
Learning for Control:
An Inverse Optimization Approach

Syed Adnan Akhtar, Arman Sharifi Kolarijani and Peyman Mohajerin Esfahani

Abstract—We present a learning method to learn the mapping
from an input space to an action space, which is particularly
suitable when the action is an optimal decision with respect to a
certain unknown cost function. We use an inverse optimization
approach to retrieve the cost function by introducing a new loss
function and a new hypothesis class of mappings. A tractable
convex reformulation of the learning problem is also presented.
The method is effective for learning input-action mapping in
continuous input-action space with input-output constraints,
typically present in control systems. The learning approach can
be effectively transformed to learn a Model Predictive Control
(MPC) behaviour and a case study to mimic an MPC is pre-
sented, which is a rather computationally heavy control strategy.
Simulation and experimental results show the effectiveness of the
proposed approach.

Index Terms—Learning-based control, supervised learning,
inverse optimization, convex reformulation.

I. INTRODUCTION

REINFORCEMENT learning has gathered interest in the
learning community recently [1] where learning of the

expert action is based on rewards. Generally, one has access to
the expert demonstrations, but not the reward/cost function that
dictates the expert action. Imitation Learning involves inferring
the optimum policy through expert demonstrations [2] without
knowing the reward function. It has been used to teach
sequential skills to a robotic arm [3] or acrobatic maneuvers
to a helicopter [4].

Numerous methods have been proposed for imitation learn-
ing. One of the straightforward methods is to view imitation
learning as a supervised learning problem, known as behaviour
cloning [5]. Such methods directly learn a mapping from the
state space to the action space through expert demonstra-
tions [6]. Alternatively, Inverse Reinforcement Learning (IRL)
methods construct an expert policy by retrieving the expert
reward function [7]. These methods predominantly follow a
Markov decision process framework. See e.g., the maximum
margin approach in [8] and the linear programming approach
in [9]. An alternative approach is entropy maximization that
aims to retrieve a distribution over potential reward functions
[10]. In relative entropy methods, the KL-divergence between
two trajectories is minimized [11]. Bayesian IRL methods use
the state-action pair observations to perform a Bayesian update
of a prior distribution over a hypothesis of reward functions
[12]. Most of the IRL algorithms are designed for discrete
state-action spaces [13]. However, the state-action space in

The authors are with the Delft Center for Systems & Control,
TU Delft, The Netherlands ({S.A.Akhtar, A.SharifiKolarijani,
P.MohajerinEsfahani}@tudelft.nl). This research is supported by
the ERC grant TRUST-949796.

(a) Expert drives the system. (b) Learning agent drives system.

Fig. 1: Learning settings

control or robotics is typically continuous and effective dis-
cretization leads to exponential growth in the number of states.
Consider Figure 1 depicting the nature of such problems in
the context of control. There are two settings in Figure 1a and
Figure 1b with a difference who (expert or learner) drives the
system. The goal of the learning agent is to learn the cost
function of the expert regardless of the choice of the setting
in Figure 1. At each time step, the expert takes an optimal
action uet(st) by solving a parametric optimization problem
depending on an exogenous signal st. The learner observes
the expert action uet(st) with a one time-step delay and infers
the cost function that the expert optimizes. Subsequently, the
learning agent can mimic the expert action through the learned
cost. The learning agent action, denoted by uln

θ (st), is in
general a suboptimal action since it is generated based on an
approximated (or learned) cost rather than the true (or expert)
cost. Notice that the true cost is unknown to the learning agent
and only available to the expert. In this paper, we focus on
learning of the cost function that explains the expert actions
possibly in the presence of some state-action constraints.

