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Abstract. The gauge function, closely related to the atomic norm, measures the complexity of

a statistical model, and has found broad applications in machine learning and statistical signal

processing. In a high-dimensional learning problem, the gauge function attempts to safeguard against

overfitting by promoting a sparse (concise) representation within the learning alphabet.

In this work, within the context of linear inverse problems, we pinpoint the source of its success,

but also argue that the applicability of the gauge function is inherently limited by its convexity, and

showcase several learning problems where the classical gauge function theory fails. We then introduce

a new notion of statistical complexity, gaugep function, which overcomes the limitations of the gauge

function. The gaugep function is a simple generalization of the gauge function that can tightly

control the sparsity of a statistical model within the learning alphabet and, perhaps surprisingly,

draws further inspiration from the Burer-Monteiro factorization in computational mathematics.

We also propose a new learning machine, with the building block of gaugep function, and arm this

machine with a number of statistical guarantees. The potential of the proposed gaugep function the-

ory is then studied for two stylized applications. Finally, we discuss the computational aspects and,

in particular, suggest a tractable numerical algorithm for implementing the new learning machine.

1. Introduction

While data is abundant, information is often sparse, and can be characterized mathematically

using a small number of atoms, drawn from an alphabet A ⊂ Rd. Concretely, an r-sparse model x]

is specified as x] :=
∑r

i=1 c
]
iA

]
i for nonnegative coefficients {c]i}ri=1 and atoms {A]i}ri=1 ⊂ A.

Complexity of the model x] is often measured by its (convex) gauge function GA [1, 2, 3], to be

defined later. Serving as a safeguard against overfitting, the gauge function has become a mainstay

in linear inverse problems, a large class of learning problems with diverse applications in statistical

signal processing and machine learning.

More specifically, to discover the true model x] or its atoms {A]i}ri=1, the classical gauge function

theory studies the (convex) learning machine

min
x
‖L(x)− y‖22 subject to GA(x) ≤ γ, (1.1)

Above, L: Rd → Rm is a linear operator and the vector y typically in the form of L(x]) stores m

(possibly inexact) observations of the true model x]. Alternatively, as briefly discussed later, one

can consider the basis pursuit or lasso reformulations of the problem (1.1).
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Figure 1. As a toy example, the

(blue) curve represents the learning

alphabet A. A level set of the cor-

responding gauge function GA is filled

with cyan. The (convex) gauge func-

tion evidently loses the geometric de-

tails of the alphabet A.

A certificate of correctness for the output of the machine (1.1)

is at the heart of the classical gauge function theory. This certifi-

cate can be constructed, for example, when L is a generic linear

operator and we have access to sufficiently many observations [1,

Corollary 3.3.1].

The literature of the gauge function features numerous success-

ful applications in different areas including statistics [4, 5, 6] and

signal processing [7, 8, 9, 10, 11], to name a few. In all these

success stories, the gauge function successfully captures the un-

derlying geometry of the learning alphabet.

The applicability of the gauge function is, however, inherently

limited by its convexity. Indeed, there is anecdotal and numerical

evidence suggesting that the gauge function is incapable of capturing the geometric details of many

learning alphabets. For example, see [12, 13] for sparse principal component analysis (PCA) and

see [14, 15] in the context of super-resolution. Motivated by these examples, in this work we will

develop a theoretical foundation for a nonconvex counterpart of the gauge function, along with some

basic computational tools.

Contributions. Our main objective is to develop a generalized theory, dubbed the gaugep func-

tion theory, that addresses the statistical limitations of the classical gauge function theory. More

specifically, the following summarizes the contributions of this study:

(i) This work proposes and studies the gaugep function, a simple generalization of the classical

gauge function, as a new notion for statistical complexity that can tightly control the sparsity

level of a model within the learning alphabet (Proposition 3.4).

(ii) The gaugep function motivates a new learning machine, for which we develop statistical

guarantees that parallel those of the classical gauge function theory (Theorem 3.20). The

new theory is showcased with two stylized applications to manifold models and sparse PCA.

(iii) This work also studies the computational aspects of implementing the new learning machine

and proposes a tractable algorithm (Proposition 5.2).

Additional details. We now provide a section-by-section overview of this work, punctuated by a

few bibliographic notes: Section 2 reviews the classical gauge function theory. Several successful

and failed applications of this theory are highlighted in Section 2 and in the appendices.

Sections 3.1 and 3.2 propose and study the gaugep function, denoted by GA,p, as a new notion

of statistical complexity. The gaugep function GA,p generalizes the classical gauge function GA and

can tightly control the sparsity level of a model within the learning alphabet A. Gaugep function

draws further inspiration from the idea of Burer-Monteiro factorization [16]. In the success stories of

the classical theory, gauge and gaugep functions nearly coincide. In contrast, whenever the classical

theory fails, gaugep function behaves more favourably compared to the classical gauge function, as

detailed in Section 3.2. Motivated by this observation, Section 3.3 introduces the learning machine

min
x
‖L(x)− y‖22 subject to GA,p(x) ≤ γ, (1.2)
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in which the new gaugep function plays the role of regularizer in place of the classical gauge function

in (1.1). Section 3.3 elucidates that, as p varies, the new machine interpolates between two extremes:

• the classical convex machine (1.1); and

• the `0-pursuit: minx ‖L(x)− y‖22 subject to x has an r-sparse decomposition in A.

We recall that r is the sparsity level of the true model x] within the alphabet A. Moreover, the new

machine (1.2) extends the Burer-Monteiro idea to any alphabet in the following sense: As detailed in

Section 3.3, the new machine (1.2) coincides with the widely-used Burer-Monteiro factorization when

the learning alphabet A is the set of unit-norm rank-1 matrices. We also note that implementing

the new machine (1.2) often requires solving a nonconvex optimization problem.

Section 3.4 develops some statistical guarantees for the new machine (1.2). In particular, Lemma 3.11

therein introduces a family of certificates for verifying the correctness of the solutions of the opti-

mization problem (1.2), analogous to Lemma 2.6 for the convex machine (1.1).

When L is a generic linear operator, p is small and m is sufficiently large, we also develop a

probabilistic approach to construct these certificates, as detailed in Theorem 3.20, loosely analogous

to [1, Corollary 3.3.1] for the convex machine (gauge). The proof technique for Theorem 3.20

appears to be new in this context and might be of independent interest. More specifically, instead of

a single certificate, the proof of Theorem 3.20 constructs a family of certificates that jointly certify

the learning outcome.

In Section 4, we showcase the new theory with two stylized applications, namely, manifold-like

models [17] and sparse PCA [18]. Both applications span highly active research areas and it is not

our intention to improve over the state of art for these applications, but rather to merely convince

the reader that the new machine (1.2) merits further investigation and research.

Computational aspects. Implementing the new machine (1.2) often requires solving a nonconvex

optimization problem. For certain learning alphabets, such as the one in matrix sensing [19, Chap-

ter 5] or [20, Section 2.1], the landscape of the optimization problem (1.2) is benign for a sufficiently

small p. That is, the optimization problem does not have any spurious stationary points when p is

small. For such alphabets, problem (1.2) can be solved efficiently [21].

For certain other alphabets, such as smooth manifolds [22], the optimization landscape of (1.2)

might in general contain spurious stationary points which could trap first- or second-order optimiza-

tion algorithms, such as gradient descent. Nevertheless, problem (1.2) can be solved efficiently to

(near) stationarity, rather than global optimality. This compromise is common in machine learning:

As an example, empirical risk minimization is known to be intractable for neural networks in gen-

eral. Instead the practitioners often seek local (rather than global) optimality by means of first- or

second-order optimization algorithms [23, Chapter 20].

For yet other learning alphabets, such as the one in sparse regression [4], the problem (1.2) might

be NP-hard in the worst case. Nevertheless, not all is lost here and we draw inspiration from

recent developments in mixed-integer programming [24, 25]. Indeed, after decades of research,

modern mixed-integer optimization algorithms that directly solve the problem (`0-pursuit) for sparse

regression can now outperform convex heuristics in speed and scalability, and without incurring the
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well-documented bias of the shrinkage methods. More specifically, inspired by [24], we develop in

Section 5.1 a tractable optimization algorithm to numerically solve the new problem (1.2) when the

alphabet is finite and, consequently, problem (1.2) is NP-hard.

Kurzgesagt. To summarize, motivated by the limitations of the classical gauge function theory,

this work studies a new learning machine for solving linear inverse problems. The gaugep function

theory, introduced in this work, is far from complete and this study raises several research questions,

which require further investigation. For example, this first work is largely focused on the statistical

aspects of the new theory. Beyond the preliminary results presented in Section 5.1, more effort is

required to better understand the computational aspects of the new machine.

Notation. Throughout this study, we adopt the notation from [26] to denote by lin(·), aff(·), cone(·),
and conv(·), the linear, affine, conic, and convex hulls of a set, respectively. A cone is a positive

homogeneous subset of a vector space. For a convex set C, its tangent cone at x ∈ C is cone(C − x),

where the subtraction is in the Minkowski’s sense. We use ‖x‖p to denote the `p-norm of a vector

x ∈ Rn. For a function f : Rd → R, its convex conjugate is defined as f∗(z) := supx〈x, z〉 − f(x).

Given a linear operator L : X → Y, defined on a pair of vector spaces X and Y, the corresponding

adjoint operator is denoted by L∗, i.e., 〈L(x), y〉 = 〈x,L∗(y)〉 for all (x, y) ∈ X × Y. When the

spaces are equipped with the norms (X, ‖ · ‖X), (Y, ‖ · ‖Y) , the induced operator norm is denoted

by ‖L‖op := supx∈X ‖L(x)‖Y/‖x‖X. We also use the notation [l] := {1, · · · , l} for an integer l.

Throughout, we always use the convention that 0/0 = 0.

2. Classical (Convex) Gauge Function Theory

In this section, we first review the classical gauge function theory. We then highlight both successful

and failed applications of the theory in order to motivate the main contribution of this work, which is

a generalized gauge function theory that addresses the statistical limitations of the classical theory.

To review the gauge function theory, this section takes a somewhat different perspective, which

appears to be new, to the best of our knowledge. The different geometric perspective of this section

will later help us generalize the classical theory in Section 3.

We now begin with a few definitions. The notion of slice below, visualized in Figure 2a, appears

to be new even though it has implicitly appeared before, see for example [27].

Definition 2.1 (Slice). For an alphabet A ⊂ Rd, an integer r and atoms {Ai}ri=1 ⊂ A, the

corresponding slice of conv(A) is defined to be the set conv({Ai}ri=1 ∪ {0}). We also let slicer(A) be

the set of all slices of conv(A) formed by at most r atoms. Note that slicer(A) is a set of sets.

Definition 2.1 allows us to rewrite the r-sparse model x] =
∑r

i=1 c
]
iA

]
i in Section 1 as

x] ∈ cone(S]), S] ∈ slicer(A), (2.1)

where the slice S] in (2.1) is formed by the atoms {A]i}ri=1. That is, S] = conv({A]i}ri=1 ∪ {0}).
The representation in (2.1) is particularly helpful when we are more interested in the atoms {A]i}ri=1

rather than their coefficients {c]i}ri=1. In convex statistical learning, the complexity of a model, such

as x], is commonly measured by its gauge function [1, 3].
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(a) Two dimensional slices (b) Exposed versus hidden

faces

Figure 2. Figure 2a depicts several two-dimensional slices of the alphabet {±ei}3i=1

in different colors where ei is the ith canonical vector. In Figure 2b, the black dots

and the blue line segments are exposed faces while the solid red line segment is a

hidden face. The extreme points coincide with the black dots.

Definition 2.2 (Gauge function). For an alphabet A ⊂ Rd, the gauge function GA : Rd → R is

GA(x) := inf
{
t : x/t ∈ conv(A), t ≥ 0

}
(2.2)

= inf

{
l∑

i=1

ci : x =
l∑

i=1

ciAi, ci ≥ 0, Ai ∈ A, i ∈ [l]

}
,

with the convention that 0/0 = 0. Above, [l] := {1, · · · , l}. Lastly, the second infimum above is taken

over l and {ci}li=1 and {Ai}li=1.

Let us next collect some standard assumptions on learning alphabets. Throughout this work, each

technical result is centered around an alphabet that satisfies a subset of the assumptions below.

Assumption 2.3 (Alphabet regularity). The following assumptions are in order:

(i) (Origin:) The alphabet A contains the origin, i.e., 0 ∈ A.

(ii) (Symmetry:) The alphabet A is symmetric, i.e., A = −A.

(iii) (Boundedness:) The alphabet A is bounded, i.e., supA∈A ‖A‖2 <∞.

(iv) (Unit sphere:) The alphabet A belongs to the unit sphere, i.e., ‖A‖2 = 1 for every A ∈ A.

