing so, we can achieve a smaller cost, while keeping the total

running time at approximately the same level. This effect can also be seen in Table 3, where the

d-CDP algorithm achieves a similar performance to that of d-DP (µ); cf. the last row of Table 2.

However, we note that such a modification in the size of the grids leads to an increase in the running

time of the forward iteration.

6.2. Numerical study of Algorithm 2

We now focus on the performance of the d-CDP Algorithm 2 for solving the optimal control

problem described by the dynamics (34), constriants (35), and costs (36). The conjugate of the

input-dependent stage cost now reads as

(38) C∗i (v) = 1 + 〈û, v〉 − e|û1| − e|û2|, v ∈ R2,

where

ûi =

{
max

{
− 2, min {2, sgn(vi) ln |vi|}

}
, vi 6= 0,

0, vi = 0,
i = 1, 2.

For construction of Yg, we again use the scheme described in Remark 4.7 with α = 1, taking into

account the modification mentioned in Section 5.2.2. Also, the grid Zg is constructed according to

Remark 5.4. We use the same set up as before for examining the performance of the d-CDP algorithm

in comparison with the d-DP algorithm. Figure 4 depicts the maximum absolute error in the discrete

costs-to-go Jd
t computed using these algorithms over the horizon w.r.t. the reference J?t (i.e., the

output of the d-DP algorithm with X,U = 812). In Table 4, we report the average relative cost and

the average total run-time for different grid sizes (the average is taken over ten randomly chosen

instances of the optimal control problem). Once again, in line with our error analysis (Theorem 5.3

and Proposition A.1), using finer grids leads to smaller errors. Also, the running times reported in

Table 4 correspond to the the complexities given in Remark 6.1, i.e., O(TN2) for d-DP algorithm

and O(TN) for d-CDP Algorithm 2.

10 5 0
0

1

2

10 5 0
0

1

2

Figure 4. Error of Algorithm 2: the maximum absolute error (over x ∈ Xg) in the computed discrete

costs-to-go for different grid sizes (X,Y, Z, U = N). Notice that the time axis is backward.

25

Table 4. Performance of the d-CDP Algorithm 2 and the d-DP algorithm for different grid sizes

(X,Y, Z, U = N); see the caption of Table 2 and the text for more details.

Relative trajectory cost / Running time (seconds)

Alg. \ N 112 212 412 812

d-CDP 2.02 / 1.8e− 1 1.47 / 3.9e− 1 1.13 / 1.5e + 0 1.02 / 7.5e + 0

d-DP (J) 2.30 / 3.3e + 0 1.55 / 4.2e + 1 1.15 / 6.2e + 2 1.04 / 1.0e + 4

d-DP (µ) 1.56 / 3.3e + 0 1.20 / 4.2e + 1 1.03 / 6.2e + 2 1 / 1.0e + 4

Comparing the first two rows of Table 4, we see that the d-CDP algorithm achieves a lower average

cost compared to the d-DP algorithm, with a significant reduction in the running time. In particular,

notice how the lower complexity of d-CDP allows us to increase the size of the grids to N = 812,

while keeping the running time at the same order as the d-DP algorithm with N = 112. Moreover,

the lower time complexity of the d-CDP algorithm also allows us to achieve a lower average cost in

comparison with the d-DP (µ) by using larger grid sizes in the d-CDP algorithm; e.g., compare the

performance of d-CDP with N = 412 with that of d-DP (µ) with N = 212 in Table 4. However, such

an increase in the grid sizes in the d-CDP algorithm implies an increase in the running time of the

forward iteration, and also a higher memory requirement in comparison with the d-DP algorithm.

7. Further Remarks

In this final section, we discuss some of the algorithms available in the literature and their con-

nection to the d-CDP algorithms. The limitations of the proposed algorithms and possible remedies

to alleviate them are also discussed. We also mention possible extensions of the current work as

future research directions.

7.1. Value iteration in the conjugate domain

Let us first note that the algorithms developed in this study involve two LLT transforms at the

beginning and end of each step (see, e.g., lines 1 and 3 in Algorithm 2). Hence, the possibility

of a perfect transformation of the minimization in the primal domain to a simple addition in the

conjugate domain is interesting since it allows for performing the value iteration completely in the

conjugate domain for the conjugate of the costs-to-go. In other word, we can stay in the conjugate

domain over multiple steps in time, and avoid the conjugate operation at the beginning of the

intermediate steps. This, in turn, leads to a lower computational cost in multistep implementations.

However, for such a perfect transformation to be possible, we need to impose further restrictions on

the problem data. To be precise, on top of the properties laid out in Setting 2, we need

(i) the dynamics to be linear, i.e., f(x, u) = Ax+Bu, where the state matrix A is invertible,

(ii) and the stage cost to be state-independent, i.e., Cs(x) = 0, and hence C(x, u) = Ci(u).

For systems satisfying these conditions, the DP operator reads as

T [J](x) = min
u
{Ci(u) + J(Ax+Bu)} , x ∈ X,

26

and its conjugate can be shown to be given by

T [J]∗(y) = C∗i (−B>A−>y) + J∗(A−>y), y ∈ Rn.

Notice how the minimization in the DP operator in the primal domain perfectly transforms to

an addition in the dual domain. This property indeed allows us to stay in the dual domain over

multiple steps in time, while only computing the conjugate of the costs in the intermediate steps.

The possibility of such a perfect transformation, accompanied by application of LLT for better time

complexity, was first noticed in [12]. Indeed, there, the authors introduced the fast value iteration

algorithm for a more restricted class of DP problems (besides the properties discussed above, they

required, among other conditions, the state matrix A to be non-negative and monotone). In this

regard, we also note that, as in [12], the possibility of staying in the conjugate domain over multiple

steps is particularly interesting for infinite-horizon problems.

7.2. Relation to max-plus linear approximations

Recall the d-CDP reformulation

T̂ d[Jd](x) = min
u

{
C(x, u) + Jd∗d∗(f(x, u)

)}
,

in Proposition 4.5. Now, note that

Jd∗d∗(x) = max
y∈Yg

{
〈x, y〉 − Jd∗(y)

}
,

is a max-plus linear combination using the basis functions {〈·, y〉 : y ∈ Yg} and coefficients {Jd∗(y) :

y ∈ Yg}. That is, d-CDP algorithm, similarly to the approximate value iteration algorithms in [3, 6],

employs a max-plus approximation of J as a piece-wise affine function. The key difference in the

proposed algorithms is however that by choosing a grid-like dual domain Yg (i.e., set of slopes for

the basis functions used for approximations), we can incorporate the linear-time complexity of the

LLT in our advantage in computing the coefficients {Jd∗(y) : y ∈ Yg}. Moreover, instead of using

a fixed basis, we incorporate a dynamic basis by updating the grid Yg at each iteration in order to

reduce the error of the algorithm.

7.3. Gird-like discretization and curse of dimensionality

In this study, we exclusively considered grid-like discretizations of both primal and dual domains.

This is particularly suitable for problem with (almost) boxed constraints on the state and input

spaces (as illustrated in the numerical examples in Section 6). More importantly, such discretizations

suffer from the so-called curse of dimensionality; that is, the size of the finite representations of the

corresponding spaces increases exponentially with the dimension of those spaces. In this regard,

we note that in order to enjoy the linear-time complexity of LLT, we are only required to choose

a grid-like dual grid [23, Rem. 5]; that is, the discretization of the state and input spaces in the

primal domain need not be grid-like. However, since the grid-like dual domain is usually chosen to

include the same number of points as the primal domain in each dimension (see Assumption 2.4),

we still face the curse of dimensionality. This, in particular, impairs the performance of the d-CDP

Algorithm 1 for problems in which the dimension of the state space is greater than that of the input

space; see the numerical example of Appendix C.2.1 for an illustration. Proper exploitation of the

27

aforementioned property of LLT in such cases calls for a more efficient construction of the dual grid

based on the provided data points in the primal domain.