An example that can be cast as a learning problem is
MPC [14]. Online optimization renders MPC computation-
ally demanding and restricts its application to systems with
moderate size dynamics. There are numerous studies in the
literature to reduce the computational burden of MPC such
as exploiting the structure of the optimization problem [15],
warm-start approach [16] and explicit MPC [17], to name a
few. Fundamentally speaking, MPC finds a mapping from the
system states to the optimal control inputs. In the context of
learning problems, a natural approach to learn this mapping
is supervised learning. There are several studies that learn (or
approximate) the MPC controller in the context of supervised
learning either through indirect learning [18] or direct learn-
ing [19]. In the former class, the mapping from the system

states to the optimal MPC cost is approximated. Then, the
approximated cost is used to obtain a sub-optimal input. In
the latter class, the mapping from the states to the optimal
input is directly approximated. We emphasize that respecting
state and input constraints in supervised learning is generally
a challenge, particularly from a computational perspective
during the training phase. This computational challenge is at
the center of the contribution of this study.

A central example of this study is to learn MPC as an
“expert agent.” We propose an indirect learning approach
based on the inverse optimization [20] that satisfies the input
constraints by construction. We refer the reader to the extended
version of this paper [21] for an online learning approach to
address the limited memory and computational constraints for
real systems, as well as a more detailed discussion on the
experimental setup and additional numerical examples.

Contributions: In the context explained above, the main
contributions of this paper are summarized as follows:
• Inspired by the inverse optimization framework, we in-

troduce parametric optimization as a new hypothesis
class along with a loss function that enjoys a tractable
reformulation during the training phase (Section III).

• We develop a nonlinear convex reformulation of the target
objective function (Theorem 2), as well as a tractable
linear matrix inequality (LMI) (Corollary 3).

• We discuss the theoretical results in an MPC setting and
how our results help reduce the planning horizon to essen-
tially 1-step. We also implement the proposed learning-
based controller in a closed-loop fashion (Section V).

Notations: For a non-negative integer n, Rn and Rn+ denote
the spaces of n-dimensional reals and non-negative reals,
respectively. The identity square matrix with dimension n
is denoted by In. For a symmetric matrix Q, the inequal-
ity Q � 0 (respectively, Q � 0) means that Q is positive
semi-definite (respectively, positive definite). Given a vector
x ∈ Rn, we use the shorthand notation ||x||2Q:= x>Qx. A
symmetric matrix is often described by the upper diagonal
elements while the lower diagonal elements is replaced by
“∗”. Throughout this study we also reserve the hat notation
(e.g., x̂) for the objects dependent on data.

II. PRELIMINARIES

In this section we briefly explain two key problems in the
learning literature that are central to objective of this study.

A. Supervised learning

Supervised learning is one of the prospective ways to solve
the imitation learning problem [5]. Supervised learning intends
to learn an unknown mapping, h? : S → U, from an input
vector s ∈ S ⊆ Rn to an output vector u ∈ U ⊆ Rm.
Since the space of the candidate function is typically large,
we restrict our search to functions within a hypothesis space
H. A classical example is the collection of all linear functions.
We refer to each candidate mapping as a hypothesis function h
that belongs to the hypothesis space H. The aim is to find a
function h that replicates the unknown ground truth mapping
h? as closely as possible. Many algorithms find this hypothesis

function h by solving an optimization program that involves
a loss function ` : U × U → R+. Given a sample (s, u),
the loss value `(u, h(s)) essentially quantifies the mismatch
between the predicted output h(s) and the true output u. In
supervised learning, a training set {(ŝt, ût)}t≤T is available
where each (ŝt, ût) ∈ S×U represents an input-output sample,
and T denotes the number of samples. Given this dataset, such
algorithms solve the so-called in-sample error described as

min
h∈H

T∑
t=1

` (ût, h(ŝt)) . (1)

A typical hypothesis class is the space of linear functionals

H =
{
h : Rn → Rm | h(s) = As, A ∈ Rm×n

}
, (2)

where the input and output sets are typically the entire space,
i.e., S = Rn and Rm = U. With regards to the loss function, a
popular example is the squared 2-norm loss `(u1, u2) = ‖u1−
u2‖22 where u1, u2 ∈ U. The linear hypothesis class together
with the squared 2-norm loss yields a standard regression
problem known as the least squares methods described through
the optimization program

ÂReg
T := arg min

A∈Rm×n

T∑
t=1

∥∥∥ût −Aŝt∥∥∥2

2
. (3)

While the least squares method (3) is a powerful estimation
tool, it is however not applicable in cases where the output set
is a strict subset U $ Rm. One may impose such constraints
explicitly via, for instance, a projection operator ΠU. This
alters the training program to minA

∑T
t=1 ‖ût − ΠU(Aŝt)‖22.