Under Assumption 2.3(ii), the gauge function GA is in fact a norm for Rd [3], and the unit ball of

this norm is the convex hull of A, i.e.,

conv(A) = {x : GA(x) ≤ 1}. (2.3)

Moreover, the dual norm corresponding to GA is denoted by DA : Rd → R, and defined as

DA(z) := sup
{
〈z, x〉 : GA(x) ≤ 1

}
= sup

{
〈z,A〉 : A ∈ A

}
. (2.4)

As a device to control the statistical complexity of learning, the gauge function has found broad

applications in statistical signal processing and machine learning. We are particularly interested in
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linear inverse problems [1], which unify a wide range learning problems and we will encounter a few

of them throughout this work. More specifically, for a linear operator L : Rd → Rm and an integer r,

consider the (exact) setup

y := L(x]) ∈ Rm, x] ∈ cone(S]), S] ∈ slicer(A), (exact)

where slicer(A) was defined in Definition 2.1. For example, in statistical inference or signal process-

ing, L is the measurement operator and y is the vector of observations [28, 29]. (exact) is called

an exact setup because it does not account for any noise or numerical inaccuracy that might dis-

tort L(x]). Given y, in order to learn x] or its sparse decomposition in the alphabet A, consider the

learning machine

min
x
‖L(x)− y‖22 subject to GA(x) ≤ GA(x]). (2.5)

Even though the gauge function appears in the constraints of the problem (2.5), what follows in

this section also holds true for the basis pursuit reformulation of (2.5), in which the objective and

constraints are swapped and the exact knowledge of GA(x]) is not required [30]. It seems more

convenient for us to work with (2.5), compared to its basis pursuit formulation. Using the definition

of gauge function in (2.2), we can also reformulate the above machine as

inf

{∥∥∥ l∑
i=1

ciL(Ai)− y
∥∥∥2

2
:

l∑
i=1

ci ≤ GA(x]), ci ≥ 0, Ai ∈ A, i ∈ [l]

}
, (gauge)

where the infimum is over l and {ci}li=1 and {Ai}li=1. It is the above reformulation of (2.5) that we

will often work with in this paper. To study (gauge), let us recall two basic concepts from convex

geometry, both visualized in Figure 2b. See [26, Definitions 2.6 and 3.1].

Definition 2.4 (Extreme point). An extreme point of a closed convex set C is a point in C that

cannot be written as a convex combination of other points in C. Let also the set ext(C) collect all

the extreme points of C.

Definition 2.5 (Face). For a closed convex set C, the subset F ⊂ C is a face of C if there exists

a hyperplane H such that F = C ∩ H. Dimension of a face F is the dimension of the affine hull

of F , i.e., dim(F) = dim(aff(F)). Moreover, we say that F is an exposed face of C if one of the two

halfspaces formed by H contains C. A face F is hidden if it is not exposed. Lastly, for an integer r,

we let facer(A) denote the set of all faces of conv(A) with dimension at most r.

For an alphabet A, a simple inclusion that we will use frequently in this work is that

ext(conv(A)) ⊆ A, (2.6)

which states that the extreme points of the convex hull of a set belong to that set. Note also that

an exposed 0-dimensional face of a convex set C is simply an extreme point of C.

Equipped with the above two definitions, the following lemma exemplifies learning with the gauge

function. In effect, the lemma below states that the machine (gauge) successfully learns the model x],

provided that a certain certificate of correctness exists. The next lemma is in essence a standard

result, see for example [31, Lemma 2.1], though it has not appeared in the literature from the

geometric perspective adopted in this section, to the best of our knowledge.
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Lemma 2.6 (Certificate of correctness). Consider the model x] in (exact). Suppose that

Assumptions 2.3(ii) and (iii) are met. If x] = 0, then the machine (gauge) correctly returns 0. That

is, x] =
∑l̂

i=1 ĉiÂi = 0, where {ĉi, Âi}l̂i=1 is a solution of the optimization problem (gauge).

Otherwise, let F ] be an exposed face of conv(A) such that x]/GA(x]) ∈ F ]. Suppose also that the

following holds:

(i) The linear operator L in (exact) is injective when restricted to the subspace lin(F ]), i.e.,

x ∈ lin(F ]) and L(x) = 0 ⇐⇒ x = 0 .

(ii) The face F ] has a support vector within the range of L∗, where L∗ is the adjoint of the

operator L, i.e., there exists Q ∈ range(L∗) such that

〈Q, x− x′〉 < 0, ∀x ∈ conv(A)−F ], ∀x′ ∈ F ] . (2.7)

Then the machine (gauge) successfully returns x]. That is, x] =
∑l̂

i=1 ĉiÂi, where {ĉi, Âi}l̂i=1 is a

solution of the optimization problem (gauge).

Lemma 2.6 also immediately extends to the basis pursuit formulation of the problem (gauge), in

which the objective and constraint are swapped [30].

The correctness certificate Q in Lemma 2.6 can be successfully designed for a variety of linear

inverse problems, e.g., in compressive sensing [11] and low-rank matrix completion [32]. Often the

starting point is the construction of a pre-certificate within range(L∗), for which the assertion (2.7)

is then verified, see for example [33].

Despite these success stories, there are many linear inverse problems for which the classical gauge

function theory fails. To highlight the statistical failures of the machine (gauge), we focus in this

section on structured data factorization, i.e., the particular linear inverse problem in (gauge), for

which L is the identity operator. In this special case, it is not difficult to verify that solving (gauge)

is equivalent to finding a minimal decomposition of x] that achieves GA(x]). That is, when L is the

identity operator, (gauge) reduces to the optimization problem

GA(x]) = inf

{
l∑

i=1

ci : x] =
l∑

i=1

ciAi, ci ≥ 0, Ai ∈ A, ∀i ∈ [l]

}
, (gauge : L = id)

where the infimum above is taken over the integer l and coefficients{ci}i and the atoms {Ai}i. Let

us list two examples of structured data factorization for which the classical theory fails.

Example 2.7 (Manifold models). In a multitude of problems, the alphabet A is naturally an

embedded submanifold of the Euclidean space [22, 34]. Our first example showcases the failure of the

gauge function theory for manifold manifolds. As a toy example, here we consider the alphabet

A := {(t cos(πt), t sin(πt)) : t ∈ [0, 2]} ⊂ R2, (spiral)

which forms a spiral in R2. That is, A is the one-dimensional manifold with boundary visualized in

Figure 1. For the above alphabet, it is important to note that the inclusion in (2.6) is strict, i.e.,

ext(conv(A)) ⊂ A. (2.8)
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In particular, the 1-sparse model

x] := A] =
1

4
√

2
(1, 1) ∈ A, (2.9)

is not an extreme point of conv(A), i.e., x] above belongs to the right-hand side but not to the left-

hand side of (2.8). The model x] in (2.9) is represented with a red dot in Figure 1. We note that

the model x] in (2.9) has the alternative decomposition

x] =
A1

8
√

2
+

A2

2
√

2
, A1 =

1

2
(0, 1) ∈ A, A2 = 2(1, 0) ∈ A. (2.10)

By comparing the two alternative representations of x] above, we find that

GA(x]) ≤ min

(
1,

1

8
√

2
+

1

2
√

2

)
=

5

8
√

2
< 1. (see (2.2)) (2.11)

That is, (2.9) is not the minimal decomposition of x] that achieves GA(x]) in (gauge : L = id). In

fact, a visual inspection of Figure 1 reveals that the minimal decomposition of x] that achieves GA(x])

is not 1-sparse. We conclude that the machine (gauge : L = id) fails to learn any 1-sparse decom-

position for the model x].

As as another failed application of the gauge function theory, we turn to sparse PCA. Here the

objective is to decompose a data matrix into a small number of rank-1 and sparse components.

More specifically, suppose that the rows and columns of the data matrix x] ∈ Rd1×d2 correspond

to samples and features, respectively. In general, the leading principal components of x] are not

sparse, which renders them difficult to interpret. That is, it is often not possible to single out the

key features in a data matrix from its leading principal components.

In contrast, for an integer r, sparse PCA in effect models the data matrix x] as

x] ∈ cone(S]), S] ∈ slicer(A),

A := {uv> : ‖u‖2 = ‖v‖2 = 1, ‖v‖0 ≤ k} ⊂ Rd1×d2 , (sparse PCA)

where ‖v‖0 denotes the number of nonzero entries of v. In words, the data matrix x] is a conic

combination of r atoms from the alphabet A. The representation in (sparse PCA) is closely related

to [12, 13] and [18, Equation 3.12]. Note that k is the sparsity level of vector v (i.e., the number of

its nonzero entries) and should not to be confused with the sparsity level r of the model x] (i.e., the

number of atoms from the alphabet A that make up x]). Note also that A may be identified with an

alphabet in Rd with d = d1d2. One may also revise the definition of A by including ‖v‖∞ = O(1/
√
k)

to ensure that the atoms that make up x] are diffuse on their support. Importantly, note that the

model (sparse PCA) is exact , namely, we have complete access to the matrix x]. Often, x] is

distorted by noise and we will study this general case in Section 4.

Example 2.8 (Sparse PCA). In this example, we consider the model (sparse PCA) with d1 =

d2 = 3 and k = 2. To be specific, we consider the 2-sparse model

x] :=
A]1
2

+
A]2
2
∈ R3×3, (2.12)
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where the atoms A]1, A
]
2 ∈ A are specified as

A]1 := u]1(v]1)> =
[

1√
3

1√
3

1√
3

]>
·
[

0.3122 0.95 0
]
∈ R3×3,

A]2 := u]2(v]2)> =
[

1√
2
− 1√

2
0
]>
·
[

0 0.95 0.3122
]
∈ R3×3. (2.13)

Recalling Definition 2.1, let S] be the two-dimensional slice formed by {A]1, A
]
2}. That is, S] =

conv({A]1, A
]
2, 0}). In particular, in view of (2.12), note that x] ∈ S]. On the other hand, note also

that x] above has the alternative decomposition

x] = c1u1v
>
1 + c2u2v

>
2 + c3u3v

>
3 (u1v

>
1 , u2v

>
2 , u3v

>
3 ∈ A)

= 0.1561 ·
[

1√
3

1√
3

1√
3

]>
·
[

1 0 0
]

+ 0.6717 ·
[

0.9082 −0.0918 0.4082
]>
·
[

0 1 0
]

+ 0.1561 ·
[

1√
2
− 1√

2
0
]>
·
[

0 0 1
]
. (2.14)

By comparing the two alternative representations of x] in (2.12) and (2.14), we observe that

GA(x]) ≤ min

(
1

2
+

1

2
, 0.1561 + 0.6717 + 0.1561

)
= 0.984 < 1, (see (2.2)) (2.15)

and thus the 2-sparse decomposition of x] in (2.12) is not minimal, i.e., the decomposition in (2.12)

does not achieve GA(x]). In fact, we may verify that the machine (gauge : L = id) fails to find any

2-sparse decomposition for the model x].

We also remark that the failure of (gauge : L = id) in this example persists even after imposing an

incoherence requirement on the alphabet A, i.e., after including ‖v‖∞ = O(1/
√
k) in (sparse PCA).

Indeed, the true atoms {A]1, A
]
2} in (2.13) are already sufficiently diffuse on their support. To close

this example, we note that the potential failure of the gauge function theory, in the context of sparse

PCA, has also been documented in [12].

In both Examples 2.7 and 2.8, it is easy to verify that x]/GA(x]) belongs to a high- (rather than

low-) dimensional exposed face of conv(A). While both Examples 2.7 and 2.8 fall under the broad

umbrella of structured data factorization, it is also not difficult to find other examples for which the

classical gauge function theory fails beyond structured data factorization, e.g., see Section 5.2.

3. Gaugep Function Theory and Main Results

In Section 2, we reviewed the gauge function theory and highlighted its statistical limitations.

This section aims to overcome some of the limitations of the classical theory by introducing a

generalized gauge function theory, dubbed gaugep function theory. This generalized theory is the

main contribution of this study.

Below, in Section 3.1, we will first introduce the gaugep function, which is the central object of the

new theory. We then compare the gaugep function with the classical gauge function in Section 3.2.

In short, the gaugep function is a simple generalization of the gauge function that can tightly

control the sparsity of a model within the learning alphabet. We finally introduce the new learning

machine at the heart of the gaugep function theory in Section 3.3, and list its statistical guarantees
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in Section 3.4. This new learning machine uses, as the regularizer, the gaugep function instead of

the classical gauge function. Aside from its statistical benefits, the computational aspects of the

proposed machine are discussed later in Section 5.1.

3.1. Gaugep Function

Central to the generalized theory is a new notion of complexity for statistical models, dubbed

gaugep function, which generalizes the gauge function in Definition 2.2. Gaugep function can tightly

control the sparsity level of a model within the learning alphabet. Before defining the gaugep

function, we begin below with a few necessary geometric concepts. To be specific, let us first

introduce a geometric object which, as we will see shortly, generalizes the notion of the convex hull

of a set.

Definition 3.1 (convp(A)). For an alphabet A and integer p, we define

convp(A) :=
⋃

S∈slicep(A)

S, (3.1)

to be the union of all slices of conv(A) formed by at most p atoms. The notation slicep(A) above

was introduced in Definition 2.1.

For example, for the alphabet A := {±ei}3i=1 in Figure 2a, conv2(A) is the union of all colored

triangles, some of which are hidden from the view. We next record a simple property of convp(A).

Proposition 3.2 (Nested hulls). Suppose that Assumption 2.3(i) or (ii) is met. Then,⋃
0≤τ≤1

τA = conv1(A) ⊂ conv2(A) ⊂ · · · ⊂ convd+1(A) = convd+2(A) = · · · = conv(A), (3.2)

where τA = {τA : A ∈ A}.