7.4. Preserving convexity in multistep implementation

Recall that the proposed approach involves solving the dual problem corresponding to the mini-

mization of the DP operation. As discussed before, due to this dualization, the d-CDP algorithm is

essentially blind to non-convexity. In this regard, note that the convexity of the stage and terminal

costs (as assumed in this article) is necessary but not sufficient for the costs-to-go Jt to be convex for

all t = 1, . . . , T . In particular, for preservation of convexity in the proposed d-CDP algorithms, we

also need the composition Jt
(
f(x, u)

)
to be jointly convex in x and u, given that Jt is convex. This

is, for example, the case when (the extended-value extension of) Jt is monotonic, and the dynamics

f is convex in each argument [10, Sec. 3.2.4].

For Algorithm 2, there is another issue that further complicates the preservation of convexity

in the multistep implementation: the approximate conjugation in the last step, particularly, the

LERP extension in Algorithm 2:5. To see this, note that the mapping x 7→ ϕd∗d
(
fs(x)

)
is not

necessarily convex, despite the fact that the underlying discrete function ϕd∗d : Zg → R is convex-

extensible by construction. A possible remedy for this last issue is to employ an operator (instead

of LERP) that leads to convex extensions of convex-extensible functions. Another possibility is to

avoid approximate conjugation by incorporating the ability of LLT to provide us with the optimizer

map as described below.

7.5. The optimizer map in LLT

Consider a discrete function hd : Xd → R and its discrete conjugate hd∗d : Yg → R computed

using LLT for some finite set Yg. LLT is, in principle, capable of providing us with the optimizer

mapping x? : Yg → Xd : y 7→ argmax{〈x, y〉 − hd(x)}, where for each y ∈ Yg, we have hd∗d(y) =

〈x?(y), y〉 − hd
(
x?(y)

)
. This capability of LLT can be employed to address some of the drawbacks

of the proposed d-CDP algorithm:

(i) Avoiding approximate conjugation: Let us first recall that by approximate (discrete) conjuga-

tion we mean that we first compute the conjugate function hd∗d : Yg → R for some grid Yg using

the data points hd : Xd → R, and then for any ỹ (not necessarily belonging to Yg) we use the LERP

extension hd∗d(ỹ) as an approximation for hd∗(ỹ). This approximation scheme is used in Algorithm 2

(and all the extended algorithms in Appendix C.1 for computing the conjugate of the stage cost

numerically). Indeed, it is possible to avoid this approximation and compute hd∗(ỹ) exactly by incor-

porating a smart search for the corresponding optimizer x̃ ∈ Xd for which hd∗(ỹ) = 〈x̃, ỹ〉−h(x̃). To

be precise, if ỹ ∈ co(Ỹd) for some subset Ỹd of Yg, then x̃ ∈ co
(
x?(Ỹd)

)
, where x? : Yg → Xd is the

corresponding optimizer mapping. That is, in order to find the optimizer x̃ ∈ Xd corresponding to ỹ,

it suffices to search in the set Xd∩co
(
x?(Ỹd)

)
, instead of the whole discrete primal domain Xd. This,

in turn, can lead to lower time requirement for computing the exact discrete conjugate function.

(ii) Extracting the optimal policy within the d-CDP algorithm: As shown by our theoretical results

and also confirmed by the numerical examples of Section 6, the d-CDP algorithms computationally

outperforms the d-DP algorithm in solving the value iteration problem, i.e., computing the costs

28

Jd
t : Xg → R, t = 0, 1, . . . , T − 1. On the other hand, the backward value iteration using the

d-DP algorithm also provides us with control laws µdt : Xg → Ug, t = 0, 1, . . . , T − 1. This can

potentially render the computation of the control sequence for a given initial condition less costly.

In order to address this issue, we have to look at the possibility of extracting the optimal policy

within the d-CDP algorithm. A promising approach is to keep track of the dual pairs in each

conjugate transform, i.e., the pairs (x, y) for which 〈x, y〉 = h(x)+h∗(y). This indeed seems possible

considering the capability of LLT in providing the optimizer mapping x? : Yg → Xd.

7.6. Towards quantum dynamic programming

Application of quantum computing for solving optimal control problems has attracted a lot of

attentions recently. In particular, in [31], a quantum algorithm is proposed for solving the finite-

horizon DP problem with a time complexity of O(X1/2 · U 9/2). Such a complexity is particularly

attractive for problems with a huge state space and a relatively small action space, such as the

travelling salesman problem. More related to our work is the recent introduction of the quantum

mechanical implementation of the LLT algorithm for the discrete conjugate transform, which enjoys a

poly-logarithmic complexity in the size of the discrete primal and dual domains [34]. An interesting

feature of the d-CDP Algorithm 2 is that one can readily leverage this algorithm and develop

a quantum mechanical version of the modified d-CDP algorithm for problems of Setting 2. In

this regard, we note that Algorithm 2 consists of three main operations: (i) LLT (lines 1 and 3),

(ii) addition (lines 2 and 6), and (iii) composite extended function query (line 5). In particular,

by choosing Z, Y = X, all these operations can be handled with a log-linear complexity in the size

of the discrete state space X, leading to a log-linear time complexity for the d-CDP Algorithm 2

(Theorem 5.2). The quantum algorithm proposed in [34], on the other hand, reduces the complexity

of the LLT operations to O
(
poly(logX, log Y)

)
. To the best of our knowledge, the quantum-

mechanical implementation of addition also has a poly-logarithmic complexity in the size of the input

vectors. Thus, assuming that composite function query can also be handled quantum-mechanically

with a similar logarithmic complexity, we envision a quantum version of the d-CDP Algorithm 2

with a poly-logarithmic complexity O
(
poly(logX)

)
in the size of the discrete state space. Such

a reduction in the time complexity is particularly interesting since it can effectively address the

infamous curse of dimensionality in the DP literature.

Appendix A. Error of d-DP

In this section, we consider the error in the d-DP operator w.r.t. the DP operator.

Proposition A.1 (Error of d-DP). Consider the DP operator T (16) and the d-DP operator T d (18).

Assume that the functions J , J̃d, and C are Lipschtiz continuous, and J̃d(x) = J(x) for all x ∈ Xg.

Also, assume that the set of admissible inputs U(x) is compact for each x ∈ Xg, and denote Ug(x) =

U(x) ∩ Ug. Then, for each x ∈ Xg, it holds that

−e1 ≤ T d[Jd](x)− T [J](x) ≤ e1 + e2(x),

where

e1 =
[

L(J) + L(J̃d)
]
· dH(X,Xg),

29

e2(x) =
[

L(J) + L(C)
]
· dH

(
U(x),Ug(x)

)
.

Proof. Define Qx(u) := C(x, u) + J
(
f(x, u)

)
and Q̃x(u) := C(x, u) + J̃d

(
f(x, u)

)
. Let us fix x ∈ Xg.

In what follows, we consider the effect of (i) replacing J with J̃d, and (ii) minimizing over Ug instead

of U(x), separately. To this end, we define the intermediate DP operator

T i[J](x) := min
u

Q̃x(u), x ∈ Xg.

(i) Difference between T and T i: Let u? ∈ argminuQ(x, u) ⊆ U(x), so that T [J](x) = Q(x, u?) and

T i[J](x) ≤ Q̃(x, u?). Also, let z? ∈ argminz∈Xg ‖z − f(x, u?)‖. Then,

T i[J](x)− T [J](x) ≤ Q̃(x, u?)−Q(x, u?)

= J̃d
(
f(x, u?)

)
− J̃d(z?) + J(z?)− J

(
f(x, u?)