However, this modified training objective is unfortunately no
longer convex in the model parameter A. Therefore, constraint
satisfaction is a challenge with classical methods in the super-
vised learning literature.

B. Inverse optimization

Inverse optimization aims to learn the behavior of a
decision-maker whose decisions may be influenced by an ex-
ogenous environmental signal. More specifically, it is believed
that the decision-maker upon receiving a signal s ∈ S ⊂ Rn
optimizes an unknown objective function u 7→ F ?(s, u) over
a feasible set of actions U(s), which may also depend on
the signal s. In the context of the learning problem depicted
in Figure 1b, the signal s and the decision-maker may be
seen as the state of the dynamical system and the expert
agent, respectively. With this in mind, we hereafter refer to
the decisions optimizing the objective F ? by uet(s). For ease
of notation, we will often omit the dependency of uet on s.
Therefore, the inverse optimizing problem is described via the
forward optimization program

uet(s) := arg min
u∈U(s)

F ?(s, u) . (4)

Recall the mission of the learning agent in Figure 1b; it
aims to replicate the behavior of the expert agent. One can
approach this objective through the lens of supervised learning.
However, as pointed out earlier in Section II.A, the usual

spaces such as the linear hypothesis (2) do not necessarily
respect the decision constraint set uet ∈ U(s).

Alternatively, the learning agent can aim to learn the un-
known objective function F ? in (4). To this end, a hypothesis
space can be a collection of parameterized functions F =
{Fθ : S × U → R | θ ∈ Θ} where U ⊃ U(s) denotes a
superset of all admissible decisions and θ ∈ Θ represents
the parameter to be learnt. The mapping θ 7→ Fθ and the
choice of space Θ depend on the problem at hand. In contrast
with supervised learning in Section II.A, the input and output
sets are now considered as S × U and R, respectively. It is
worth noting that in this perspective, the difference on the
formal definition of the input and output sets has an important
consequence: The training data should now constitute the
triple ((s, uet), F ?(s, uet)).

An approach bridging these two perspectives mentioned
above is to utilize parametric objective functions Fθ ∈ F and
define a hypothesis space H containing functions from s ∈ S
directly to u ∈ U. More specifically, the arg min functions

uln
θ (s) = hθ(s) := arg min

u∈U(s)

Fθ(s, u), (5)

can be a natural basis to predict the experts behavior. No-
tice that the hypothesis candidate uln

θ (s) respects the con-
straints uln

θ (s) ∈ U(s), for all s ∈ S, by construction. Now
given T observations {(ŝt, ûet

t)}t≤T and a loss function ` :
U× U→ R+, the training procedure (1) is

min
θ∈Θ

T∑
t=1

`
(
ûet
t , u

ln
θ (ŝt)

)
. (6)

We emphasize that the tractability of (6) highly depends on
the set F , more specifically the mapping θ 7→ uln

θ (s), and the
loss function `. We focus on this in the next section.

III. PROPOSED LEARNING APPROACH

The aim of this section is to elaborate on the choice of the
hypothesis space F described in the previous section and the
loss function ` to make the training procedure (6) efficient.

A. Hypothesis class
As a particular example of F , we consider a family of

quadratic functions defined as

F =

{
Fθ(s, u) =

[
s
u

]>
θ

[
s
u

] ∣∣∣ θ ∈ Θ

}
, (7)

where Θ is a subset of square matrices R(m+n)×(m+n). We
can then introduce the following hypothesis class, that is as a
collection of mappings hθ : Rn → Rm,

H =

{
hθ(s) = arg min

u∈U(s)

[
s
u

]>
θ

[
s
u

] ∣∣∣ θ ∈ Θ

}
. (8)

Similar hypothesis classes have been actually studied in the
literature in the context of continuous time, infinite horizon,
but unconstrained optimal control problems [22]. Next, we
discuss the choice of the set Θ. Let us denote