In words, the sets {convp(A)}p provide a nested sequence of approximations to the alphabet

A ⊂ Rd. That is, as p decreases, convp(A) becomes an increasingly better approximation to A.

In view of (3.2), we note that the sets {convp(A)}dp=1 in (3.2) might be nonconvex. In contrast,

the sets {convp(A)}p≥d+1 are convex and, in fact, all coincide with conv(A). Indeed, the identities

in (3.2) follow from an application of the Carathéodory theorem [26, Theorem 2.3].

To each set convp(A) above, we associate a gaugep function in analogy with (2.2).

Definition 3.3 (Gaugep function). For an alphabet A ⊂ Rd and integer p, the corresponding

gaugep function GA,p : Rd → R is defined as

GA,p(x) := inf {t : x/t ∈ convp(A), t ≥ 0} . (3.3)

Gaugep function generalizes the notion of gauge function in Definition 2.2 in the sense that GA,p =

GA when p > d, see (2.2) and (3.3). In contrast, when p ≤ d, the gaugep function tightly controls

the sparsity level of a model. That is, Gp(x) is finite only when x has a p-sparse decomposition in

the alphabet A. This and other basic properties of gaugep functions are collected below, and it is

straightforward to prove them using Proposition 3.2 and Definition 3.3.
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Proposition 3.4 (Properties of gaugep functions). Consider the gaugep function in Defini-

tion 3.3 for an integer p and an alphabet A ⊂ Rd. Suppose that Assumptions 2.3(i) and (iii) are

both met. Then the following statements are true:

(i) The gaugep function has the equivalent definition

GA,p(x) := inf

{
p∑
i=1

ci : x =

p∑
i=1

ciAi, ci ≥ 0, Ai ∈ A, ∀i ∈ [p]

}
. (3.4)

(ii) GA,p(x) = 0 if and only if x = 0.

(iii) If x does not admit a p-sparse decomposition in the alphabet A, then GA,p(x) =∞.

(iv) If GA,p(x) < ∞, then any minimal decomposition of x that achieves GA,p(x) in (3.4) is

p-sparse in the alphabet A.

(v) The convex conjugate of GA,p, denoted here by G∗A,p, is specified as

G∗A,p(z) :=

0 DA(z) ≤ 1

∞ otherwise.
(3.5)

(vi) The convex envelope of GA,p is the gauge function GA in (2.2), i.e., G∗∗A,p = GA.

(vii) The gaugep functions satisfy the nested property

GA,1(x) ≥ GA,2(x) ≥ · · · ≥ GA,d+1(x)= GA,d+2(x) = · · · = GA(x), (3.6)

where {GA,p}dp=1 above may be nonconvex functions.

Let us take a moment to parse the above result: Proposition 3.4(vii) posits that the gaugep function

coincides with the gauge function for p > d. Moreover, even when p ≤ d, the gaugep function still

preserves certain properties of the gauge function, see Proposition 3.4(ii)-(vi). Crucially, when p ≤ d,

the gaugep function directly controls the sparsity level, as articulated in Proposition 3.4(iii) and (iv).

This property of the gaugep function remedies the key shortcoming of the classical gauge function

concerning the lack of sparsity of the outcome. Indeed, in the negative examples of Section 2,

the classical gauge function failed to enforce sparsity, i.e., its minimal decomposition failed to be

sparse at all. In contrast, any minimal decomposition of x that achieves GA,p(x) is p-sparse by

Proposition 3.4(iv). Put differently, in the negative examples highlighted of Section 2, at least one

of the inequalities in (3.6) was strict. We will further investigate these key differences in Section 3.2

by comparing the gauge and gaugep functions for several learning alphabets.

Let us also describe a natural interpretation of (3.6): In view of [35, Definition 2.2] or [36], GA,1
is the “most nonconvex” among the gaugep functions, followed by GA,2, then GA,3 and so on. Here,

the nonconvexity of gaugep functions is measured by their distance from their shared convex enve-

lope GA, see Proposition 3.4(vi). Another interesting perspective is offered by the the approximate

Carathéodory theorem of Maurey [35, 37]. In principle, this theorem can quantify just how well the

sets convp(A) approximate conv(A). However, we will not further pursue these connections.
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3.2. Why Gaugep Function?

We earlier reviewed the gauge function in Definition 2.2 as the notion of statistical complexity

at the heart of the classical gauge function theory. We then introduced the gaugep function in

Definition 3.3 as a new device for measuring the complexity of statistical models.

To develop a better understanding of these concepts, we next compare the gauge and gaugep

functions for a few learning alphabets. Our discussion in this section is limited to the statistical

benefits of gaugep functions and we defer their computational aspects to Section 5.1.

Example 3.5 (Sparsity). Consider the alphabet

A := {±ei}di=1 ⊂ Rd, (3.7)

which is central to sparse signal processing and high-dimensional statistical inference [4, 11, 38].

Here, ei ∈ Rd is the ith canonical vector, with its ith entry equal to one and the remaining entries

equal to zero. For this alphabet, a simple calculation shows that

GA,p(x) :=

GA(x) = ‖x‖1 ‖x‖0 ≤ p

∞ otherwise,
(3.8)

where ‖x‖0 is the number of nonzero entries of x. Above, ‖·‖1 stands for the `1-norm. In particular,

it follows from (3.8) that GA,p = GA when p ≥ d. On the other hand, if ‖x‖0 > p, then note

that GA,p(x) = ∞. This property of the gaugep function will later enable us to limit the learning

outcome to sufficiently sparse models. If one replaces the `1-norm in (3.8) with the `2-norm, then the

convex envelope of the resulting function would coincide with the k-support norm [39], an alternative

to elastic net regularization [40]. We close by noting that, for this choice of the alphabet A, the

relation GA,p = GA for p ≥ d is an improvement over the conservative but general result in (3.6).

In Example 3.5, observe that the gaugep function of a p-sparse model coincides with the cor-

responding gauge function. However, in general, recall from (3.6) that GA,p(x) ≥ GA(x) for an

arbitrary alphabet A and model x. As we will see below, this inequality might be strict, which

precisely explains the failures of the classical gauge function theory in Section 2. To see this, let us

continue below with the manifold example.

Example 3.6 (Manifold models, continued). When the alphabet A is an embedded subman-

ifold, we saw in Section 2 that the gauge function GA might lose vital geometric details about the

manifold A. In contrast, GA,1 captures far more information about the manifold A. More specifi-

cally, the gauge1 value of a model is infinity unless that model is 1-sparse, see Proposition 3.4(iii).

That is, GA,1(x]) = ∞, unless x] = tA for some t ≥ 0 and atom A ∈ A. As an example, for the

1-sparse model x] in (2.9), it is easy to verify that

GA(x]) ≤ 5

8
√

2
< 1 = GA,1(x]). (3.9)

The strict inequality above means that the machine (gauge) fails to find any 1-sparse decomposition

of x], which in turn explains the failure of the classical gauge function theory in Section 2. To see
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why (3.9) holds, note that the far-left inequality in (3.9) was established in (2.11) and the identity

in (3.9) is evident from a visual inspection of Figure 1.

One can also verify that the strict inequality between gauge and gaugep functions also holds in

Example 2.8 about sparse PCA, thus explaining the failure of the gauge function in that example.

The gaugep function in Definition 3.3 is a simple generalization of the classical gauge function

that better controls the sparsity of a model within the learning alphabet. In every failed example

of the classical gauge function theory, we observed that GA(x]) < GA,r(x]). Consequently, in

these examples, any minimal decomposition of x] in the alphabet A that achieves GA(x]) cannot

be r-sparse. In contrast, any minimal decomposition of x] that achieves GA,r(x]) is r-sparse

by definition, see the result in Proposition 3.4(iv). Motivated by this encouraging observation,

we next introduce a new learning machine that replaces the gauge function in (gauge) with a

gaugep function.

3.3. A New Learning Machine

As reviewed in Section 2, the classical gauge function theory is a theory for (convex) statistical

learning that leverages the gauge function to promote sparsity within the learning alphabet. How-

ever, the classical gauge function might fail to enforce sparsity and, in such cases, the gauge function

theory fails too. To overcome the statistical limitations of the classical gauge function theory, this

section introduces a new learning machine, the main building block of which is the gaugep function

in Definition 3.3. As we will see shortly, the new learning machine is a simple generalization of the

convex machine (gauge) which allows us to tightly control the sparsity of the learning outcome.

To begin, consider the (inexact) setup

y := L(x]) + e, x] ∈ cone(S]), S] ∈ slicer(A), ‖e‖2 ≤ ε, (inexact)

where y ∈ Rm is the available measurement, and ε reflects the inexactness of the setup. In signal

processing, for example, ε quantifies the noise level in our measurements y. In statistical inference, e

in the setup (inexact) is also assigned a probability distribution [41, 29], but we avoid this additional

layer of complexity here. In particular, when the distribution assigned to e is light-tailed, it often

suffices to take ε large enough and then work with the setup (inexact).

To learn the model x] in (inexact) or its sparse decomposition in the alphabet A, consider

min
x
‖L(x)− y‖22 subject to GA,p(x) ≤ GA,p(x]), (3.10)

which uses the gaugep function GA,p defined in (3.3). Using the equivalent definition of gaugep

function in (3.4), we can also reformulate the above learning machine as

inf

{∥∥∥ p∑
i=1

ciL(Ai)− y
∥∥∥2

2
:

p∑
i=1

ci ≤ GA(x]), ci ≥ 0, Ai ∈ A, i ∈ [p]

}
, (gaugep)

where the infimum is over {ci}pi=1 and {Ai}pi=1. It is the above reformulation of (3.10) that we will

primarily work with in this paper. In particular, if {ĉi, Âi}pi=1 is a solution of (gaugep), then the

learning outcome of (gaugep) is the p-sparse model x̂ =
∑p

i=1 ĉiÂi.
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The computational aspects of the new learning machine are discussed later in Section 5.1, where

we provide a tractable numerical scheme for solving the optimization problem (gaugep). As detailed

below, the proposed machine (gaugep) generalizes both the classical machine (gauge) and the familiar

`0-pursuit approach.

Remark 3.7 (A generalization of (gauge)). The proposed machine (gaugep) reduces to the

classical convex machine (gauge) for p ≥ d + 1. Indeed, this claim follows from comparing the

equivalent formulations (2.5) and (3.10), and then invoking Proposition 3.4(vii). On the other

hand, when p ≤ d, the machine (gaugep) only searches over p-sparse models and thus always returns

a p-sparse solution by design. More specifically, the learning output of (gaugep) is the p-sparse

model x̂ =
∑p

i=1 ĉiÂi, where {ĉi, Âi}pi=1 is a solution of (gaugep). This guaranteed sparsity of the

learning outcome immediately rectifies the key failure of the classical gauge function theory, i.e., the

lack of sparsity that we observed in Examples 2.7 and 2.8.

Suppose that ε = 0 in (inexact), i.e., for simplicity, consider the exact setup L(x]) = y. Recall the

familiar `0-pursuit,

min
x
‖L(x)− y‖22 subject to x having a p-sparse decomposition in the alphabet A, (`0-pursuit)

which finds a p-sparse model x̃ that satisfies L(x̃) = y. For instance, in the context of Example 2.7,

the machine (`0-pursuit) reduces to the familiar optimization problem in [24]:

min
x
‖L(x)− y‖22 subject to ‖x‖0 ≤ p. (3.11)

Remark 3.8 (A generalization of the `0-pursuit). The new machine also generalizes the

well-known `0-pursuit: For ε = 0, recall from Remark 3.7 that the proposed machine (gaugep) finds

a p-sparse model x̂ that satisfies L(x̂) = y and GA,p(x̂) ≤ GA,p(x]). When p = r, it not difficult

to verify that the new machine (gaugep) reduces to (`0-pursuit), provided that L is an injective

map when its domain is restricted to r-sparse models. This restricted injectivity assumption is

reasonable because the true model x] would not be identifiable otherwise. (Recall from (inexact)

that r denotes the sparsity level of the true model x].) When p > r, however, a key advantage of

the new machine (gaugep) is that the former is regularized with the gaugep function. Indeed, if p

is relatively large, then the operator L might not be injective when restricted to p-sparse models.

Consequently, searching over p-sparse models might fail to recover the true model x].
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We summarize this subsection so far in the following note:

The proposed machine (gaugep) generalizes both of the familiar machines (gauge) and (`0-pursuit).

That is, (gaugep) interpolates two extremes:

(i) In one extreme, when p ≥ d + 1, the new machine (gaugep) reduces to the classical

convex machine (gauge), see Remark 3.7.

(ii) In the other extreme, when p = r, the new machine (gaugep) coincides with (`0-pursuit),

provided that L is an injective map when restricted to r-sparse models. See Remark 3.8.

Recall from (inexact) that r denotes the sparsity level of the true model x].

As we decrease the value of p from d+ 1 towards r, the machine (gaugep) unlocks a range of

potentially new statistical and computational trade-offs. Informally speaking, as p decreases, the

statistical accuracy of the new machine (gaugep) improves and we will quantify this improvement

later in this section. However, the computational trade-offs of (gaugep) are more complex and

we defer their discussion to Section 5.1.