)
,

where we used the assumption that J̃d(z?) = J(z?) for z? ∈ Xg. Hence,

T i[J](x)− T [J](x) ≤
[

L(J) + L(J̃d)
]
· ‖z? − f(x, u?)‖

=
[

L(J) + L(J̃d)
]
· min
z∈Xg
‖z − f(x, u?)‖

≤
[

L(J) + L(J̃d)
]
·max
z′∈X

min
z∈Xg

∥∥z − z′∥∥
=
[

L(J) + L(J̃d)
]
· dH(X,Xg) = e1,

where for the second inequality we used the fact that f(x, u?) ∈ X. We can use the same line

of arguments by defining ũ? ∈ argminu Q̃(x, u), and z̃? ∈ argminz∈Xg ‖z − f(x, ũ?)‖ to show that

T i[J](x)− T [J](x) ≤ e1. Combining these results, we have

−e1 ≤ T i[J](x)− T [J](x) ≤ e1.(39)

(ii) Difference between T i and T d: First note that, by construction, we have T i[J](x) ≤ T d[Jd](x).

Now, let ũ? ∈ argminu Q̃(x, u) ⊆ U(x), so that T i[J](x) = Q̃(x, ũ?). Also, let

ū? ∈ argmin
u∈Ug(x)

‖u− ũ?‖ ,

and note that T d[Jd](x) ≤ Q̃(x, ū?). Then, using the fact that Q̃ is Lipschitz continuous, we have

0 ≤ T d[Jd](x)− T i[J](x) ≤ Q̃(x, ū?)− Q̃(x, ũ?) ≤ L(Q̃x) · ‖ū? − ũ?‖

≤
[

L(J) + L(C)
]
· min
u∈Ug(x)

‖u− ũ?‖

≤
[

L(J) + L(C)
]
· max
u′∈U(x)

min
u∈Ug(x)

∥∥u− u′∥∥
=
[

L(J) + L(C)
]
· dH

(
U(x),Ug(x)

)
= e2(x),

Combining this last result with the inequality (39), we derive the bounds of the proposition. �

30

Appendix B. Technical Proofs

B.1. Proof of Lemma 2.5

Let y ∈ Rn, and observe that

hd∗(y) = max
x∈Xd
{〈y, x〉 − h(x)} ≤ max

x∈Rn
{〈y, x〉 − h(x)} = h∗(y).

This settles the first inequality in (7) and (8). Now, assume that ∂h∗(y) 6= ∅, and let x ∈ ∂h∗(y)

so that h(x) + h∗(y) = 〈y, x〉 [8, Prop. 5.4.3]. Also, let x̃ ∈ argminz∈Xd ‖x− z‖, and note that

hd∗(y) ≥ 〈y, x̃〉 − h(x̃). Then,

h∗(y)− hd∗(y) ≤ 〈y, x− x̃〉 − h(x) + h(x̃)

≤
[
‖y‖+ L

(
h; {x} ∪ Xd

)]
· ‖x− x̃‖

=
[
‖y‖+ L

(
h; {x} ∪ Xd

)]
· d(x,Xd).

Hence, by minimizing over the choice x ∈ ∂h∗(y), we derive the upper bound provided in (7). In

particular, note that if ∂h∗(y) = ∅, then the upper bound becomes trivial, i.e., ẽ1 =∞. Finally, the

additional constraints of compactness of X = dom(h) implies that ∂h∗(y) ∩ X 6= ∅. Hence, we can

choose x ∈ ∂h∗(y) ∩ X and use Lipschitz-continuity of h to write

h∗(y)− hd∗(y) ≤
[
‖y‖+ L

(
h; {x} ∪ Xd

)]
· d(x,Xd)

≤
[
‖y‖+ L(h)

]
·max
z∈X

d(z,Xd) = ẽ2(y, h,Xd).

B.2. Proof of Lemma 2.6

Let us first consider the case y ∈ co(Yg). The value of the multi-linear interpolation h∗d(y) is a

convex combination of h∗d(y(k)) = h∗(y(k)) over the grid points y(k) ∈ Yg, k ∈ 1, . . . , 2n, located at

the vertices of the hyper-rectangular cell that contains y. That is, h∗d(y) =
∑

k α
(k) h∗(y(k)), where∑

k α
(k) = 1 and α(k) ∈ [0, 1]. Note that, since we are using LERP, we also have y =

∑
k α

(k) y(k).

Then,

h∗(y) = h∗
(∑

k α
(k) y(k)

)
≤
∑

k α
(k) h∗(y(k)) = h∗d(y),(40)

where the inequality follows from the convexity of h∗. Also, notice that

h∗d(y) =
∑

k α
(k) h∗(y(k)) =

∑
k α

(k) max
x∈X

{〈
y(k), x

〉
− h(x)

}
=
∑

k α
(k) max

x∈X

{
〈y, x〉 − h(x) +

〈
y(k) − y, x

〉}
≤
∑

k α
(k) max

x∈X

{
〈y, x〉 − h(x) +

∥∥y(k) − y∥∥ · ‖x‖}
≤
∑

k α
(k) max

x∈X
{〈y, x〉 − h(x) + ∆X · d(y,Yg)} .

Then, using
∑

k α
k = 1, we have

h∗d(y) ≤ max
x∈X
{〈y, x〉 − h(x)}+ ∆X · d(y,Yg) ≤ h∗(y) + ∆X · d(y,Yg).(41)

Combining the two inequalities (40) and (41) gives us the inequality (9) in the lemma.

We next consider the case y 6∈ co(Yg) under the extra assumption co(Yg
sub) ⊃ L(h). Note that

this assumption implies that (consult the notation preceding the lemma):

31

• L(h) is bounded (h is Lipschitz continuous); and,

• y1i < y2i ≤ L−i (h) and L+
i (h) ≤ yYi−1i < yYii for all i ∈ {1, . . . , n}.

In order to simplify the exposition, we consider the two-dimensional case (n = 2), while noting

that the provided arguments can be generalized to higher dimensions. So, let Yg = Yg
1 ×Yg

2, where

Yg
i (i = 1, 2) is the finite set of real numbers y1i < y2i < . . . < yYii with Yi ≥ 3. Let us further

simplify the argument by letting y = (y1, y2) 6∈ co(Yg) be such that y1 < y11 and y12 ≤ y2 ≤ y22, so

that computing h∗d(y) involves extrapolation in the first dimension and interpolation in the second

dimension; see Figure 5a for a visualization of this instantiation. Since the extension uses LERP,

using the points depicted in Figure 5a, we can write

h∗d(y) = α h∗d(y′) + (1− α) h∗d(y′′),(42)

where α = (y21 − y1)/(y21 − y11), and

h∗d(y′) = β h∗(y1,1) + (1− β) h∗(y1,2),

h∗d(y′′) = β h∗(y1,2) + (1− β) h∗(y2,2),
(43)

where β = (y22 − y2)/(y
2
2 − y12). In Figure 5a, we have also paired each of the points of inter-

est in the dual domain with its corresponding maximizer in the primal domain. That is, for

ξ = y, y′, y′′, y1,1, y1,2, y1,2, y2,2, we have respectively identified η = x, x′, x′′, x1,1, x1,2, x1,2, x2,2 ∈ X,

where ξ ∈ ∂h(η) so that

h∗(ξ) = 〈η, ξ〉 − h(η).(44)

We now list the implications of the assumption y11 < y21 ≤ L−1 (h); Figure 5b illustrates these

implications in the one-dimensional case:

I.1. We have h∗(y) = α h∗(y′) + (1− α) h∗(y′′).

I.2. We can choose the maximizers in the primal domain such that

I.2.1. x1,1 = x2,1, x1,2 = x2,2, and x = x′ = x′′;

I.2.2. x1,11 = x1,21 = x1 = min
(z1,z2)∈X

z1.