θ =

[
θss θsu
θus θuu

]
. (9)

Considering that the ultimate goal is to replicate the expert
action, the critical entity is the hypothesis hθ ∈ H defined
in (8). In this view, it is straightforward to observe that the
element θss in (9) does not play any role in the behavior
of hθ. Moreover, in order to guarantee that the hypothesis hθ
is a computationally tractable oracle, i.e., it is a convex
optimization, it is also required to ensure that θuu � 0. These
observations, together with the fact that scaling the function Fθ
with a positive scalar also does not have any impact on hθ,
leads us to introduce the set

Θ =

{
θ =

[
0 θsu
θ>su θuu

] ∣∣∣ θuu � Im}. (10)

B. Loss function

A loss function ` : U× U → R+ quantifies the inaccuracy
of a hypothesis hθ ∈ H. One can borrow the classical squared
2-norm loss as in the least squares method and define the
predictability loss [20] as

`pr
(
uet(s), uln

θ (s)
)

:= ‖uet(s)− uln
θ (s)‖22, (11)

where the learning agent action uln
θ (s) is as defined in (5).

The above loss function has a clear interpretation in the
context of inverse optimization: It penalizes the error between
the decisions of the expert and the learning agent. Despite
such a useful interpretation, it is unfortunately shown that the
mapping θ 7→ `pr(uet, uln(s)) is non-convex [23].

In this study, we utilize a rather unconventional loss function
in the context of supervised learning. This loss function is par-
ticularly suitable for the class of inverse optimization problems
where the observed data consists of optimal decisions. Unlike
the classical loss functions, the proposed loss function, which
we name suboptimality loss, penalizes the mismatch between
the expert and learning agent actions “nonuniformly”. Let us
define the suboptimality loss `sub : S× U× U→ R+ as

`sub(s, uet, uln
θ) := Fθ(s, u

et)− Fθ(s, uln
θ) (12)

= Fθ(s, u
et)− min

u∈U(s)
Fθ(s, u).

The loss function (12) effectively quantifies the mismatch
between the decisions in terms of their suboptimality level
in the candidate hypothesis.

Remark 1 (Regret loss). The suboptimality loss (12) con-
ceptually shares some interesting similarities with the well
studied notion of regret loss [24], however, they are different
in essence. The regret loss is introduced to measure the
performance of optimizing a sequential loss in the form of (6).
There are numerous techniques in the online optimization
literature in which the decision variable (θ in (6)) are updated
sequentially upon arrival of each data at time t. One can
indeed resort to these techniques to solve (6) when ` is the
suboptimality loss (12).

Intuitively, suboptimality loss minimization searches for the
hypothesis function in the hypothesis space that best explains
the expert action uet given an external input s immaterial of the
true cost incurred by the agent. Notice that the loss goes to zero

only when the expert action uet is indeed the minimizer of the
hypothesized cost. Notice also that the candidate hypothesis
depends on the exogenous signal s. Thus, “suboptimality” is
attributed to this loss. As opposed to usual loss functions in
supervised learning (e.g., the predictability loss `pr in (11)),
the suboptimality loss depends explicitly on the signal s.
Given the loss function (12) and a dataset {(ŝt, ûet

t)}t≤T , the
training phase of the inverse optimization approach yields the
optimization program

θ̂Inv
T =argmin

θ∈Θ

{ T∑
t=1

(
Fθ(ŝt, û

et
t)− min

ut∈U(ŝt)
Fθ(ŝt, ut)

)}
. (13)

The key computational feature of (12) is that the loss
function is convex in θ when the mapping θ 7→ Fθ is linear
(e.g., the hypothesis class (7)), a feature missing in the case of
the predictability loss (11). To see this, it suffices to notice that
the function θ 7→ `sub(s, uet, uln

θ (s)) constitutes a pointwise
maximum of linear functions.