In addition to generalizing (gauge) and (`0-pursuit), the new machine (gaugep) can also be inter-

preted as a natural extension of the Burer-Monteiro idea [16]:

Remark 3.9 (Generalization of the Burer-Monteiro factorization). A predecessor of

the proposed machine (gaugep) appears in the context of matrix factorization. To explain their

connection, for simplicity, consider the optimization problem

min
x
‖L(x)− y‖22 subject to trace(x) ≤ γ2 and x ∈ Rd×d is positive semi-definite, (3.12)

where L : Rd×d → Rm is a linear operator and γ ≥ 0. Because x is a positive semi-definite matrix

above, trace(x) coincides with the nuclear norm of x and the problem (3.12) is therefore a variant

of the (convex) learning machines that are widely studied in matrix completion and sensing [32].

Note that the direct computational cost of solving problem (3.12) grows rapidly as the dimension d1

grows. Instead, it is common to solve the Burer-Monteiro factorization of problem (3.12). More

specifically, for an integer p ≤ d, the factorized version of problem (3.12) is

min
u∈Rd×p

‖L(uu>)− y‖22 subject to ‖u‖F ≤ γ, (3.13)

where ‖ · ‖F stands for the Frobenius norm. Above,we also used the fact that trace(uu>) = ‖u‖2F.

When p is sufficiently small, solving the problem (3.13) can offer substantial savings in computational

speed and storage, compared to a direct implementation of the problem (3.12). This idea has been

extensively studied for matrix-valued learning problems [16, 19, 42, 43, 44, 15].

It is not difficult to verify that the factorized problem (3.13) coincides with (gaugep) for the choice

of alphabet A := {uu> : ‖u‖2 = 1}. In this sense, the proposed machine (gaugep) extends the

successful idea of Burer-Monteiro factorization to any learning alphabet.

It is worth noting that the Burer-Monteiro factorization is primarily concerned with those values

of p for which (3.12) and (3.13) have the same minimizers. In contrast, as to be seen shortly, we are

often interested in those values of p for which the two problems have different minimizers.
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Let us also add that it is often possible to remove the constraints in problem (3.13), provided that

p . rank(x]). Here, x] is the hidden model that satisfies L(x]) ≈ y and . hides any constant factors.

In this regime, which is known as the thin Burer-Monteiro factorization, a generic operator u →
L(uu>) is often injective, thus obviating the need for regularization with ‖u‖F, see for instance [20].

Finally, let us revisit the failed applications of the classical gauge function theory in Section 2.

Example 3.10 (Examples 2.7 and 2.8, revisited). In these negative toy examples, we saw in

Section 2 that the convex machine (gauge) failed to find any r-sparse decomposition of the model x]

in the learning alphabet A. In contrast, it is not difficult to verify that the new machine (gaugep)

successfully finds the (unique) r-sparse decomposition of x] in each example (p = r and L = id).

Here, id stands for the identity operator. In general, the machine (gaugep) always returns a p-sparse

model, see Proposition 3.4(iv).

3.4. Statistical Guarantees

In Section 3.3, we introduced the machine (gaugep) as a generalization of the convex machine (gauge).

This section will develop some statistical guarantees for this new learning machine as part of a gener-

alized gauge function theory. The first result of this section, Lemma 3.11 below, provides certificates

of correctness for the new machine (gaugep). Lemma 3.13 later extends Lemma 3.11 to account for

noise. Lastly, Theorem 3.20 shows that these certificates exist in certain generic learning problems.

Let us start with a lemma that posits that the machine (gaugep) succeeds if certain certificates of

correctness exist. This result is reminiscent of Lemma 2.6 in the classical gauge function theory.

Lemma 3.11 (Correctness certificates, exact setup). With ε = 0, consider the model x]

in (inexact) and suppose that the alphabet A satisfies Assumptions 2.3(i) and (iii). If x] = 0, then

the machine (gaugep) correctly returns 0. That is, x] =
∑p

i=1 ĉiÂi = 0, where {ĉi, Âi}pi=1 is a

solution of the optimization problem (gaugep).

Otherwise, suppose that p ≥ r, where r is the sparsity level of x] in (inexact). For every slice S ∈
slicep(A), suppose also that (one of) the following holds:

(i) If x]/GA,p(x]) ∈ S, the linear map L is injective when its domain is restricted to the slice S.

(ii) If x]/GA,p(x]) /∈ S, the point x]/Gp,A(x]) and the slice S are separated along range(L∗), i.e.,

there exists a correctness certificate QS ∈ range(L∗) such that〈
QS , x−

x]

GA,p(x])

〉
< 0, ∀x ∈ S. (3.14)

Then the machine (gaugep) returns x] and a p-sparse decomposition of x] in A. That is, x] =∑p
i=1 ĉiÂi, where {ĉi, Âi}pi=1 is a solution of the optimization problem (gauge).

The proof of Lemma 3.11 largely mirrors that of Lemma 2.6 for the convex machine (gauge). This

symmetry justifies our unusual perspective when we reviewed the classical theory in Section 2. In

Lemma 3.11, the correctness certificates for the machine (gaugep) replace the correctness certificate

for the convex machine (gauge). The remark below compares the two types of certificates.
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Remark 3.12 (Convex versus nonconvex learning). When p > d, the new machine (gaugep)

reduces to the convex machine (gauge), see Remark 3.7. From Lemma 2.6, recall that the convex

machine (gauge) succeeds if x]/GA(x]) is separated along range(L∗) from the rest of conv(A). How-

ever, when p ≤ d, the new machine (gaugep) succeeds under the weaker requirement that x]/GA,p(x])
is separated along range(L∗) from every slice of conv(A) formed by at most p atoms.

For a family of generic learning problems, we will later construct the correctness certificates in

Lemma 3.11. This will, in turn, guarantee the success of the new machine (gaugep). It is not difficult

to extend Lemma 3.11 to account for an inexact setup, i.e., the case where ε > 0 in (inexact).

Lemma 3.13 (Correctness certificates, inexact setup). Consider the model x] in (inexact)

and suppose that the alphabet A satisfies Assumptions 2.3(i) and (iii). If GA,p(x]) = 0, then the

machine (gaugep) correctly returns 0. That is, x] =
∑p

i=1 ĉiÂi = 0, where {ĉi, Âi}pi=1 is a solution

of the optimization problem (gaugep). Otherwise, suppose that p ≥ r, where r is the sparsity level

of x] in (inexact). For every slice S ∈ slicep(A), suppose also that (one of) the following holds:

(i) If x]/GA,p(x]) ∈ S, the linear map L is injective when restricted to the slice S and its smallest

singular value is at least σ > 0.

(ii) If x]/GA,p(x]) /∈ S, the point x]/Gp,A(x]) and the slice S are well-separated along range(L∗),
i.e., there exists a correctness certificate QS ∈ Rd and a vector qS ∈ Rm such that

QS = L∗(qS),

‖qS‖2 ≤ q,〈
QS , x−

x]

GA,p(x])

〉
< −γ

∥∥∥∥x− x]

GA,p(x])

∥∥∥∥
2

, ∀x ∈ S. (3.15)

Finally, let the p-sparse model x̂ be a learning outcome of the machine (gaugep). That is, x̂ =∑p
i=1 ĉiÂi, where {ĉi, Âi}pi=1 is a solution of the optimization problem (gaugep). Then it holds that

‖x̂− x]‖2 ≤ max

(
2ε

σ
,
2εq

γ

)
. (3.16)

Finding the certificates prescribed in Lemma 3.11 is a problem-specific task, similar to the classical

gauge function theory in Section 2. Nevertheless, this section provides a somewhat general recipe

for constructing these correctness certificates. To that end, we begin with a few definitions.

Definition 3.14 (Angle of a cone). The angle ∠K∈ [0, π] of a closed cone K ⊂ Rd satisfies

cos(∠K) := max
u∈K∩Sd−1

min
u′∈K∩Sd−1

〈u, u′〉, (3.17)

where Sd−1 denotes the unit sphere in Rd.

As an example, the positive orthant in R2 has the angle π/4. That is, ∠R2
+ = π/4. We also recall

the Hausdorff metric below [45]. This concept is visualized in Figure 3.

Definition 3.15 (Hausdorff distance). The Hausdorff distance of two sets S and S ′ is

distH(S,S ′) := max

(
max
s∈S

min
s′∈S′

‖s− s′‖2 , max
s′∈S′

min
s∈S
‖s− s′‖2

)
(3.18)



18

𝛿

2𝑟

Figure 3. This figure visualizes some of the geometric concepts in this work: In the top left

panel, the Hausdorff distance between the blue and green arcs equals the length of the longer dashed

line segment, see Definition 3.15. The (red) dots in the top right panel form a δ-net for the (blue)

trapezoid, see Definition 3.16. The (green) triangle in the bottom left panel is a section of the

tangent cone of the (blue) trapezoid at the (green) dot, see Proposition 3.19. Lastly, in the bottom

right panel, the reach of the circle in solid black is its radius, see Definition 4.1. The blue annulus

shows the normal bundle of radius r.

Next, recall that the metric entropy of a set is a measure for how large or complex that set is [46].

Definition 3.16 (Metric entropy). Consider a metric space with distance dist. In this space,

consider a set I and its subset I ′ that satisfy the following: For every x ∈ I, there exists x′ ∈ I ′ such

that dist(x, x′) ≤ δ. The set I ′ is called a δ-net for the set I with respect to the metric dist. There

are often many δ-nets for a set I. In particular, let net(I, dist, δ) denote a minimal δ-net for I,

i.e., the one with the smallest size. The logarithm of the size of this net is called the metric entropy

of the set I, denoted by entropy(I, dist, δ). That is, entropy(I, dist, δ) := log[|net(I, dist, δ)|].

As an example, the red dots in Figure 3 form a δ-net for the (blue) trapezoid. In linear inverse

problems, it is not uncommon for the linear operator to be random, see for instance [11, 32, 9]. For

our purposes, we quantify the randomness of the operator L as follows.

Definition 3.17 (Probabilistic restricted injectivity). The random linear operator L :

Rd → Rm satisfies the probabilistic δ-restricted isometry property if L is a near-isometry when

restricting its domain to a low-dimensional subspace with high-probability. More specifically, for

δ ∈ [0, 1), we say that L satisfies the probabilistic δ-RIP if an arbitrary subspace U ⊂ Rd with

dim(U) ≤ Cmδ2 satisfies

(1− δ)‖u‖2 ≤ ‖L(u)‖2 ≤ (1 + δ)‖u‖2, ∀u ∈ U , (3.19)

except with a probability of at most exp(−C ′δ2m). Here, C,C ′ are universal constants and the

probability is over the choice of the operator L.
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For example, consider a matrix populated by independent Gaussian random variables, which can

be identified with a random linear operator. This matrix satisfies the probabilistic RIP if it is

sufficiently flat and properly scaled, see Appendix B.4. Random matrix theory [47] offers similar

statements with broad applications in statistical inference and signal processing [11].

Note also that the two-sided nature of (3.19) does not restrict the generality of Definition 3.17. In-

deed, consider an operator L′ that satisfies 0 < a‖u‖2 ≤ ‖L′(u)‖2 instead of (3.19). Then we can ver-

ify that L =
√

2/(a2 + ‖L′‖2)L′ satisfies the probabilistic δ-RIP with δ =
√

(‖L′‖2 − a2)/(‖L′‖2 + a2),

where ‖L′‖ is the operator norm of L′. Finally, let us define the notion of critical angle below. As we

will see shortly, the critical angle quantifies how difficult it is to construct the correctness certificates

prescribed in Lemma 3.11.

Definition 3.18 (Critical angle). For an integer p, alphabet A and model x], we define

slicex],p(A) :=
{
S ∈ slicep(A) : x]/GA,p(x]) /∈ S

}
. (3.20)

In words, slicex],p(A) collects all the slices of conv(A) that are formed by at most p atoms and do

not contain the point x]/GA,p(x]), see Definitions 2.1 and 3.3. The critical angle of the alphabet A
with respect to the model x], denoted by θx],p(A) ∈ [0, π], is then defined as

θx],p = θx],p(A) := sup

{
∠cone

(
S − x]

GA,p(x])

)
: S ∈ slicex],p(A)

}
, (3.21)

with the conventions that 0/0 = 0, and θx],p(A) = 0 if slicex],p(A) is empty.

To help visualize this new notion, the next result relates the critical angle to a familiar quantity

in convex statistical learning: Tangent cones of the set conv(A).

Proposition 3.19 (Example for critical angle). Consider an alphabet A ⊂ Rd, an integer

p ≥ d+ 1, and a model x] ∈ Rd. The critical angle of the alphabet A with respect to the model x] is

bounded by twice the angle of the corresponding tangent cone, i.e.,

θx],p(A) ≤ 2 · ∠cone

(
A− x]

GA(x])

)
.

Here, cone(A − x]/GA(x])) is the tangent cone of conv(A) at the point x]/GA(x]) [45]. The angle

of this tangent cone, which appears above, should be calculated according to Definition 3.14.

As we will see shortly, the smaller the critical angle is, the easier it is to construct the correctness

certificates prescribed in Lemma 3.11. Equipped with Definitions 3.14-3.18, we now present the

last main result of this section. Informally speaking, the result below states that the new learning

machine (gaugep) succeeds when the linear operator L : Rd → Rm in (inexact) is generic and m is

large enough. For simplicity, the result below is limited to the exact setup, i.e., below we set ε = 0

in (inexact).