With these preparatory discussions, we can now consider the error of extrapolative discrete con-

jugation at the point y. In this regard, first note that {y′, y′′} ⊂ co(Yg), and hence we can use the

result of first part of the lemma to write

h∗d(y′) = h∗(y′) + e′, h∗d(y′′) = h∗(y′′) + e′′,(45)

where {e′, e′′} ⊂ [0,∆X · dH({y′, y′′},Yg)]. We claim that these error terms are equal. Indeed, from

(43) and (45), we have

e′ − e′′ = β
[
h∗(y1,1)− h∗(y2,1)

]
+ (1− β)

[
h∗(y1,2)− h∗(y2,2)

]
+ h∗(y′′)− h∗(y′).

Then, using the pairings in (44) and the implication I.2, we can write

e′ − e′′ (I.2.1)= β
〈
x1,1, y1,1 − y2,1

〉
+ (1− β)

〈
x1,2, y1,2 − y2,2

〉
+
〈
x, y′′ − y′

〉
= β

〈
x1,1, (y11 − y21, 0)

〉
+ (1− β)

〈
x1,2, (y11 − y21, 0)

〉
+
〈
x, (y21 − y11, 0)

〉
=

(
βx1,11 + (1− β)x1,21 − x1

)
(y11 − y21)

(I.2.2)
= 0.

32

y1 y11 y21 yN1
1

y12

y2

y22

yN2
2

y [x] y′ [x′] y′′ [x′′]

y1,1 [x1,1] y2,1 [x2,1]

y1,2 [x1,2] y2,2 [x2,2]

co(Yg)

(a) Position of the point y w.r.t. the grid Yg

x

h(x)

xm xM

s−

s+

y2

y1

y

h∗(y2)

h∗(y1)

h∗(y)

X

(b) Implications of the assumption

Figure 5. Illustration of the proof of Lemma 2.6. (a) The dual grid Yg and the position of the point y

w.r.t. the grid. The blue dots show the points of interest and their corresponding maximizer in the primal

domain. E.g., “y [x]” implies that y ∈ ∂h(x), where x ∈ X, so that 〈x, y〉 = h(x) +h∗(y). (b) Illustration

of the implications of the assumption y1 < y2 ≤ s− = L−(h) in the one-dimensional case. The colored

(red and blue) variables denote the slope of the corresponding lines. Note that {y, y1, y2} ⊂ ∂h(xm),

where xm = minx∈X x. Indeed, for all y ≤ s−, the conjugate h∗(y) = 〈xm, y〉 − h(xm) is a linear

function with slope xm. In particular, for y < y1, we have h∗(y) = αh∗(y1) + (1 − α)h∗(y2), where

α = (y2 − y)/(y2 − y1).

With this result at hand, we can employ the equality (42) and the implication I.1 to write

h∗d(y)− h∗(y) = α
[
h∗d(y′)− h∗(y′)

]
+ (1− α)

[
h∗d(y′′)− h∗(y′′)

]
= αe′ + (1− α)e′′ = e′.

That is,

0 ≤ h∗d(y)− h∗(y) ≤ ∆X · dH({y′, y′′},Yg) ≤ ∆X · dH

(
co(Yg),Yg

)
,

where for the last inequality we used the fact that {y′, y′′} ⊂ co(Yg).

B.3. Proof of Corollary 2.7

The first statement immediately follows from Lemma 2.6 since the finite set Xd is compact. For

the second statement, the extra condition co(Yg
sub) ⊇ L(h) has the same implications as the ones

provided in the proof of Lemma 2.6 in Appendix B.2. Hence, following the same arguments, we can

show that provided bounds hold for all y ∈ Rn under the aforementioned condition.

B.4. Proof of Lemma 4.2

Using the definition of conjugate transform, we have

T̂ [J](x) = max
y∈Rn

min
u,z∈Rn

{C(x, u) + J(z) + 〈y, fs(x) + fi(x)u− z〉}

= max
y

{
〈y, fs(x)〉 −max

u

[〈
−fi(x)>y, u

〉
− C(x, u)

]
−max

z
[〈y, z〉 − J(z)]

}

33

= max
y

{
〈y, fs(x)〉 − C∗x(−fi(x)>y)− J∗(y)

}
= max

y
{〈y, fs(x)〉 − φx(y)} = φ∗x

(
fs(x)

)
.

B.5. Proof of Theorem 4.4

In what follows, we provide the time complexity of each line of Algorithm 1. The LLT of line 1

requires O(X + Y) operations; see Remark 2.3. By Assumption 4.3, computing ϕd
x in line 3 has a

complexity of O(Y). The minimization via enumeration in line 4 also has a complexity of O(Y).

This, in turn, implies that the for loop over x ∈ Xg requires O(XY) operations. Hence, the time

complexity of the whole algorithm is of O(XY).

B.6. Proof of Proposition 4.5

We can use the representation (24) and the definition (22) to obtain

T̂ d[Jd](x) = max
y∈Yg

{〈fs(x), y〉 − ϕd
x(y)}

= max
y∈Yg

{
〈fs(x), y〉 − C∗x(−fi(x)>y)− Jd∗d(y)

}
= max

y∈Yg

{
〈fs(x), y〉 − max

u∈domC(x,·)

[〈
−fi(x)>y, u

〉
− C(x, u)

]
− Jd∗d(y)

}
= max

y∈Yg
min

u∈domC(x,·)

{
C(x, u) + 〈y, f(x, u)〉 − Jd∗d(y)

}
,

By the properties laid out in Setting 1, the objective function of this maximin problem is convex

in u, with dom
(
C(x, ·)

)
being compact. Also, the objective function is Ky Fan concave in y, which

follows from the convexity of Jd∗. Then, by the Ky Fan’s Minimax Theorem (see, e.g., [19, Thm. A]),

we can swap the maximization and minimization operators to obtain

T̂ d[Jd](x) = min
u∈domC(x,·)

max
y∈Yg

{
C(x, u) + 〈y, f(x, u)〉 − Jd∗(y)

}
= min

u

{
C(x, u) + Jd∗d∗(f(x, u)

)}
.

B.7. Proof of Theorem 4.6

Let us first note that the convexity of J : X → R implies that the duality gap is zero. Indeed,

following a similar argument as the one provided in the proof of Proposition 4.5 in Appendix B.6,

and using Sion’s Minimax Theorem (see, e.g., [33, Thm. 3]), we can show that the CDP operator (23)

equivalently reads as

T̂ [J](x) = min
u

{
C(x, u) + J∗∗

(
f(x, u)

)}
, x ∈ Xg.

Then, since J is a proper, closed, convex function, we have J∗∗ = J , and hence T̂ [J] = T [J].

We next consider the disctretization error in T̂ d (24) w.r.t. T̂ (23). First, we can use Lemma 2.5,

and the fact that dom(J) = X is compact, to write

0 ≤ φx(y)− ϕx(y) = J∗(y)− Jd∗(y) ≤ ẽ2(y, J,Xg) ≤ max
y∈Yg

ẽ2(y, J,Xg) = e2, ∀y ∈ Yg.

34

The preceding inequality captures the error due to discretization of the primal domain X, i.e., using

Jd∗ in (24b) instead of J∗ in (23b). Using this inequality and the definition of discrete conjugate,

we can write

0 ≤ ϕd∗
x

(
fs(x)

)
− φd∗x

(
fs(x)

)
≤ e2, , ∀x ∈ Xg.(46)

We can also use Lemma 2.5, to write

0 ≤ φ∗x
(
fs(x)

)
− φd∗x

(
fs(x)

)
≤ ẽ1(fs(x), φx,Yg), ∀x ∈ Xg.