Recall from Section II.B that an alternative (indi-
rect) approach to learn expert action described in (4) is
through learning the unknown objective function F ?. This
viewpoint considers the set F as the main hypothesis
space, in which the learning phase requires access to a
dataset {(ŝt, ûet

t), F ?(ŝt, û
et
t)}t≤T , i.e., it requires additional

information {F ?(ŝt, ûet
t)}t≤T . In such a setting, one can cast

the learning problem as a standard regression problem akin
to (3). This leads to the optimization program

θ̂Reg
T = argmin

θ∈Θ

{ T∑
t=1

∥∥∥Fθ(ŝt, ûet
t)− F ?(ŝt, ûet

t)
∥∥∥2

2

}
, (14)

where Fθ has the quadratic form defined in (7) with the
feasible set Θ defined in (10).

C. Tractable Reformulation

We now show how the optimization program (6) emerging
from the training phase of the inverse optimization approach
can be solved efficiently. Note that the optimization (6) is
essentially a robust program, i.e., a minimization over the cost
parameter θ ∈ Θ and then maximization over ut ∈ U(ŝt).

Theorem 2 (Convex reformulation). Consider the optimiza-
tion problem (13) with suboptimality loss (12) where the
candidate function Fθ admits quadratic form as in (7) and
U(s) = {u ∈ Rm : M(s)u ≤W (s)}, where the parametric
matrices M(s) ∈ Rd×m and W (s) ∈ Rd are given for any
admissible signal s. Then, the program (13) is equivalent to

min
θ∈Θ
λt≥0

>∑
t=1

Fθ (ŝt, û
et
t) + 1

4

∥∥M(ŝt)
>λt + 2θ>suŝt

∥∥2

θ−1
uu

+W (ŝt)
>λt,

(15)

where θ is as in (9) and λt ∈ Rd+ is the Lagrange multiplier.

Proof. As the main building block, we first reformulate

min
v

{
Fθ (ŝt, v) : M(ŝt)v ≤W (ŝt)

}
. (16)

where v is an-Rm vector and represents the learner action.
The matrices M and W encode the input-output constraints.

For ease of notation, we omit writing the dependency of the
matrices M and W on ŝt. Define the Lagrangian function

L(λt, v) = Fθ (ŝt, v) + (Mv −W)>λt

= v>θuuv + (2θ>suŝt +M>λt)
>v −W>λt.

The dual function is defined as g(λt) = infv L(λt, v). To find
the optimal v∗, we set ∇vL(λt, v) = 0. Hence,

∇vL(λt, v) = 2θuuv + 2θ>xuŝt +M>λt = 0,

and as a result, v∗ = − 1
2 θ−1

uu (M>λt + 2θ>suŝt). We now
substitute v∗ in the dual function g(λt) and arrive at

g(λt) = −1

4
‖M>λt + 2θ>suŝt‖2θ−1

uu
−W>λt.

Observe that

max
λt≥0

g(λt) = −min
λt≥0

{
1

4
‖M>λt + 2θ>suŝt‖2θ−1

uu
+W>λt

}
.

The above equality holds because the program (16) has a
quadratic convex cost with affine constraints, which implies
strong duality (Slater’s condition); and its RHS is equivalent
to the program (16). Next, we reformulate (6) by using the
above observation. This yields

min
θ∈Θ

T∑
t=1

(
Fθ
(
ŝt, û

et
t

)
+min
λt≥0

{
1

4
‖M>λt+2θ>xuŝt‖2θ−1

uu
+W>λt

})
.

Moving minλt≥0 outside the sum concludes the proof.

While the program (15) is convex, it does not follow any
particular structure and one has to resort to generic-purpose
convex optimization solver for numerical purposes. Next, we
show that the program (15) can be translated into a subclass
of convex optimization known as the LMI, which is amenable
to tailored efficient off-the-shelf solvers like MOSEK [25].

Corollary 3 (LMI reformulation). The optimization prob-
lem (15) admits the LMI reformulation

min
∑T
t=1

(
Fθ (ŝt, û

et
t) + 1

4γt +W (ŝt)
>λt

)
s.t. θ ∈ Θ in (10), λt ∈ Rd+, γt ∈ R, ∀t ≤ T[

θuu M(ŝt)
>λt + 2θ>suŝt

∗ γt

]
� 0, ∀t ≤ T

(17)

Proof. In (15), replace ‖M(ŝt)
>λt + 2θ>suŝt‖2θ−1

uu
with an

upper-bound γt for all t ≤ T . We get

γt − (M(ŝt)
>λt + 2θ>suŝt)

>θ−1
uu (M(ŝt)

>λt + 2θ>suŝt) ≥ 0.