Theorem 3.20 (Exact recovery). Consider the model x] in (inexact) with ε = 0, and assume

that the alphabet A satisfies Assumptions 2.3(i) and (iii). Assume also that the corresponding
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critical angle in Definition 3.18 satisfies θx],p(A) < π
2 . Let us equip slicep(A) in (3.1) with the

pseudo-metric1 that assigns the distance

distp(S,S ′) := distH

(
cone

(
S − x]

GA,p(x])

)
∩ Sd−1, cone

(
S ′ − x]

GA,p(x])

)
∩ Sd−1

)
, (3.22)

to every pair of slices S,S ′ ∈ slicep(A), with the convention that 0/0 = 0. Above, Sd−1 is the

unit sphere and distH denotes the (Euclidean) Hausdorff distance between two sets [45]. Lastly,

for δ ∈ [0, 1), suppose that the random linear operator L : Rd → Rm satisfies the probabilistic δ-

RIP, see Definition 3.17. If GA,p(x]) = 0, then the machine (gaugep) correctly returns 0. That is,

x] =
∑p

i=1 ĉiÂi = 0, where {ĉi, Âi}pi=1 is a solution of the optimization problem (gaugep). Otherwise,

suppose that p ≥ r, where r is the sparsity level of x] in (inexact). Suppose also that

m ≥ 1[
cos(θx],p)

]2 (Cp+ C ′entropy

(
slicep(A),distp,

cos(θx],p)

2 max(‖L‖2op, 1)

))
. (3.23)

Then the machine (gaugep) returns x] and a p-sparse decomposition of x] in A, except with a

probability of at most exp(−[cos(θx],p)]
2m/C ′). That is, with high probability, it holds that x] =∑p

i=1 ĉiÂi, where {ĉi, Âi}pi=1 is a solution of the optimization problem (gauge). Here, C,C ′ are

universal constants and ‖L‖op is the operator norm of L.

The proof technique of Theorem 3.20 appears to be new in this context. More specifically, the

proof relies on a covering argument, where we form a fine net for all relevant slices of conv(A), with

respect to the metric distp in (3.22). We then explicitly construct a correctness certificate for each

slice, with high probability over the choice of the random operator L. The failure probabilities are

added up via a union bound. To complete the proof, we finally show that the constructed certificates

qualify as optimality certificates for all relevant slices of conv(A), even those not present in the net.

As discussed below, we may consider Theorem 3.20 as a statistical guarantee for the new ma-

chine (gaugep) that is analogous to a similar guarantee for the convex machine (gauge). The

regime of interest in Theorem 3.20 is

p . r, and 0 ≤ θx],p <
π

2
,

and entropy

(
slicep(A), distp,

cos(θx],p)

2 max(‖L‖2op, 1)

)
. r, (3.24)

in which, for brevity, the symbol . suppresses any factors that might depend on the alphabet A.

An example of the regime (3.24) is given in Section 4.1 with r = p = 1. In that example, the factors

suppressed in (3.24) are given explicitly and their dependence on A is through elementary geometric

attributes, e.g., intrinsic dimension and volume.

In the regime (3.24), Theorem 3.20 predicts that the machine (gaugep) successfully recovers the true

model x] and returns a p-sparse decomposition of x] in the alphabet A, provided that m & r. That

is, in the regime (3.24), solving the optimization problem (gaugep) with high probability recovers x]

and finds a p-sparse decomposition of x] if m & r. Recall that m is the number of observations

and r is the sparsity level of x] within the alphabet A. In contrast, it is not difficult to verify

1For a pseudo-metric, dist(x, x′) = 0 does not imply that x = x′.
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that m ≥ dim(F ]) is necessary (rather than sufficient) for the classical convex machine (gauge) to

recover the model x]. Here, F ] is an exposed face of conv(A) ⊂ Rd that passes through x]/GA(x]),

see Definition 2.5. In particular, in the negative toy examples of Section 2, one can verify that

dim(F ]) = d which, in turn, necessitates m ≥ d.

The informal discussion above highlights the potential benefits of the new machine in the regime (3.24).

Beyond this discussion, the entropy number and the critical angle in Theorem 3.20 should be calcu-

lated on a case-by-case basis by taking into account the geometry of the learning alphabet A. One

such case is presented in the next section.

Finally, in the regime p ≥ d + 1, the machine (gaugep) reduces to the convex machine (gauge),

see Remark 3.12. In particular, our bound in (3.23) is too conservative in this regime and reads

as m & d. Instead, with high probability, a classical result guarantees that the machine (gauge)

recovers x] if m ≥ w(Ω)2 + 1, e.g., see [1, Corollary 3.3.1]. Here, w(Ω) is the Gaussian width of the

set Ω. In turn, Ω is the intersection of the corresponding tangent cone of A with the unit sphere,

i.e., Ω := cone(A − x]/GA(x])) ∩ Sd−1. For completeness, this result is reviewed in Appendix B.8.

Through the celebrated Dudley’s inequality, the Gaussian width of the above set Ω relates to its

entropy number with respect to the Euclidean metric [1]. This might be contrasted with (3.23)

which involves the entropy number of the set slicep(A) with respect to the metric distp.

4. Stylized Applications of the Gaugep Function Theory

In Section 3.3, we studied the new machine (gaugep). Without being exhaustive, this section

applies the new learning machine to two representative problems to showcase its potential.

4.1. Manifold-Like Models

Despite the importance of manifold models in signal processing and machine learning [22, 17, 48],

the classical gauge function theory might fail to learn manifold models, as highlighted in Section 2

with a toy example. In this section, we consider a slightly more general family of models and show

that the new machine (gaugep) succeeds in learning them from limited observations.

Suppose that the alphabet A is an arbitrary subset of Rd, and consider the 1-sparse setup

y := L(A])∈ Rm, A] ∈ A, (manifold-like)

where L : Rd → Rm is a linear operator. For simplicity, we have not accounted for measurement noise

in the setup above. The equation (manifold-like) is common in learning with nonlinear constraints,

e.g., when using a generative adversarial network as the prior [49, 50]. In particular, when A is an

embedded submanifold of Rd, then (manifold-like) reduces to the well-known manifold model [22].

Since the alphabet A in (manifold-like) can be arbitrary, the 1-sparsity of the (manifold-like) setup

does not reduce its generality. Indeed, consider another alphabet A′ ⊂ Rd. For an integer r, let

us set A := convr(A′), according to Definition 3.1. Then, every 1-sparse model in the alphabet A
corresponds to an r-sparse model of the alphabet A′. On the other hand, as we will see shortly, the

1-sparsity of (manifold-like) will simplify the presentation of the main result in this section.
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To recover the atom A] in (manifold-like), we may implement the machine (gaugep) for any p ≥ 1.

In particular, the choice of p = 1 leads us to consider the learning machine

min
c,A
‖cL(A)− y‖22 subject to 0 ≤ c ≤ 1 and A ∈ A, (gauge1 : manifold-like)

which is closely related to those numerically studied in [22, Equation 12] and [17, Equation 20].

In the remainder of this section, we will limit ourselves to the special of case of (manifold-like)

in which the alphabet A is a compact embedded submanifold of Rd [51]. For example, the set {x :

h(x) = 0} is a k-dimensional embedded submanifold of Rd if the Jacobian of h : Rd → Rk is full-rank

everywhere [52]. This restriction does not considerably reduce the generality of our results below.

Indeed, if a bounded alphabet A′ ⊂ Rd is not an embedded submanifold, one can always replace

the alphabet A′ with a new alphabet A ⊂ Rd such that A is a compact embedded submanifold

and A′ ⊂ A. For example, a (potentially conservative) choice for A is a sufficiently large (closed)

Euclidean ball that contains A′.

The main result of this section is a corollary of Theorem 3.20 for the special case of r = p = 1,

presented below. This corollary predicts that the machine (gauge1 : manifold-like) successfully

recovers the true atom A] from the vector of observations y = L(A]) ∈ Rm, provided that L is a

generic linear operator and m is sufficiently large. In the corollary below, for tidiness, we assume

that A] has unit norm. We make this assumption without any loss of generality because it can always

be enforced by scaling the alphabet A. Again for tidiness, we also introduce a new parameter: In

the corollary below, instead of directly using the critical angle θA],1(A) in Definition 3.18, we will

make use of another angle, which is defined as

θ′A],1(A) := inf
{
∠[A−A], A]] : A ∈ A− {A]}

}
∈ [0, π]. (4.1)

As shown in the proof of the corollary, the two angles θA],1(A) and θ′
A],1

(A) are closely related:

θA],1(A) ≤ π

2
−
θ′
A],1

(A)

2
. (4.2)

In the corollary below, we will also make use of reach of A, a geometric attribute of the manifold A
that is reviewed below [53]. This elementary property, rooted in geometric measure theory, has

become somewhat popular in the analysis of manifold models for signal processing [54, 55, 56].

Definition 4.1 (Reach). Suppose that A is a compact embedded submanifold of Rd. The reach

of A, denoted by reach(A), is the largest number r that satisfies the following: The open normal

bundle of A of radius r is embedded in Rd for all r < reach(A). Recall that the normal bundle of

radius r is the set of all normal vectors to the manifold A of length at most r [51].

It is not difficult to verify that the reach of a circle is its radius, see Figure 3. As another example,

consider the so-called moment curve t → [1, · · · , ei2π(d−1)t], which can be embedded in R2d. The

reach of the moment curve is known to be proportional to
√
d, see [22, Section 2.2.2]. Let us now

state the main result of this section.

Corollary 4.2 (Manifold-like models). Suppose that Assumptions 2.3(i) and (iii) on the al-

phabet A are met. Consider the setup (manifold-like) and assume without loss of generality that
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‖A]‖2 = 1. For an integer k, suppose also that A is a compact k-dimensional embedded subman-

ifold of Rd. Let volk(A) and reach(A) > 0 denote the k-dimensional volume of A and its reach,

respectively. We also make the mild technical assumption that volk(A) · reach(A)k ≥ (10.5/
√
k)k.

Lastly, assume that θ′
A],1

(A) > 0, see (4.1). For δ ∈ [0, 1), suppose that the linear operator L :

Rd → Rm in (manifold-like) satisfies the probabilistic δ-RIP, see Definition 3.17. Then the ma-

chine (gauge1 : manifold-like) returns A] if

m ≥ Ck[
sin(θ′

A],1
(A))

]2 log

[
max(‖L‖2op, 1)

sin(θ′
A],1

(A))
(volk(A))

1
k reach(A)

]
, (4.3)

except with a probability of at most exp
(
− C ′[sin(θ′

A],1
)]2m

)
where C,C ′ are universal constants.

That is, with high probability, the pair (1, A]) is the unique solution of the optimization prob-

lem (gauge1 : manifold-like), provided that m is sufficiently large.

The proof of Corollary 4.2 estimates the entropy number on the right-hand side of (3.23) in

Theorem 3.20. Note that the number m of observations depends logarithmically on the volume and

reach of the manifold A. Moreover, if we ignore the logarithmic term, the number of observations

in (4.3) is linear in the dimension k of the manifold A. Corollary 4.2, which specializes Theorem 3.20

to manifolds, is in the same vein as [22, Theorem 4]. To apply Corollary 4.2, one only needs to have

access to (estimates of) four geometric attributes of the compact manifold A, namely, its dimension,

volume, reach, and critical angle. Except for perhaps the critical angle, these might be considered

widely-studied attributes of a manifold A. The final remark of this section revisits the toy example

in Figure 1 and computes its critical angle.

Remark 4.3 (Critical angle). Consider an alphabet A ⊂ Rd and an atom A] ∈ A. Recall

from (4.1) that, for tidiness in this section, we earlier replaced the critical angle in Definition 3.18

with the angle θ′
A],1

(A). This new angle θ′
A],1

(A) evidently plays a key role in Corollary 4.2. More

specifically, to recover the atom A], Corollary 4.2 requires that θ′
A],1

(A) 6= 0. That is, Corollary 4.2

requires that ∠[A−A], A]] 6= 0 for every atom A ∈ A, see (4.1). In Example 2.7, recall that A was

a (spiral) and the atom A] was specified in (2.9), represented by the red dot in Figure 1. For that

example, one can verify that θ′
A],1

(A) ≈ 51◦. In contrast, unless we assume that L : Rd → Rm is

injective, it is not difficult to carefully construct an alphabet A for which the convex machine (gauge)

would fail to recover the atom A] and ∠[Ai −A], A]] ≤ π/2 for some atoms {Ai}i ⊂ A.

4.2. Sparse Principal Component Analysis

With a negative toy example, we saw in Section 2 that the classical gauge function theory might

fail for the sparse PCA problem. This happens because the gauge function might fail to promote

sparsity. That is, the minimal decomposition that achieves the gauge function value might not be

sparse in the corresponding learning alphabet, see (sparse PCA). In contrast, the generalized theory,

developed in Section 3, immediately rectifies this issue. More specifically, by design, any minimal

decomposition that achieves the gaugep function value is always p-sparse, see Proposition 3.4(iv).