This captures the error due to discretization of the dual domain Y = Rn, i.e., approximating φ∗x
in (23a) via ϕd∗

x in (24a). Now, observe that

ẽ1(fs(x), φx,Yg) = min
y∈∂φ∗x(fs(x))

{[
‖fs(x)‖+ L

(
φx; {y} ∪ Yg

)]
· d(y,Yg)

}
≤ min

y∈∂T [J](x)

{[
‖fs(x)‖+ ‖fi(x)‖ ·∆U + ∆X

]
· d(y,Yg)

}
,

where we used the fact that φ∗x
(
fs(·)

)
= T̂ [J](·) = T [J](·), and

L
(
φx(·)

)
≤ L

(
C∗x(−fi(x)>·)

)
+ L

(
J∗(·)

)
≤ ‖fi(x)‖ · L(C∗x) + L(J∗)

≤ ‖fi(x)‖ ·∆dom(C(x,·)) + ∆dom(J)

≤ ‖fi(x)‖ ·∆U + ∆X.

Hence, for each x ∈ Xg we have

0 ≤ φ∗x
(
fs(x)

)
− φd∗x

(
fs(x)

)
≤ ẽ1(fs(x), φx,Yg)

≤
[
‖fs(x)‖+ ‖fi(x)‖ ·∆U + ∆X

]
· d
(
∂T [J](x),Yg

)
= e1(x).

Combining the last inequality with the inequality (46) completes the proof.

B.8. Proof of Theorem 5.2

In what follows, we provide the time complexity of each line of Algorithm 2. The LLT of line 1

requires O(X + Y) operations; see Remark 2.3. By Assumption 5.1, computing ϕd in line 2 has

a complexity of O(Y). The LLT of line 3 requires O(Y + Z) operations. The approximation of

line 5 using LERP has a complexity of O(logZ); see Remark 2.2. Hence, the for loop over x ∈ Xg

requires O(X logZ) = Õ(X) operations. The time complexity of the whole algorithm can then be

computed by adding all the aforementioned complexities.

B.9. Proof of Theorem 5.3

Let T̂ d denote the output of the implementation of the d-CDP operator (30) via Algorithm 1.

Note that the computation of the modified d-CDP operator T̂ d
m (31) via Algorithm 2 differs form that

of the d-CDP operator T̂ d (30) via Algorithm 1 only in the last step. To see this, note that T̂ d exactly

computes ϕd∗(fs(x)
)

for x ∈ Xd (see Algorithm 1:4). However, in T̂ d
m , the approximation ϕd∗d

(
fs(x)

)
is used (see Algorithm 2:5), where the approximation uses LERP over the data points ϕd∗d : Zg →
R. By Corollary 2.7, this leads to an over-approximation of ϕd∗, with the upper bound e3 =

35

∆Yg ·maxx∈Xg d
(
fs(x),Zg

)
= ∆Yg · dH

(
fs(Xg),Zg

)
. Hence, compared to T̂ d, the operator T̂ d

m is an

over-approximation with the difference bounded by e3, i.e.,

(47) 0 ≤ T̂ d
m [Jd](x)− T̂ d[Jd](x) ≤ e3, ∀x ∈ Xg.

The result then follows from Theorem 4.6. Indeed, using the definition of T̂ d (30), we can define

Îd[Jd](x) := T̂ d[Jd](x)− Cs(x) = ϕd∗(fs(x)
)
, x ∈ Xg,

ϕd(y) := C∗i (−B>y) + Jd∗d(y), y ∈ Yg.

Similarly, using the DP operator (29), we can also define

I[J](x) := T [J](x)− Cs(x) = min
u

{
Ci(u) + J

(
f(x, u)

)}
.

Then, by Theorem 4.6, for all x ∈ Xg, it holds that

−e2 ≤ I[J](x)− Îd[Jd](x) = T [J](x)− T̂ d[Jd](x) ≤ em1 (x),(48)

where e2 is given in (27), and

em1 (x) =
[
‖fs(x)‖+ ‖B‖ ·∆U + ∆X

]
· d
(
∂I[J](x),Yg

)
=
[
‖fs(x)‖+ ‖B‖ ·∆U + ∆X

]
· d
(
∂
(
T [J]− Cs

)
(x),Yg

)
.

Combining the inequalities (47) and (48) completes the proof.

Appendix C. Extended Algorithms & Further Numerical Examples

C.1. Extended algorithms and their numerical study

In this section, we provide the multistep version of d-CDP algorithms developed in this study

that also take into account the extensions discussed in Section 4.3, that is, additive disturbance in

the dynamics and numerical computation of the conjugate of the (input-dependent) stage cost. The

provided algorithms are

(i) Algorithm 3: multistep implementation of the extended version of Algorithm 1;

(ii) Algorithm 4: multistep implementation of the extended version of Algorithm 2.

We note that all the functions involved in these extended algorithms are now discrete. To simplify

the exposition, we are considering disturbances that have a finite support Wd of size W , with a given

p.m.f. p : Wd → [0, 1]. Of course, one can modify the algorithm by incorporating other schemes for

computing/approximating the expectation operation. Assuming that the extension operation [̃·] in

Algorithm 3:7 and Algorithm 4:6 are also handled via LERP, the time complexities are

(i) Algorithm 3: Õ
(
X(U + V) + TX(W + Y)

)
– assuming all the grids Vg(x) are of size V ;

(ii) Algorithm 4: Õ
(
U + V + T (XW + Y + Z)

)
.

For the numerical implementation of the extended algorithms, we consider the setup of Sec-

tion 6.1 for Algorithm 3 and the setup of Section 6.2 for Algorithm 4. However, we now con-

sider stochastic dynamics by introducing an i.i.d., additive disturbance belonging to the finite set

Wd = {−0.1, 0, 0.1}2 with a uniform p.m.f., that is, p(w) = 1
9 for all w ∈Wd. Moreover, the conju-

gate of the stage cost (although analytically available) is computed numerically. In this regard, we

note that the dual grids Vg(x) of the input space are constructed following the guidelines described

36

in Remark 4.8. Through these numerical simulations, we compare the performance of the d-DP

and d-CDP algorithms for solving ten instances of the optimal control problem for random initial

conditions, chosen uniformly from X = [−1, 1]2. To this end, and similar to the setup of Section 6,

we report the average of the relative trajectory cost and the average of the total running time in

seconds. The results of our numerical simulations are reported in Table 5.

Table 5. Comparison of the performance of the d-DP algorithm and the extended d-CDP Algorithms 3

and 4 for different grid sizes (X,Y, U, Z, V (x) = N): The reported numbers are the average of the relative

trajectory cost (w.r.t. the trajectory cost of d-DP (µ) with N = 412) (left – blue), and the average of

the total running time (right – red). See the setup described in Section 6.1 for more details.

Relative trajectory cost / Running time (seconds)

Alg. \ N 112 212 412

d-CDP Alg. 3 1.45 / 6.4e + 0 0.96 / 7.3e + 1 1.00 / 1.0e + 3

d-DP (J) 1.50 / 2.5e + 1 0.96 / 3.5e + 2 1.00 / 5.1e + 3

d-DP (µ) 1.01 / 2.5e + 1 1.02 / 3.4e + 2 1 / 5.1e + 3

d-CDP Alg. 4 1.47 / 5.5e− 1 0.94 / 1.8e + 0 0.98 / 7.9e + 0

d-DP (J) 1.50 / 2.2e + 1 0.96 / 3.1e + 2 0.99 / 4.9e + 3

d-DP (µ) 1.01 / 2.2e + 1 1.02 / 3.1e + 2 1 / 4.9e + 3

Algorithm 3 Multistep implementation of the extended d-CDP Algorithm 1

Input: dynamics fs : Rn → Rn, fi : Rn → Rn×m;

discrete stage cost Cd(x, ·) : Ug → R for x ∈ Xg;

discrete terminal cost Cd
T : Xg → R;

discrete disturbance Wd and its p.m.f. p : Wd → [0, 1].

Output: discrete costs-to-go Jd
t : Xg → R, t = 0, 1, . . . , T .