We now employ the Schur complement approach. Since θuu �
0, the above inequality holds if and only if[

θuu M(ŝt)
>λt + 2θ>suŝt

∗ γt

]
� 0.

The desired claim then follows.

We emphasize that the optimization problem (17) is only
required to be solved when (one wants to use extra available
information for a better estimate of the cost function) we
intend to improve the cost function Fθ, and not necessarily
at every time instance.

IV. CASE STUDY: MODEL PREDICTIVE CONTROL

We now use the proposed approach to approximate the value
function of an MPC problem. Notice that an MPC problem is
a forward optimization problem [14]. The value function is
determined implicitly as a solution to a constrained program.
However, it is difficult in general to provide a closed-form
representation for the value function.

Consider the linear time-invariant system

xt+1 = Axt +But, (18)

where x ∈ X ⊆ Rn and u ∈ U(x) ⊆ Rm denote the states and
inputs of the system, respectively. A ∈ Rn×n and B ∈ Rn×m
denote the system matrices. Assume that sets X and U(x)
are polytopic and contain the origin. Let N be the horizon
length and denote ut := (ut, . . . , ut+N−1). Define the stage
cost c(x, u) := ‖x‖2Q+‖u‖2R for some matrices Q � 0 and
R � 0. Finally, let the MPC cost be

VN (xt,ut) :=

N−1∑
i=0

c(xt+i, ut+i) + Vf (xt+N), (19)

where Vf : Rn → R+ represents the terminal cost. Given an
initial state xt, we solve the following MPC problem

min VN (xt,ut)
s.t. xt+i+1 = Axt+i +But+i, i = 0, . . . , N−1

ut+i ∈ U(xt+i), i = 0, . . . , N−1
xt+i ∈ X, i = 1, . . . , N,

(20)

to obtain V ?N (xt) and an optimal input sequence u?t . However,
we only apply the first input u?t of the sequence u?t and
repeatedly solve the problem (20) at each sampling instance.

Our goal is to use the tools developed in this paper to ap-
proximate the value function V ?N (xt) such that the computation
of the control action u?t is made lighter w.r.t. (20). In doing so,
we employ the optimality condition in dynamic programming,
and rewrite the problem (20) as

min c(xt, ut) + F ?(xt, ut)
s.t. ut ∈ U(xt),

(21)

where the tail cost F ?(xt, ut) is defined as

min
∑N−1
i=1 c(xt+i, ut+i) + Vf (xt+N)

s.t. xt+i+1 = Axt+i +But+i, i = 1, . . . , N−1
ut+i ∈ U(xt+i), i = 1, . . . , N−1
xt+i ∈ X, i = 1, . . . , N.

In view of (21) and following an indirect learning mindset
in the previous section, our main goal is to learn the tail
cost F ? : Rn × Rm → R+. To fit in the reference tracking
framework, we define st as a feature vector, composed of a
combination of states, xt and reference signals rxt , i.e., we
introduce st = [x>t , (xt − rxt)>, rxt

>]>. We represent the
data collected with MPC reference tracking by {(ŝt, ûet

t)}t≤T .
Notice that approximating the MPC cost function through
suboptimality loss does not require knowledge of the true cost
value, MPC parameters (Q,R) or the system matrices. In the
next section, we present simulation results of mimicking an
MPC controller for a lab helicopter.

V. RESULTS

In the previous section, we discussed typecasting the learn-
ing problem in an MPC framework. We now discuss empirical
results with an experimental setup of a 1-DOF lab helicopter.
Recall that the goal through inverse optimization is to approx-
imate the true but unknown cost function that explains the
mapping from the system states to the actions for reference
tracking. In the context of MPC, the hope is to reduce the
computational complexity. For shortage of space, we only
present brief results here. A more detailed discussion of the
experimental setting as well as additional simulation results on
high-dimensional dynamics of a shell heavy oil fractionator is
presented in the extended version [21].