This observation is precisely the improvement offered by the generalized gauge function theory.
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In the remainder of this section, we will show that the new learning machine asymptotically

approaches the information-theoretic performance limit of sparse PCA for the spiked covariance

model [57, 58, 59, 60]. We will also show that the new machine generalizes beyond the spiked

covariance model. More specifically, for sparsity level k and dimension d, consider the alphabet

A := {uu> : ‖u‖2 = 1, ‖u‖0 ≤ k, u ∈ Rd} ⊂ Rd×d, (4.4)

where ‖u‖0 is the number of nonzero entries of the vector u. Throughout this section, it is important

not to confuse the sparsity level of the vector u (number of its nonzero entries) with the sparsity

of a statistical model (number of atoms of the alphabet A that are present in the model). For

θ ∈ [0, 1), consider also a Gaussian random vector of length d, with zero mean and the covariance

matrix Σ ∈ Rd×d. This covariance matrix is specified as

Σ := A] + θId, A] = u](u])> ∈ A, (4.5)

where Id ∈ Rd×d is the identity matrix. Above, A] is the “spike” in the spiked covariance model.

Instead of the covariance matrix Σ, however, we have access to the sample covariance matrix

y :=
1

n

n∑
i=1

ziz
>
i , (4.6)

formed by the samples {zi}ni=1 ⊂ Rd, drawn independently from the distribution normal(0,Σ).

Given the sample covariance matrix y, the objective of sparse PCA is to identify the spike in the

covariance matrix Σ, i.e., our objective is to identify the atom A] in (4.5). In view of (inexact), our

inexact 1-sparse setup is defined as

y := L(A]) + e, A] ∈ A, where L = id, e :=
1

n

n∑
i=1

ziz
>
i −A]. (spike)

The alphabet A is specified as in (4.4). Above, the operator id denotes the identity operator. To

recover the spike A], we may apply the machine (gaugep) for any p ≥ 1. In particular, the choice of

p = 1 leads us to consider the learning machine

min
c,A
‖y − cA‖2F subject to 0 ≤ c ≤ 1 and A ∈ A. (4.7)

Since we are only interested in recovering the atom A], and not its amplitude c], it suffices to

consider the optimization over A within (4.7), which reads as

max
A∈A

〈y,A〉 = max
u∈Rd

{
u>yu : ‖u‖2 = 1, ‖u‖0 ≤ k

}
, (see (4.4)) (gauge1 : SPCA)

The above optimization problem is the starting point of the well-known convex relaxation proposed

by [57]. To see this connection, note that (gauge1 : SPCA) implies that

max
A∈A

〈y,A〉 ≤ max
{
〈y,A〉 : trace(A) = 1, ‖A‖0 ≤ k2, A ∈ Sd+

}
, (4.8)

where Sd+ = {A ∈ Rd×d : A = A>, A � 0} is the cone of positive semi-definite (PSD) matrices,

and ‖A‖0 denotes the number of nonzero entries of A. We can obtain a convex relaxation of the right-

hand side above by replacing ‖A‖0 with the `1-norm of the matrix A, which is ‖A‖1 :=
∑

i,j |Ai,j |.
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By doing so, we obtain the convex relaxation

max
{
〈y,A〉 − λ‖A‖1 : trace(A) = 1, A ∈ Sd+

}
, (4.9)

with λ > 0, which is precisely the optimization problem studied in [57]. As detailed in the result

below, under mild assumptions, the machine (gauge1 : SPCA) provably discovers the spike A] in

the spiked covariance model. The proof of the result below is standard in the context of empirical

processes and the result itself is in the same vein as [58, Proposition 1].

Proposition 4.4 (Spiked covarince model). Consider the spiked covariance setup in (spike).

The machine (gauge1 : SPCA) asymptotically returns the spike A] in (spike). More specifically,

consider a sequence {kl, dl, nl}l such that liml→∞ nl =∞. Suppose that

lim
l→∞

kl log dl
nl

= 0. (4.10)

Then, in the limit of l→∞, solving the optimization problem maxu∈Rd
{
u>yu : ‖u‖2 = 1, ‖u‖0 ≤ k

}
returns a vector u] ∈ Rd such that u](u])> = A], with a probability that approaches one.

For the sake of comparison, recall from [58, Theorem 3] that it is impossible for any method to

discover the spike A] if
kl log (dl − kl)

nl
>

1

θ + θ2
,

where θ is the noise level, see (4.5). Moving on, we have so far focused on the spiked covariance

setup, i.e., the covariance matrix Σ in (4.5) contains only one spike. When Σ in (4.5) contains

multiple spikes, the common alternative of deflation [61] might be numerically unstable. Yet another

alternative to deflation is to search for a subspace with sparse basis vectors, which all together forgoes

the individual sparse components in favour of identifying a sparse subspace [62]. However, as we will

see below, the proposed learning machine naturally generalizes to multiple spikes. More specifically,

instead of (4.5), suppose that the covariance matrix Σ is specified as

Σ := x] + θId, x] :=

r∑
i=1

c]iA
]
i, c]i ≥ 0, A]i ∈ A, i ≤ r, (4.11)

where r is the number of atoms (spikes) present in Σ. In view of (inexact), this time our inexact

r-sparse setup is

y := L(x]) + e, L = id, e :=
1

n

n∑
i=1

ziz
>
i − x]. (multiple spikes)

To recover the model x] and/or the spikes {A]i}ri=1, we may apply the machine (gaugep) for any p ≥ r.
In particular, the choice of p ≥ r leads us to consider the learning machine

min


∥∥∥∥∥y −

p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ trace(x]), ci ≥ 0, Ai ∈ A

 . (gaugep : SPCA)

Note that trace(x]) in (gaugep : SPCA) might not be known advance. However, in principle, guaran-

tees for (gaugep : SPCA) can be transferred to its basis pursuit reformulation in which the objective
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function and constraint of (gaugep : SPCA) are swapped, as discussed in Section 2. The following

result provides the sufficient conditions for (gaugep : SPCA) to successfully recover the spikes.

Proposition 4.5 (Generalized spiked covariance setup). Consider the generalized spiked

covariance setup in (multiple spikes). The machine (gaugep : SPCA) asymptotically returns the

spikes {A]i}ri=1 in (multiple spikes), provided that p < spark(A)− r. More specifically, consider the

same sequence {kl, dl, nl}l as in Proposition 4.4. Then, in the limit of l→∞, solving the optimiza-

tion problem (gaugep : SPCA) successfully returns {c]i, A
]
i}ri=1 with probability that approaches one,

provided that p < spark(A)− r. Recall that spark(A) is the smallest number of atoms in A ⊂ Rd×d

that form a linearly dependent subset of Rd×d [63].

For the sparse PCA alphabet in (4.4), we are not aware of any estimates for spark(A) and it

appears to be nontrivial to obtain one. Nevertheless, Proposition 4.5 posits that the new ma-

chine (gaugep : SPCA) succeeds when p is sufficiently small. In contrast, the corresponding convex

machine, which coincides with (gaugep : SPCA) for p ≥ d(d+ 1)/2 + 1, might fail. This last claim

about the value of p follows from Remark 3.7 and the fact that dimension of Sd+ is d(d+ 1)/2.

5. Computational Aspects and a Tractable Numerical Scheme

This section discusses the computational aspects of solving the optimization problem (gaugep). As

discussed earlier, this problem might be nonconvex, particularly for small values of p. We identify

three classes of alphabets:

(i) For certain alphabets, the optimization landscape of the new machine (gaugep) does not have

any spurious stationary points and (gaugep) is amenable to a variety of standard optimization

algorithms. A prominent example was discussed in Remark 3.9, i.e., the well-known Burer-

Monteiro factorization for certain matrix- or tensor-valued learning problems, see [19, 42, 20].

(ii) For certain other alphabets, such as smooth manifolds [22, 64] or shallow neural networks [65],

the optimization landscape of (gaugep) might in general contain spurious stationary points which

could potentially trap first- or second-order optimization algorithms, such as gradient descent.

Nevertheless, problem (gaugep) can be reformulated as a smooth nonconvex optimization prob-

lem and then solved efficiently to stationarity (rather than global optimality) with a variety of

first- or second-order algorithms [66]. This compromise (between optimality and tractability) is

common in machine learning: As an example, empirical risk minimization is known to be NP-

hard for neural networks in general and the practitioners instead seek local (rather than global)

optimality [23, Chapter 20].

(iii) Yet for many other alphabets, such as the one in Example 2.7 (sparse regression), the prob-

lem (gaugep) is NP-hard in general for p < d [67]. Moreover, the second approach above is not

directly applicable. There are, however, compelling reasons to remain optimistic for such alpha-

bets. For example, after decades of research, modern mixed-integer optimization algorithms that

directly solve the problem (`0-pursuit) for sparse regression are now competitive with convex

heuristics in speed and scalability [24, 25, 68]. We will pursue this direction in the next section.
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5.1. Tractable Numerical Scheme

In this section, we provide a tractable numerical scheme for solving the problem (gaugep) for a

finite learning alphabet. If the alphabet is infinite, it is sometimes possible to discretize it and apply

the algorithm in this section, e.g., in super-resolution [69]. The algorithm in this section builds on

the recent developments in mixed-integer programming [24, 25, 68]. To begin, when the learning

alphabet A is finite, the following lemma offers an exact reformulation of the problem (gaugep)

as a mixed integer quadratic programming (MIQP). MIQP is in general an NP-hard problem [70],

which comes at no surprise since the original problem of sparse recovery of the setup (exact) is also

known to be hard [67]. Nonetheless, the lemma below allows us to deploy the rich literature of

computational mathematical programming dedicated to MIQP, see [71, 72].

Lemma 5.1 (MIQP reformulation). Suppose that the alphabet A ⊂ Rd is finite and denote its

size by |A| < ∞. If M > 0 is sufficiently large, the machine (gaugep) is equivalent to the MIQP

optimization problem

min
c,s

∥∥∥
|A|∑
i=1

ciL(Ai)− y
∥∥∥2

2
:

|A|∑
i=1

ci ≤ GA,p(x]), |ci| ≤Msi,

|A|∑
i=1

si = p, ci ≥ 0, si ∈ {0, 1}

 . (5.1)

The MIQP reformulation in Lemma 5.1 leverages the so-called “big-M” technique in which M is

only required to be a sufficiently large constant. It is well known that the choice ofM has a significant

impact on the performance of cutting plane algorithms for convex integer optimization [73].

To address this issue, inspired by the recent work of [24], we next provide a dual reformulation

of the optimization problem in Lemma 5.1. This dual reformulation supplies a good starting point

(warm start) for branch-and-bound algorithms. This reformulation is a slight generalization of the

one proposed in [24] which also handles the linear constraints such as ci ≥ 0 and
∑|A|

i=1 ci ≤ GA,p(x]).
Below, we will use the notation [n] := {1, · · · , n} for an integer n.

Proposition 5.2 (Tractable algorithm). Let us define the matrices

A =
[
A1 A2 . . . A|A|

]
∈ Rd×|A|, C =

[
−I|A|
1>|A|

]
, g =

[
0|A|

GA,p(x])

]
,

where |A| is the size of the finite set A. Above, I|A| ∈ R|A|×|A| is the identity matrix, 1|A| ∈ R|A|

is a vector of all ones, and 0|A| ∈ R|A| is a vector of zeros. The optimal value of the optimization

problem (5.1) coincides with the optimal value of the minimax problem

min
S ⊂ [|A|]
|S| ≤ p

max
µ≥0,λ

−1

2
‖λ‖22 − 〈g, µ〉 −

γ

2

∑
i∈S

(
(L(A))>λ− C>µ

)2
i
, (5.2)

where γ is a sufficiently large constant, L(A) = [L(A1)L(A2) · · · L(A|A|)] ∈ Rm×|A|, and the nota-

tion (u)i returns the ith coordinate of the vector u. Moreover, an optimal vector s ∈ {0, 1}|A| for

the problem (5.1) corresponds to an optimal set S ⊂ [|A|] in (5.2). Lastly, any fixed-point of the
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algorithm below is a solution of (5.2).[
λk+1

µk+1

]
= arg max

µ≥0, λ
−1

2
‖λ‖22 − 〈g, µ〉 −

γ

2

∑
i∈Sk

(
(L(A))>λ− C>µ

)2
i
, (5.3a)

Sk+1 = arg max
S⊂[|A|]
|S|≤p

∑
i∈S

(
(L(A))>λk − C>µk

)2
i
. (5.3b)

We emphasize that the objective function in (5.3a) is concave and quadratic jointly in the vari-

ables (λ, µ), and the number of the summands in (5.3a) is the sparsity level |S| = p. Moreover,

and more importantly, the set-valued optimization (5.3b) admits an (almost) analytic solution as it

suffices to select only the first p coordinates i ≤ |A| for which
(
(L(A))>λk − C>µk

)2
i

is maximized.

The complexity of this step reduces to a sorting algorithm. Therefore, the algorithm (5.3) is indeed

computationally a highly tractable implementation of the machine (gaugep), which may merit a

more comprehensive numerical investigation in the future.

If the iteration of (5.3) converges, we solve the the learning machine (gaugep). However, it often

happens that the algorithm (5.3) oscillates between several discrete solutions S. We note that these

candidates can then be chosen as “warm start” for the MIQP problem (5.1) à la [24].

5.2. Numerical Examples

We now investigate two numerical examples that support the theoretical findings of this work.