1: for each x ∈ Xd do

2: construct the grid Vg(x);

3: use LLT to compute Cd∗d
x : Vg(x)→ R from Cd(x, ·) : Ug → R;

4: end for

5: Jd
T (x)← Cd

T (x) for x ∈ Xg;

6: for t = T, . . . , 1 do

7: Jd
w,t(x)←

∑
w∈Wd p(w) · J̃d(x+ w) for x ∈ Xg;

8: construct the grid Yg;

9: use LLT to compute Jd∗d
w,t : Yg → R from Jd

w,t : Xg → R;

10: for each x ∈ Xg do

11: for each y ∈ Yg do

12: use LERP to compute Cd∗d
x (−fi(x)>y) from Cd∗d

x : Vg(x)→ R;

13: ϕd
x(y)← Cd∗d

x (−fi(x)>y) + Jd∗d
w,t (y);

14: end for

15: Jd
t−1(x)← max

y∈Yg
{〈fs(x), y〉 − ϕd

x(y)}.
16: end for

17: end for

37

Algorithm 4 Multistep implementation of the extended d-CDP Algorithm 2

Input: dynamics fs : Rn → Rn, B ∈ Rn×m;

discrete state-dependent stage cost Cd
s : Xg → R;

discrete input-dependent stage cost Cd
i : Ug → R;

discrete terminal cost Cd
T : Xg → R;

discrete disturbance Wd and its p.m.f. p : Wd → [0, 1].

Output: discrete costs-to-go Jd
t : Xg → R, t = 0, 1, . . . , T .

1: construct the grid Vg;

2: use LLT to compute Cd∗d
i : Vg → R from Cd

i : Ug → R;

3: construct the grid Zg;

4: Jd
T (x)← Cd

T (x) for x ∈ Xg;

5: for t = T, . . . , 1 do

6: Jd
w,t(x)←

∑
w∈Wd p(w) · J̃d(x+ w) for x ∈ Xg;

7: construct the grid Yg;

8: use LLT to compute Jd∗d
w,t : Yg → R from Jd

w,t : Xg → R;

9: for each y ∈ Yg do

10: use LERP to compute Cd∗d
i (−B>y) from Cd∗d

i : Vg → R;

11: ϕd(y)← Cd∗d
i (−B>y) + Jd∗d

w,t (y);

12: end for

13: use LLT to compute ϕd∗d : Zg → R from ϕd : Yg → R;

14: for each x ∈ Xd do

15: use LERP to compute ϕd∗d
(
fs(x)

)
from ϕd∗d : Zg → R;

16: Jd
t−1(x)← Cd

s (x) + ϕd∗d
(
fs(x)

)
;

17: end for

18: end for

C.2. Echt examples

In this section, we showcase the application of the proposed d-CDP algorithms in solving the

optimal control problem for two typical systems. In particular, we use the extended versions of these

algorithms for the optimal control of an SIR (Susceptible–Infected–Recovered) model for epidemics

and a noisy inverted pendulum. Again, to show the effectiveness of the proposed algorithms, we

compare their performance with the benchmark d-DP algorithm. Moreover, through these examples,

we highlight some issues that can arise in the real world application of the proposed algorithms.

C.2.1. SIR model. We consider the application of the extended version of the d-CDP Algorithm 1

for computing the optimal vaccination plan in a simple epidemic model. To this end, we consider

an SIR system described by [15, Sec. 4]
st+1 = st(1− ut)− αitst(1− ut)
it+1 = it + αitst(1− ut)− βit
rt+1 = rt + utst,

where st, it, rt ≥ 0 are, respectively, the normalized number of susceptible, infected, and immune

individuals in the population, and ut ∈ [0, umax] is the control input which can be interpreted as

the proportion of the susceptibles to be vaccinated (umax ≤ 1). We are interested in computing the

38

optimal vaccination policy with linear cost
∑T−1

t=0 (γit + ut) + γiT , over T = 3 steps (γ > 0). The

model parameters are the transmission rate α = 2, the death rate β = 0.1, the maximum vaccination

capacity umax = 0.8, and the cost coefficient γ = 100 (corresponding to the values in [15, Sec. 4.2]).

We now provide the formulation of this problem w.r.t. Setting 1. In this regard, note that the

variable rt (number of immune individuals) can be safely ignored as it affects neither the evolution

of the other two variables, nor the cost to be minimized. Hence, we can take xt = (st, it) ∈ R2 and

ut ∈ R as the state and input variables, respectively. The dynamics of the system is then described

by xt+1 = fs(xt) + fi(xt) · ut, where

fs(s, i) =

[
s− αsi

(1− β)i+ αsi

]
, fi(s, i) =

[
−s+ αsi

−αsi

]
.

We consider the state constraint xt ∈ X = [0, 1]× [0, 0.5], and the input constraint ut ∈ U = [0, 0.8].

In particular, the constraint it ∈ [0, 0.5] is chosen so that the feasibility condition of Setting 1-

(ii) is satisfied. Also, the corresponding stage and terminal costs read as C(s, i, u) = γi + u,

and CT (s, i) = i, respectively. We note that, although the conjugate of the stage cost (C∗x) is

analytically available, we use the scheme provided in Section 4.3.2 to compute C∗x numerically; ; see

also Algorithm 3 in Appendix C.1. In order to deploy the d-DP algorithm and the extended d-CDP

algorithm, we use uniform grid-like discretizations of the state and input spaces and the their dual

spaces (Xg, Ug, Yg, and Vg(x) for x ∈ Xg). The dual grids Yg and Vg(x) are constructed following

the guidelines provided in Remarks 4.7 (with α = 0.5) and 4.8, respectively.

Figure 6 depicts the computed cost Jd
0 : Xg → R and control law µd0 : Xg → Ug, using the d-DP

and d-CDP algorithms. In particular, for the d-CDP algorithm, we are reporting the simulation

results for two configurations of the dual grids. Table 6 reports the corresponding grid sizes and the

running times for solving the value iteration Problem 3.1. In particular, notice how d-DP algorithm

significantly outperforms the d-CDP algorithm with the discretization scheme of configuration 1,

where X = Y and U = V . In this regard, recall that the time complexity of d-DP algorithm is

of O(TXU), while that of d-CDP algorithm is of O
(
X(U + V) + TXY) = O

(
XU + TX2), when

X = Y and U = V . Hence, what we observe is indeed expected since the number of input channels

is less than the dimension of the state space. For such problems, we should be cautious when using

the d-CDP algorithm, particularly, in choosing the sizes Y and V of the dual grids. For instance,

for the problem at hand, as reported in Table 6, we can reduce the size of the dual grids as in

configuration 2 and hence reduce the running time of the d-CDP algorithm. However, as shown in

Figure 6, this reduction in the size of the dual grids does not affect the quality of the computed

costs and hence the corresponding control laws.

Table 6. Optimal control of SIR model: Grid sizes and running times.

Alg. Grid size Running time

d-DP X = 212, U = 21 2.00 sec

d-CDP (config. 1)* Y = 212, V = 21 18.26 sec

d-CDP (config. 2)* Y = 112, V = 11 6.19 sec

*X and U are the same as in d-DP.

39

0 0.5 1

0

0.2

0.4

0

100

200

300

400

0 0.5 1

0

0.2

0.4

0

0.2

0.4

0.6

0.8

(a) d-DP

0 0.5 1

0

0.2

0.4

0

100

200

300

400

0 0.5 1

0

0.2

0.4

0

0.2

0.4

0.6

0.8

(b) d-CDP (config. 1)

0 0.5 1

0

0.2

0.4

0

100

200

300

400

0 0.5 1

0

0.2

0.4

0

0.2

0.4

0.6

0.8

(c) d-CDP (config. 2)

Figure 6. Optimal control of SIR model: Cost Jd
0 (top) and control law µd

0 (bottom).