In this section, the performance of the learning agent that
is trained with the two methods, namely, regression as in
(14), and inverse optimization as in (13) is compared. For
the comparison, we use the 2-norm of the control input error
relative to MPC as a performance metric. The MPC is taken
for a prediction horizon of N = 75. We will also present
the reference tracking error for inverse optimization without
expert in the loop, and compare it with that of MPC.

Consider Figure 1b where the learning agent is driving the
system and the expert gives corrective advice to the learner
in the form of expert actions. At each time t, the learning
agent has an estimate Fθ of the true cost F ? that guides its
action. The learner reads the state st, and takes an action
uln
θ (st). Subsequently, the expert (MPC) reveals its action
uet(st) (corrective advice). Now, with the new information,
uet(st) gained by the learner, it improves its estimate of the
true cost function. Therefore, the learning agent decides an
action in response to the signal ŝt by using the past data upto
time (t−1), i.e. (ŝk, û

et
k , F

?(ŝk, û
et
t)) for all k = 1, ..., (t−1) in

addition to ŝt. We denote this action with uln
θt−1

(ŝt), obtained
by solving the following optimization problem similar to (5)

uln
θt−1

(ŝt) = arg min
u∈U(ŝt)

Fθt−1
(ŝt, u), (22)

where θt = θReg
t for regression, θt = θInv

t for inverse
optimization with suboptimality loss. It is worth noting that
the learner action at time step t uses θt−1 since the the expert
action ûet

t is revealed to the learner in one time step delay.
Henceforth, the superscript ‘Inv’ will be referred to the case
where inverse optimization using suboptimality loss is used
with the LMI reformulation shown in (17) and ‘Reg’ will
similarly denote the training through regression according to
(14). We do not solve the LMI in (17) at each time instance,
but only in the simulation for the first 50s to study the input
error behaviour. An online learning approach to update Fθ
at each time instance is presented in the extended version of
this paper [21]. Recall that the end goal for the learner was
to mimic the expert action, ûet

t , which is the control input.
Since the expert action ûet

t is not immediately available to the
learner, it is a good performance metric to measure the action
discrepancy ‖uln

θt−1
(ŝt)− ûet

t ‖2.
Consider the first scenario as depicted in Figure 1b for

tracking of square-wave of amplitude 0.2, while also receiving
corrective advice from the expert at each time instance, for
the duration of T = 200s. The control input error for such

Fig. 2: Simulation results: control input error

Fig. 3: Experimental results: tracking error

a scenario is shown in Figure 2 for regression (magenta)
and inverse optimization (blue). The control input error with
inverse optimization drops to almost 10−4 in just 10s and to
10−5 in about 100s. For regression, it takes about 120s for
the error to drop to 10−4. Now consider a second scenario
as in Figure 1b where the expert (thus its corrective advice)
is only available up till time t = tcut. Beyond the time
t > tcut the expert is removed from the control loop and
the learner can no longer improve its estimate Fθ of the
true cost function F ?. Therefore the cost Fθ learned up till
t = tcut becomes static for the subsequent times t > tcut.
For such a scenario, the 2-norm of the control input error is
presented for regression (black) and inverse optimization (red)
in Figure 2 with tcut = 50s. It can be observed that until time
t = 50, the control input errors for both the methods are
identical to the previous scenario when the expert was present
throughout. However, for t > tcut, the error slightly increases
after the MPC is removed from the loop, and the static cost
of the learner is used for reference tracking of square wave of
amplitude 0.2. Therefore, the learner solves a simple quadratic
program as in (5) to generate a suboptimal input rather than
the computationally heavy MPC. Figure 3 shows the 2-norm of
the tracking error with MPC (green) and inverse optimization
(red). yInv is the system output due to the control input uInv

whereas yMPC is the system output due to the MPC inputs
uMPC = uet. Occasionally, it can be observed that inverse
optimization has lower tracking error than MPC. Finally, we
compare the computation time for the expert (MPC) vs the
learner. For each control input computation and in the average,
the learner takes 0.12 ms against 1.69 ms for MPC. As such,
the learning agent is roughly twelve times faster than MPC.