Example 1: sparse PCA

Our first numerical example is a simplified version of sparse PCA in Section 4.2. More specifically,

here the alphabet A of size 35 is sub-sampled from the set{
uu> : ‖u‖2 = 1, ‖u‖0 ≤ 2, u ∈ R4

}
⊂ R4×4,

and the model x] in this example is a combination of three atoms from A, i.e., x] = 1
3A

]
1+ 1

3A
]
2+ 1

3A
]
3.

The setup is y = x] + e, where e is the white Gaussian noise with the standard deviation σe ∈
{0.01, 0.05, 0.1}. For p ∈ {1, 2, 3, 16} and various values of ψ, we numerically solve the program

min
c,s

∥∥∥
|A|∑
i=1

ciAi − y
∥∥∥2

2
:

|A|∑
i=1

ci ≤ ψ, |ci| ≤Msi,

|A|∑
i=1

si = p, ci ≥ 0, si ∈ {0, 1}

 . (5.4)

Note that the above optimization problem is an instantiation of the program (5.1) in which the

observation operator is the identity matrix (L = id) and the the ground-truth gauge value GA,p(x])
is approximated by different values ψ. The vector of coefficients that minimize the above problem

is denoted by ĉp(ψ). Also note that for p = 16, the problem (5.4) coincides with the convex

machine (gauge), see Remark 3.7.

The numerical results are reported in Figure 4 for different noise levels. Each plot shows the average

error across 100 independent experiments with fresh realizations of the noise vector. For p ∈ {1, 2, 3},
we solved (5.4) using the solver MOSEK with the interface of YALMIP [74]. The sharp transition

in the plots can be explained by the fact that the true model x] is not feasible in (5.4) for small
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Figure 4. Sparse PCA with the sparsity level ‖c]‖0 = 3: performance of the non-

convex machine (gaugep) for p ∈ {1, 2, 3, 4} versus the convex counterpart (gauge)

(or equivalently (gaugep) for p = |A| = 16)

values of ψ. Moreover, the poor performance for p = 1 is explained by the fact that x], with the

sparsity level of two, is never feasible for problem (5.4) with p = 1. However, for p ∈ {2, 3}, the

proposed machine (5.4) considerably outperforms the convex machine (gauge).

Example 2: Super-resolution

Our second numerical example showcases the failure of the classical theory in the context of

super-resolution below the diffraction limit. We take the alphabet to be A := {Aθ}θ∈Θ, where

Aθ(·) = exp(−(· − θ)2/0.352) and Θ = {θi}20
i=1 is the uniform grid over the interval [0, 1]. In words,

our alphabet is comprised of twenty (scaled) Gaussian waves centered on a uniform grid over [0, 1].

In this example, we consider the two-sparse model x] := Aθ10−Aθ11 . This model is shown in blue in

Figure 5. In words, the blue curve in Figure 5 represents the superposition of two (scaled) Gaussian

waves and the two red bars show the centers and amplitudes of these two waves. The red bars are

scaled to fit in the figure.

0 1

Location

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Signal

True locations

Estimated locations

Figure 5. Failure of the classical gauge function

theory in super-resolution, see Section 5.2.

The (exact) values of the blue curve are then observed

at m = 40 random locations on the interval [0, 1] and

then stored in a vector y ∈ R40. That is, we set e = 0

and the corresponding linear operator L in (inexact)

evaluates and stores the values of its input function

at 40 random locations on the interval [0, 1].

We then estimated the true centers and ampli-

tudes (in red) by solving the convex quadratic prob-

lem (gauge) with YALMIP in MATLAB [74]. The

estimated centers and amplitudes are shown with the

black bars in Figure 5. The black bars are also scaled
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Figure 6. Super-resolution with the sparsity level ‖c]‖0 = 2: performance of the

nonconvex machine (gaugep) for p ∈ {1, 2, 3} versus the convex counterpart (gauge)

(or equivalently (gaugep) for p = |A| = 20)

to fit in the figure. The resounding failure of the convex machine in Figure 5 in learning the location

of the red bars is an example that visualizes the difficulty of super-resolution below the diffraction

limit [75]. Motivated by this observation, we now apply the framework developed in this paper. We

let the noise e in (inexact) be a vector of zero-mean and independent Gaussian random variables with

standard deviation σe ∈ {10−3, 10−2, 10−1}. For various values of ψ and integer p ∈ {1, 2, 3, 20}, we

then numerically solve the problem

min
c,s

∥∥∥
|A|∑
i=1

ciL(Ai)− y
∥∥∥2

2
:

|A|∑
i=1

ci ≤ ψ, |ci| ≤Msi,

|A|∑
i=1

si = p, ci ≥ 0, si ∈ {0, 1}

 , (5.5)

and collect the optimal coefficients in the vector ĉ. The above problem should be compared

with (5.1), which was an equivalent reformulation of the proposed learning machine (gaugep).

Each plot in Figure (6) is obtained by averaging the recovery errors over 200 independent experi-

ments with fresh realizations of the noise vector. For p ∈ {1, 2, 3}, we solved (5.5) using MOSEK with

the interface of YALMIP [74]. For p = |A| = 20, however, the problem (5.5) is a convex program.

Indeed, for the choice of p = 20, the problem (5.5) coincides with the convex machine (gauge), see

Remark 3.7. As in Figure 4, the sharp transitions in Figure 6 can be explained by the fact that the

true model x] is not feasible in (5.5) for small values of ψ. Similarly, the poor performance for p = 1

is explained by the fact that x], with the sparsity level of two, is never feasible for problem (5.5)

with p = 1. Lastly, for p ∈ {2, 3}, the proposed machine (5.5) considerably outperforms the convex

machine (gauge).
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Appendix A. Technical Details of Section 2

A.1. Group Sparsity

This section presents a third toy example for which the classical gauge function theory fails.

Here, the objective is to decompose the model x] into a small number of vectors with known

supports [76, 77]. To be concrete, for a factor C > 0 and a collection of index sets Ω ⊂ 2[d], the

model considered in group sparsity [2] is

x] ∈ cone(S]), S] ∈ slicer(A),

A := {u : ‖u‖2 = 1, ‖u‖∞ ≤ C, supp(u) ∈ Ω} ⊂ Rd, (A.1)

where the above bound on `∞-norm ensures that the atoms are diffuse on their supports. Recall

that the set supp(u) ⊂ [d] denotes the support of u, i.e., the index set over which u is nonzero.

Example A.1 (Group sparsity). For the last failed application of the gauge function theory in

this section, let us revisit group sparsity, introduced earlier in this section. As an example of the

model (A.1) with d = 3, consider the collection of index sets

Ω := {{1}, {2}, {3}, {1, 2}, {2, 3}} ⊂ 2[3], (A.2)

and the alphabet

A :=

{
u : ‖u‖2 = 1, ‖u‖∞ ≤ ‖u‖

− 1
3

0 , supp(u) ∈ Ω

}
, (A.3)

where the bound on `∞-norm above ensures that the atoms are diffuse on their support. With this

alphabet, consider the model

x] :=
A]1
2

+
A]2
2

=
[

1
2
√

2
1

2
√

2
−
√

7
8

3
8

]>
, (A.4)

where the atoms {A]1, A
]
2} ⊂ A are specified as

A]1 :=
[

1√
2

1√
2

0
]>
, A]2 :=

[
0 −

√
7

4
3
4

]>
. (A.5)

Evidently, the model x] in (A.4) has the alternative decomposition

x] =
A1

2
√

2
+

(
1

2
√

2
−
√

7

8

)
A2 +

3

8
A3, (A.6)

where {Ai}3i=1 ⊂ A are the three canonical vectors in R3. By comparing the two alternative repre-

sentations of x] in (A.4) and (A.6), we find that

GA(x]) ≤ min

(
1

2
+

1

2
,

1

2
√

2
+

∣∣∣∣∣ 1

2
√

2
−
√

7

8

∣∣∣∣∣+
3

8

)
= 0.7514 < 1, (see (2.2)) (A.7)

and thus the 2-sparse decomposition in (A.4) is not minimal. In fact, it is not difficult to verify that

the machine (gauge : L = id) fails to find any 2-sparse decomposition for x].
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A.2. Proof of Lemma 2.6

Let x̂ be a minimizer of problem (gauge). Suppose that GA(x]) = 0. By feasibility of x̂ for

problem (gauge), it holds that GA(x̂) ≤ GA(x]) = 0. By Assumption 2.3(ii), A is symmetric and GA
is thus a norm in Rd. Because GA is a norm, GA(x̂) = GA(x]) = 0 implies that x̂ = x] = 0. We thus

assume that GA(x]) > 0 from now on. By definition of the gauge function in (2.2), we have

x̂/GA(x̂) ∈ conv(A),

with the convention that 0/0 = 0. Since A is symmetric by Assumption 2.3(ii), it also holds that

t · x̂/GA(x̂) ∈ conv(A), ∀t ∈ [−1, 1], (A.8)

i.e., the line segment connecting ±x̂/GA(x̂) also belongs to conv(A). Moreover, by feasibility of x̂

in problem (gauge), we have that

GA(x̂) ≤ GA(x]).

In view of the above relation, for the choice of t = GA(x̂)/GA(x]) ∈ [0, 1], (A.8) reduces to

x̂/GA(x]) ∈ conv(A). (A.9)

For future reference, note also that the feasibility of x] and optimality of x̂ in problem (gauge) imply

that L(x]) = L(x̂) = y and, consequently,

L
(

x̂

GA(x])
− x]

GA(x])

)
= L(x̂− x]) = 0. (GA(x]) > 0) (A.10)

We now consider two cases:

(1) Suppose that x̂/GA(x]) ∈ F ]. Then we find that

x̂

GA(x])
− x]

GA(x])
∈ F ] −F ] ⊂ lin(F ]). (A.11)

Consequently, (A.10), (A.11) and the injectivity of L on lin(F ]) together imply that x̂ = x].

(2) Suppose that x̂/GA(x]) /∈ F ]. We can therefore strengthen (A.9) as

x̂/GA(x]) ∈ conv(A)−F ]. (A.12)

By assumption of Lemma 2.6, there exists a certificate Q = L∗(q) that satisfies (2.7). Recall-

ing (A.10), we then write that

0 = 〈q,L(x̂− x])〉 (see (A.10))

= 〈L∗(q), x̂− x]〉 = 〈Q, x̂− x]〉 = GA(x])

〈
Q,

x̂

GA(x])
− x]

GA(x])

〉
(GA(x]) > 0)

=

〈
Q,

x̂

GA(x])
− x]

GA(x])

〉
< 0

where above we used the assumption that G(x]) > 0 as well as (2.7) and (A.12). To avoid the above

contradiction, it must hold that x̂/GA(x]) ∈ F ] which again implies that x̂ = x].

This completes the proof of Lemma 2.6.
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Appendix B. Technical Details of Section 3

B.1. Proof of Proposition 3.2

The nested property of {convp(A)}p in (3.2) is evident from its definition in (3.1). To show the

far-left identity in (3.2), we use (3.1) for r = 1 to write that

conv1(A) =
⋃
A∈A

conv({A, 0}) (see (3.1))

=
⋃
A∈A

⋃
0≤τ≤1

τA =
⋃

0≤τ≤1

⋃
A∈A

τA =
⋃

0≤τ≤1

τA. (B.1)

To show the far-right identity in (3.2), recall that every point conv(A) ⊂ Rd can be expressed as a

convex combination of at most d+ 1 atoms in the alphabet A, by Carathéodory theorem [26]. We

now use both (3.1) and the Carathéodory theorem to write that

convd+1(A) =
⋃

{Ai}d+1
i=1⊂A

conv({Ai}di=1 ∪ {0}) =
⋃

{Ai}d+1
i=1⊂A

⋃
0≤τ≤1

τ · conv({Ai}d+1
i=1 )

=
⋃

0≤τ≤1

⋃
{Ai}d+1

i=1⊂A

τ · conv({Ai}d+1
i=1 ) =

⋃
0≤τ≤1

τ · conv(A) = conv(A ∪ {0}) = conv(A),

where the last line holds because 0 ∈ A by Assumption 2.3(i). This establishes (3.2) and completes

the proof of Proposition 3.2.

B.2. Proof of Proposition 3.4

To prove (3.4), we use the expression for convp(A) in (3.1) to rewrite the definition of gaugep

function in (3.3) as

GA,p(x) = inf

t : x/t ∈
⋃

S∈slicer(A)

S, t ≥ 0

 (see (3.1,3.3))

= inf

{
t : x =

p∑
i=1

ciAi,

p∑
i=1

ci ≤ t, ci ≥ 0, Ai ∈ A, ∀i ∈ [p]

}

= inf

{
p∑
i=1

ci : x =

p∑
i=1

ciAi, ci ≥ 0, Ai ∈ A, ∀i ∈ [p]

}
,

which proves (3.4). To show Proposition 3.4(ii), suppose that GA,p(x) = 0 which implies by definition

in (3.3) that x/t ∈ convp(A) for every t > 0. Since the alphabet A and, consequently, convp(A)

in (3.1) are both bounded by Assumption 2.3(iii), we conclude that x = 0.