C.2.2. Inverted pendulum. We now consider an application of the extension of the d-CDP Algo-

rithm 2, which handles additive disturbance in the dynamics; see Algorithm 4 in Appendix C.1. To

this end, we consider the optimal control of a noisy inverted pendulum with quadratic stage and

terminal costs, over a finite horizon. The deterministic continuous-time dynamics of the system is

described by [11, Sec. 4.5.3]

θ̈ = α sin θ + βθ̇ + γu,

where θ is the angle (with θ = 0 corresponding to upward position), and u is the control input. The

values of the parameters are α = 118.6445, β = −1.599, and γ = 29.5398 (corresponding to the

values of the physical parameters in [11, Sec. 4.5.3]). Here, we consider the corresponding discrete-

time dynamics, by using forward Euler method with sampling time τ = 0.05. We also introduce

stochasticity by considering an additive disturbance in the dynamics. The discrete-time dynamics

then reads as xt+1 = fs(xt) + But + wt, where xt = (θt, θ̇t) ∈ R2 is the state variable (angle and

angular velocity), wt ∈ R2 is the disturbance, and

fs(θ, θ̇) =

[
θ

θ̇

]
+ τ ·

[
θ̇

α sin θ + βθ̇

]
, B =

[
0

γ

]
.

We consider the state constraints xt ∈ X = [−π
4 ,

π
4] × [π, π], and the input constraints ut ∈ U =

[−3, 3]. Moreover, we assume that the disturbances wt are i.i.d., with a uniform distribution over

the compact support W = π
4 · [−0.05, 0.05] × π · [−0.05, 0.05]. The problem of interest is then to

compute the costs-to-go Jd
t : Xg → R for t = T − 1, . . . , 0, over the horizon T = 50, with quadratic

costs Cν(·) = ‖·‖2 , ν ∈ {s, i, T}. We recall that Xg is a grid-like discretization of the state space X.

Also, we note that the conjugate of the input-dependent stage cost C∗i is analytically available, and

given by C∗i (v) = ûv − û2, v ∈ R, where û = max
{
−3, min

{
v
2 , 3

}}
.

40

The extension of the d-CDP algorithm for handling additive disturbance involves applying the d-

CDP operation to Jd
w(·) := EwJ̃d(·+w), where E is the expectation operator, and [̃·] is an extension

operator. For the extension operation, we use LERP. For the expectation operation, we consider

the approximation scheme described in Section 4.3.1, involving discretization of the disturbance set.

Precisely, we assume that wt ∈Wd = Wd
1 ×Wd

2 ⊂W with a uniform p.m.f., where

Wd
1 =

π

4
· {−0.05,−0.025, 0, 0.025, 0.05},

Wd
2 = π · {−0.05,−0.025, 0, 0.025, 0.05}.

Under such assumption, we have

Jd
w(x) =

1

W

∑
w∈Wd

Jd(x+ w), x ∈ Xg.

In order to deploy the stochastic versions of the d-DP and d-CDP algorithms for the optimal

control problem described above, we use uniform discretizations of the state, input, and state dual

spaces, with Ni = 21 discrete points in each dimension, i.e., X = Y = 212 and U = 21. The grid Zg

is also constructed with the same size (Z = 212). For the construction of the grids Yg and Zg, we

follow the guidelines provided in Remarks 4.7 (with α = 1) and 5.4, respectively.

Figure 7 shows the computed cost-to-go at t = 0, using the d-DP and d-CDP algorithms. We note

that the optimal control problem at hand does not satisfy the feasibility condition assumed in this

study. That is, there exist x ∈ Xg for which there is no u ∈ Ug such that x+ = fs(x)+Bu ∈ X. This

explains the black areas in the left panel of Figure 7 with J0 =∞, computed using d-DP algorithm.

Notice, however, that in the right panel of Figure 7, the d-CDP algorithm assigns finite values for

these states. This does not contradict our error analysis, as the assumption on the optimal control

problem to be feasible for all x ∈ X is violated. Indeed, for feasible initial states in the state space,

our theoretical results still hold true. We also note that the running times of the two algorithms for

solving the value iteration Problem 3.1 were 269.8 seconds for the d-DP algorithm, and 10.8 seconds

for the d-CDP algorithm. As a further illustration, Figure 8 depicts a sample state trajectory of the

system, where the control input sequence is derived via minimization of the costs-to-go computed

using the d-DP and d-CDP algorithms.

-0.5 0 0.5

-2

0

2

0

20

40

60

80

100

-0.5 0 0.5

-2

0

2

0

20

40

60

80

100

Figure 7. Optimal control of noisy inverted pendulum: cost-to-go at t = 0 using d-DP (left) and d-CDP

(right). The black areas correspond to J0 =∞.

41

0 10 20 30 40 50
-0.2

0

0.2

0 10 20 30 40 50
-1

-0.5

0

0.5

0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50
-0.2

0

0.2

0 10 20 30 40 50
-1

-0.5

0

0.5

0 10 20 30 40 50

-1

0

1

Figure 8. Optimal control of noisy inverted pendulum: the state trajectory and input sequence for

x0 = (π12 , 0)> using d-DP (top) and d-CDP (bottom).

Appendix D. The d-CDP MATLAB package

The MATLAB package [21] concerns the implementation of the two d-CDP algorithms (and their

extensions) developed in this study. The provided codes include detailed instructions/comments

on how to use them. Also provided is the the numerical examples of Section 6 and Appendix C.1.

In what follows we highlight the most important aspects of the developed package with a list of

available routines.

Recall that, in this study, we exclusively considered grid-like discretizations of both primal and

dual domains. This allows us to use the MATALB function griddedInterpolant for all the ex-

tension operations. We also note that the interpolation and extrapolation methods of this fucntion

are all set to linear, hence leading to multilinear interpolation & extrapolation (LERP). How-

ever, this need not be the case in general, and the user can choose other options available in the

griddedInterpolant routine, by modifying the corresponding parts of the provided codes; see the

comments in the codes for more details. We also note that for the discrete conjugation (LLT), we

used the MATLAB package (the LLTd routine and two other subroutines, specifically) provided in

[23] to develop an n-dimensional LLT routine via factorization (the function LLT in the package).

Table 7 lists other routines that are available in the developed package. In particular, there are four

high level functions (functions (1-4) in Table 7) that are developed separately for the two settings

considered in this article. We also note that the provided implementations do not require the dis-

cretization of the state and input spaces to satisfy the state and input constraints (particularly, the

feasibility condition of Setting 1-(ii)). Nevertheless, the function feasibility check ∗ (∗ = 1, 2) is

developed to provide the user with a warning if that is the case. Finally, we note that the conjugate

of four extended real-valued convex functions are also provided in the package; see Table 8.

42

Table 7. List of routines available in the d-CDP MATLAB package.

MATLAB Function Description

(1) d CDP Alg ∗ Backward value iteration for finding costs using d-CDP

(2) d DP Alg ∗ Backward value iteration for finding costs and control laws using d-DP

(3) forward iter J ∗ Forward iteration for finding the control sequence for a given initial condition

using costs (derived via d-DP or d-CDP)

(4) forward iter Pi ∗ Forward iteration for finding the control sequence for a given initial condition

using control laws (derived via d-DP)

(5) feasibility check ∗ For checking if the discrete state-input space satisfies the constraints

(6) eval func For discretization of an analytically available function over a given grid

(7) eval func constr An extension of eval func that also checks given constraints

(8) ext constr For extension of a discrete function while checking a given set of constraints

(9) ext constr expect For computing expectation of a discrete function subjected to additive noise

(10) slope range For computing the range of slopes of a convex-extensible discrete function with

a grid-like domain

∗ = 1, 2, corresponding to Settings 1 and 2, respectively.