REFERENCES

[1] C. Celemin, G. Maeda, J. R. del Solar, J. Peters, and J. Kober,
“Reinforcement learning of motor skills using policy search and human

corrective advice,” The International Journal of Robotics Research,
vol. 38, no. 14, pp. 1560–1580, 2019.

[2] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
“An algorithmic perspective on imitation learning,” Foundations and
Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[3] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning movement
primitive attractor goals and sequential skills from kinesthetic demon-
strations,” Robotics and Autonomous Systems, vol. 74, 2015.

[4] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in Proc. International Conference on Machine
Learning, p. 144–151, 2008.

[5] E. Klein, M. Geist, B. Piot, and O. Pietquin, “Inverse reinforcement
learning through structured classification,” in Proc. Advances in Neural
Information Processing Systems, vol. 25, pp. 1007–1015, 2012.

[6] R. Amit and M. Matari, “Learning movement sequences from demon-
stration,” in International Conference on Development and Learning,
pp. 203–208, 2002.

[7] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. International Conference on Machine Learning,
pp. 1–8, 2004.

[8] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Func-
tional gradient techniques for imitation learning,” Autonomous Robots,
vol. 27, no. 1, pp. 25–53, 2009.

[9] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. International Conference on Machine Learning,
p. 663–670, 2000.

[10] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.,” in Proc. Association for the
Advancement of Artificial Intelligence, vol. 8, pp. 1433–1438, 2008.

[11] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse re-
inforcement learning,” in Proc. International Conference on Artificial
Intelligence and Statistics, pp. 182–189, 2011.

[12] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement learn-
ing.,” in Proc. International Conference on Artificial Intelligence and
Statistics, vol. 7, pp. 2586–2591, 2007.

[13] S. Arora and P. Doshi, “A survey of inverse reinforcement learning:
Challenges, methods and progress,” preprint arXiv:1806.06877, 2018.

[14] M. Morari and J. H. Lee, “Model predictive control: Past, present and
future,” Computers & Chemical Engineering, vol. 23, no. 4-5, pp. 667–
682, 1999.

[15] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on control systems technology, vol. 18,
no. 2, pp. 267–278, 2009.

[16] E. John and A. Yildirim, “Implementation of warm-start strategies in
interior-point methods for linear programming in fixed dimension,”
Computational Optimization and Applications, pp. 151–183, 2008.

[17] A. Alessio and A. Bemporad, “A survey on explicit model predictive
control,” in Nonlinear model predictive control, pp. 345–369, Springer,
2009.

[18] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in Proc. IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, pp. 100–107, 2013.

[19] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10,
pp. 1443 – 1451, 1995.

[20] P. Mohajerin Esfahani, S. Shafieezadeh-Abadeh, G. A. Hanasusanto, and
D. Kuhn, “Data-driven inverse optimization with imperfect information,”
Mathematical Programming, vol. 167, pp. 191–234, 2018.

[21] S. A. Akhtar, A. S. Kolarijani, and P. Mohajerin Esfahani, “Learning
for control: An inverse optimization approach,” 2020. extended version
available at http://www.dcsc.tudelft.nl/~mohajerin/drafts/Lear4C.pdf.

[22] K. G. Vamvoudakis, “Q-learning for continuous-time linear systems:
A model-free infinite horizon optimal control approach,” Systems &
Control Letters, vol. 100, pp. 14–20, 2017.

[23] D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Data-driven estimation
in equilibrium using inverse optimization,” Mathematical Programming,
vol. 153, no. 2, pp. 595–633, 2015.

[24] E. Hazan, “Introduction to online convex optimization,” Foundations and
Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[25] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019.

	Introduction
	Preliminaries
	Supervised learning
	Inverse optimization

	Proposed Learning Approach
	Hypothesis class
	Loss function
	Tractable Reformulation

	Case Study: Model Predictive Control
	Results
	References