Table 8. List of analytically available conjugate functions in the d-CDP MATLAB package.

Function Effective Domain MATLAB Func. for Conj.

g : Rn → R : u 7→ u>Ru (R � 0) Ball centered at the origin conj Quad ball

g : Rn → R : u 7→ u>Ru (R � 0) Box containing the origin conj Quad box

g : Rn → R : u 7→
∑n
i=1 |ui| Box containing the origin conj L1 box

g : Rn → R : u 7→
∑n
i=1 e

|ui| − n Box containing the origin conj ExpL1 box

References

[1] Achdou, Y., Camilli, F., and Corrias, L. (2014). On numerical approximation of the Hamilton-Jacobi-

transport system arising in high frequency approximations. Discrete & Continuous Dynamical Systems-

Series B, 19(3).

[2] Akian, M., Gaubert, S., and Lakhoua, A. (2008). The max-plus finite element method for solving deter-

ministic optimal control problems: Basic properties and convergence analysis. SIAM Journal on Control

and Optimization, 47(2):817–848.

[3] Bach, F. (2019). Max-plus matching pursuit for deterministic Markov decision processes. arXiv preprint

arXiv:1906.08524.

[4] Balaji, N., Kiefer, S., Novotnỳ, P., Pérez, G. A., and Shirmohammadi, M. (2018). On the complexity of

value iteration. preprint arXiv:1807.04920.

[5] Bellman, R. and Karush, W. (1962). Mathematical programming and the maximum transform. Journal

of the Society for Industrial and Applied Mathematics, 10(3):550–567.

[6] Berthier, E. and Bach, F. (2020). Max-plus linear approximations for deterministic continuous-state

markov decision processes. IEEE Control Systems Letters, pages 1–1.

[7] Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Vol. I. Athena Scientific, Belmont,

MA, 3rd edition.

[8] Bertsekas, D. P. (2009). Convex Optimization Theory. Athena Scientific, Belmont, MA.

43

[9] Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Athena Scientific, Belmont, MA.

[10] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

[11] Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2017). Reinforcement learning and dynamic

programming using function approximators. CRC press.

[12] Carpio, R. and Kamihigashi, T. (2020). Fast value iteration: an application of Legendre-Fenchel duality

to a class of deterministic dynamic programming problems in discrete time. Journal of Difference Equations

and Applications, 26(2):209–222.

[13] Corrias, L. (1996). Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equations and

conservation laws. SIAM Journal on Numerical Analysis, 33(4):1534–1558.

[14] Costeseque, G. and Lebacque, J.-P. (2014). A variational formulation for higher order macroscopic traffic

flow models: Numerical investigation. Transportation Research Part B: Methodological, 70:112 – 133.

[15] Ding, W. and Lenhart, S. (2010). Introduction to optimal control for discrete time models with an

application to disease modeling. In Gumel, A. B. and Lenhart, S., editors, Modeling Paradigms and Analysis

of Disease Transmission Models, pages 109–120. American Mathematical Society.

[16] Esogbue, A. O. and Ahn, C. W. (1990). Computational experiments with a class of dynamic programming

algorithms of higher dimensions. Computers & Mathematics with Applications, 19(11):3 – 23.

[17] Felzenszwalb, P. F. and Huttenlocher, D. P. (2012). Distance transforms of sampled functions. Theory

of computing, 8(1):415–428.

[18] Jacobs, M. and Léger, F. (2019). A fast approach to optimal transport: the back-and-forth method.

arXiv preprint arXiv:1905.12154.

[19] Joó, I. and Stachó, L. L. (1982). A note on Ky Fan’s minimax theorem. Acta Mathematica Academiae

Scientiarum Hungarica, 39(4):401–407.

[20] Klein, C. M. and Morin, T. L. (1991). Conjugate duality and the curse of dimensionality. European

Journal of Operational Research, 50(2):220 – 228.

[21] Kolarijani, M. A. S. and Mohajerin Esfahani, P. (2020). Discrete conjugate dynamic programming

(d-CDP) MATLAB package. Available online at https://github.com/AminKolarijani/d-CDP.

[22] Lucet, Y. (1996). A fast computational algorithm for the Legendre-Fenchel transform. Computational

Optimization and Applications, 6(1):27–57.

[23] Lucet, Y. (1997). Faster than the fast Legendre transform, the linear-time Legendre transform. Numerical

Algorithms, 16(2):171–185.

[24] Lucet, Y. (2009). New sequential exact Euclidean distance transform algorithms based on convex analysis.

Image and Vision Computing, 27(1):37 – 44.

[25] Lucet, Y. (2010). What shape is your conjugate? A survey of computational convex analysis and its

applications. SIAM Review, 52(3):505–542.

[26] McEneaney, W. M. (2003). Max-plus eigenvector representations for solution of nonlinear H∞ problems:

basic concepts. IEEE Transactions on Automatic Control, 48(7):1150–1163.

[27] McEneaney, W. M. (2006). Max-plus methods for nonlinear control and estimation. Springer Science &

Business Media.

[28] Murota, K. (2003). Discrete Convex Analysis. Society for Industrial and Applied Mathematics.

[29] Powell, W. B. (2011). Approximate Dynamic Programming: Solving the Curses of Dimensionality. John

Wiley & Sons, Hoboken, NJ, 2nd edition.

[30] Rockafellar, R. (1974). Conjugate Duality and Optimization. Philadelphia: Society for Industrial and

Applied Mathematics.

[31] Ronagh, P. (2019). Quantum algorithms for solving dynamic programming problems. preprint

arXiv:1906.02229.

https://github.com/AminKolarijani/d-CDP

44

[32] Sidford, A., Wang, M., Wu, X., and Ye, Y. (2018). Variance reduced value iteration and faster algorithms

for solving Markov decision processes. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 770–787. SIAM.

[33] Simons, S. (1995). Minimax theorems and their proofs. In Du, D.-Z. and Pardalos, P. M., editors,

Minimax and Applications, pages 1–23. Springer US, Boston, MA.

[34] Sutter, D., Nannicini, G., Sutter, T., and Woerner, S. (2020). Quantum Legendre-Fenchel transform.

preprint arXiv:2006.04823.

	1. Introduction
	2. Notations and Preliminaries
	2.1. General notations
	2.2. Extension of discrete functions
	2.3. Legendre-Fenchel Transform
	2.4. Preliminary results on conjugate transform

	3. Problem Statement and Standard Solution
	4. Alternative Solution: DP in Conjugate Domain
	4.1. The d-CDP algorithm
	4.2. Analysis of d-CDP algorithm
	4.3. Extensions of d-CDP algorithm

	5. Reducing Complexity by Exploiting Structure
	5.1. Modified d-CDP algorithm
	5.2. Analysis of modified d-CDP algorithm

	6. Numerical Experiments
	6.1. Numerical study of Algorithm 1
	6.2. Numerical study of Algorithm 2

	7. Further Remarks
	7.1. Value iteration in the conjugate domain
	7.2. Relation to max-plus linear approximations
	7.3. Gird-like discretization and curse of dimensionality
	7.4. Preserving convexity in multistep implementation
	7.5. The optimizer map in LLT
	7.6. Towards quantum dynamic programming

	Appendix A. Error of d-DP
	Appendix B. Technical Proofs
	B.1. Proof of Lemma 2.5
	B.2. Proof of Lemma 2.6
	B.3. Proof of Corollary 2.7
	B.4. Proof of Lemma 4.2
	B.5. Proof of Theorem 4.4
	B.6. Proof of Proposition 4.5
	B.7. Proof of Theorem 4.6
	B.8. Proof of Theorem 5.2
	B.9. Proof of Theorem 5.3

	Appendix C. Extended Algorithms & Further Numerical Examples
	C.1. Extended algorithms and their numerical study
	C.2. Echt examples

	Appendix D. The d-CDP MATLAB package
	References