To prove Proposition 3.4(v), we begin by writing down the convex conjugate of GA,p as

G∗A,p(z) = sup
x
〈x, z〉 − GA,p(x)

= sup

{
〈x, z〉 −

p∑
i=1

ci : x =

p∑
i=1

ciAi, ci ≥ 0, Ai ∈ A, ∀i ∈ [p]

}
(see (3.4))
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= sup

{
p∑
i=1

ci(〈Ai, z〉 − 1) : ci ≥ 0, Ai ∈ A, ∀i ∈ [p]

}
=

0 if supA∈A 〈A, z〉 ≤ 1

∞ if supA∈A 〈A, z〉 > 1

= indicatorball(DA)(z),

where ball(DA) is the unit ball for the dual norm of the gauge function, i.e., DA in (2.4). It also

immediately follows that

G∗∗A,p = (indicatorball(DA))
∗ = GA,

which proves Proposition 3.4(vi). Proposition 3.4(iii) and (iv) trivially follow from the definition

of the gaugep function in (3.4). Lastly, the nested property of the gaugep functions in (3.6) follows

immediately from (3.4). The identity on the far-right of (3.6) follows by combining the far-right

identity in (3.2) with (3.3). This completes the proof of Proposition 3.4.

B.3. Proof of Lemma 3.11

Let x̂ be a minimizer of problem (gaugep). Suppose that GA,p(x]) = 0. By feasibility of x̂

in problem (gaugep), it holds that GA,p(x̂) ≤ GA,p(x]) = 0 and, consequently, x̂ = x] = 0 by

Proposition 3.4(ii). We thus assume that GA,p(x]) > 0 from now on.

By definition of the gaugep function in (3.3), it holds that

x]/GA,p(x]) ∈ convp(A).

Again by definition of the gaugep function and using also the definition of convp(A) in (3.1), there

exists a slice S ∈ slicep(A) such that

x̂/GA,p(x̂) ∈ S ⊂ convp(A). (B.2)

Moreover, since the slice S is a convex set containing the origin, see Definition 2.1, it follows

from (B.2) that

t · x̂/GA,p(x̂) ∈ S, ∀t ∈ [0, 1]. (B.3)

By feasibility of x̂ in problem (gaugep), we have that GA,p(x̂) ≤ GA,p(x]), and we can thus take

t = GA,p(x̂)/GA,p(x]) ∈ [0, 1] in (B.3) to find that

x̂/GA,p(x]) ∈ S . (B.4)

For future reference, note also that the feasibility of x] and optimality of x̂ in problem (gauge)

implies that L(x]) = L(x̂) = y and, consequently,

L
(

x̂

GA,p(x])
− x]

GA,p(x])

)
= L(x̂− x]) = 0. (GA,p(x]) > 0) (B.5)

We can now proceed to the body of the proof by considering two cases:

(1) Suppose that x]/GA,p(x]) ∈ S. Then it follows from (B.2) that

x̂

GA,p(x])
− x]

GA,p(x])
∈ S − S ⊂ lin(S). (see (B.2)) (B.6)

Then, (B.5) and (B.6) together with the injectivity of L on lin(S) imply that x̂ = x].
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(2) Suppose that x]/GA,p(x]) /∈ S. It therefore exists a certificateQS = L∗(qS) that satisfies (3.14).

With this in mind and after recalling (B.5), we write that

0 =

〈
qS ,L

(
x̂

GA,p(x])
− x]

GA,p(x])

)〉
=

〈
L∗(qS),

x̂

GA,p(x])
− x]

GA,p(x])

〉
=

〈
QS ,

x̂

GA,p(x])
− x]

GA,p(x])

〉
< 0

which leads to a contradiction. We conclude that x]/GA,p(x]) ∈ S and, consequently, x̂ = x].

This completes the proof of Lemma 3.11.

B.4. Example of an Operator That Satisfies the RIP

Let G ∈ Rm×d be a standard random Gaussian matrix, i.e., the entries of G are independent

Gaussian random variables with zero mean and unit variance. Consider a (linear) subspace U ⊂ Rd

and let the d × dim(U) matrix U be an orthonormal basis for the span of this subspace. We then

write that

sup
u∈U

‖Gu‖2
‖u‖2

= sup
v

‖GUv‖2
‖v‖2

= σmax(GU) =: σmax(G′), (B.7)

where we set G′ = GU for short, and σmax(G′) is the largest singular value of G′. Likewise,

inf
u∈U

‖Gu‖2
‖u‖2

= inf
v

‖GUv‖2
‖v‖2

= σmin(GU) = σmin(G′).

Note that the m × dim(U) matrix G′ = GU too is a standard random Gaussian matrix because

U>U = Idim(U) by construction. The largest and smallest singular values of a standard random

Gaussian matrix are well-known [47, Corollary 5.35]. In particular, it holds that

(1− δ)
√
m ≤ σmin(G′) ≤ σmax(G′) ≤ (1 + δ)

√
m, (B.8)

provided that m ≥ C dim(U)/δ2 and except with a probability of at most exp(−C ′δ2m). Here,

C,C ′ are universal constants. By combining (B.7) and (B.8) for the linear operator L = G/
√
m, we

finally arrive at

(1− δ)‖u‖2 ≤ ‖L(u)‖2 ≤ (1 + δ)‖u‖2, ∀u ∈ U ,

provided that m ≥ C dim(U)/δ2 and except with a probability of at most exp(−C ′δ2m). The

random linear operator L constructed above thus satisfies the probabilistic δ-RIP.

B.5. Proof of Proposition 3.19

Since p ≥ d+1 by assumption, recall from (3.6) that GA,p(x]) = GA(x]). In particular, x]/GA,p(x]) =

x]/GA(x]) =: x̃. For a slice S ∈ slicep(A), note that

S ⊂ convp(A) (see (3.1))

= conv(A), (see (3.2)) (B.9)
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where the identity above holds by (3.2) and because p ≥ d + 1. Let us assume that x̃ /∈ S. An

immediate implication of (B.9) is that S − x̃ ⊂ conv(A)− x̃ and, consequently,

cone(S − x̃) ⊂ cone(conv(A)− x̃) = cone(conv(A− x̃)) = cone(A− x̃),

and, in turn, ∠cone(S − x̃) ≤ 2∠cone(A − x̃), where we invoked Lemma B.2 below to obtain the

last inequality. Using this last inequality and (3.21), we arrive at

θx],p(A) = sup
{
∠cone (S − x̃) : S ∈ slicex],p(A)

}
≤ 2∠cone (A− x̃) ,

which completes the proof of Proposition 3.19.

To prove Lemma B.2 below, in addition to (3.17), we first introduce two other notions of angle for

a closed cone K ⊂ Rd, i.e.,

cos(φ(K)) := max
u∈Sd−1

min
u′∈K∩Sd−1

〈u, u′〉,

cos(ψ(K)) := min
u∈K∩Sd−1

min
u′∈K∩Sd−1

〈u, u′〉. (B.10)

These quantities are related as follows.

Lemma B.1. For a closed cone K, it holds that

ψ(K)

2
≤ φ(K) ≤ ∠K ≤ ψ(K). (B.11)

Proof. Note that

cos(ψ(K)) = min
u∈K∩Sd−1

min
u′∈K∩Sd−1

〈u, u′〉 (see (B.10))

≤ max
u∈K∩Sd−1

min
u′∈K∩Sd−1

〈u, u′〉 = cos(∠K) (see (3.17))

≤ max
u∈Sd−1

min
u′∈K∩Sd−1

〈u, u′〉 = cos(φ(K)),

which establishes the last two inequalities in (B.11). On the other hand, note that φ(K) is the angle

of the smallest spherical cap that contains K∩Sd−1, whereas ψ(K) is the largest pairwise angle in K.

The two quantities are thus related as

ψ(K) ≤ 2φ(K),

which proves the remaining inequality in (B.11), and completes the proof of Lemma B.1. �

We next prove a weak inclusion result for cones.

Lemma B.2. For closed cones K1 ⊂ K2, it holds that ∠K1 ≤ 2∠K2.

Proof. Note that by (B.10) and (B.11) we have

cos(∠K1) ≥ cos(ψ(K1)) = min
u∈K1∩Sd−1

min
u′∈K1∩Sd−1

〈u, u′〉

≥ min
u∈K2∩Sd−1

min
u′∈K2∩Sd−1

〈u, u′〉 = cos(ψ(K2)) ≥ cos(2∠K2),

which completes the proof of Lemma B.2. �
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Figure 7. The angle between the green and blue cones equals the angle formed by

the red arrows, see Definition B.3.

In general, Lemma B.2 cannot be improved. For example, consider the exampleK1 = cone({e1, e2})
and K2 = cone({e1, e2, e1 + e2}). It is easy to verify that ∠K1 = π/2 whereas ∠K2 = π/4, and thus

the inequality in Lemma B.2 holds with equality. However, we strongly suspect that Lemma B.2

could be improved to ∠K1 ≤ ∠K2 when K1 is a closed convex cone.

B.6. Proof of Theorem 3.20

Introducing the concept of angle between two cones is beneficial for this proof.

Definition B.3 (Angle between two cones). The angle between two closed cones K,K′ ⊂ Rd,
denoted by ∠[K,K′] ∈ [0, π], satisfies

cos(∠[K,K′]) := min

(
min

u∈K∩Sd−1
max

u′∈K′∩Sd−1
〈u, u′〉, min

u′∈K′∩Sd−1
max

u∈K∩Sd−1
〈u, u′〉

)
= 1− 1

2

(
distH(K ∩ Sd−1,K′ ∩ Sd−1)

)2
, (B.12)

where distH denotes the (Euclidean) Hausdorff distance between two sets [45].

In words, the angle between two closed cones is the Hausdorff distance of their intersections with

the unit sphere. For example, Figure 7 shows sections of a blue cone and a green cone in R2. The

angle between the blue and green cones equals the angle formed by the red arrows in the figure.

When K and K′ are two (linear) subspaces of Rd [78], ∠[K,K′] coincides with the (largest) principal

angle between the two subspaces. Throughout the proof, we will frequently use the shorthand

x̃ :=
x]

GA,p(x])
, ux :=

x− x̃
‖x− x̃‖2

, (B.13)

for x 6= x̃. As in Lemma 3.11, we assumed above without loss of generality that GA,p(x]) > 0. The

proof of Theorem 3.20 relies on the following technical result, which is similar to [79, Lemma 2.1].

Lemma B.4. For δ′ ∈ [0, 1), suppose that the random linear operator L satisfies the probabilistic

δ′-RIP. Then, for a slice S ′ ∈ slicep(A), it holds that

〈QS′ , ux′〉
‖xS′ − x̃‖2

≤ − cos(∠cone(S ′ − x̃)) + δ′, ∀x′ ∈ S ′, (B.14)
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provided that m ≥ Cp/δ′2, and except with a probability of exp(−C ′δ′2m). Above, we set

QS′ := L∗(L(x̃− xS′)), (B.15)

and xS′ is selected such that

cos(∠cone(S ′ − x̃)) = min
x′∈S′

〈
uxS′ , ux′

〉
. (B.16)

Before proving Lemma B.4 in the next appendix, let us first complete the proof of Theorem 3.20.

Recall that slicep(A) in (3.1) denotes the set of all slices of conv(A) formed by at most p atoms. For

a resolution δ > 0, let net(slicep(A), dist, δ) denote a minimal δ-net for slicep(A) with respect to the

pseudo-metric dist, specified as

distp(S,S ′) :=
√

2− 2 cos(∠[cone(S − x̃), cone(S ′ − x̃)]), ∀S,S ′ ∈ slicep(A). (B.17)

Indeed, dist above is a pseudo-metric because it coincides with the Hausdorff distance between the

intersection of the cones on the right-hand side above and the unit sphere in Rd, see (B.12). For

δ′ ∈ [0, 1), suppose that the random linear operator L satisfies the probabilistic δ′-RIP, see (3.19).

Consequently, by applying the union bound to all slices in net(slicep(A), dist, δ), we find that

(1− δ′)‖u‖2 ≤ ‖L(u)‖2 ≤ (1 + δ′)‖u‖2,

∀u ∈ lin(S ′ − x̃), ∀S ′ ∈ net(slicep(A),dist, δ), (B.18)

provided that m ≥ Cp/δ′2 and except with a probability of at most

exp(−C ′δ′2m+ entropy(slicep(A),dist, δ)),

where we used the fact that net(slicep(A),dist, δ) is a minimal net by construction. The size of this

net is therefore exp(entropy(slicep(A), dist, δ)) by Definition 3.16.

Consider an arbitrary slice S ∈ slicep(A). By Definition 3.16, there exists another slice S ′ ∈
net(slicep(A), dist, δ) such that distp(S,S ′) ≤ δ. After recalling (B.17), this observation leads to

cos(∠[cone(S − x̃), cone(S ′ − x̃)]) ≥ 1− δ2

2
. (see (B.17)) (B.19)

Consider also an arbitrary point x ∈ S and the corresponding unit-norm vector ux, see (B.13).

By (B.19) and after recalling the definition of angle between cones in (B.12), there exists a unit-

norm vector u′ ∈ cone(S ′ − x̃) such that

〈ux, u′〉 ≥ 1− δ2

2
, (B.20)

which also immediately implies that

‖ux − u′‖22 = ‖ux‖22 + ‖u′‖22 − 2〈ux, u′〉

≤ 2− 2

(
1− δ2

2

)
= δ2, (see (B.13). (B.20)) (B.21)

Alternatively, it is also easy to arrive at the above conclusion from the Hausdorff distance interpre-

tation of distp that we discussed earlier. We next distinguish two cases:
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(1) Suppose that x̃ ∈ S. Without loss of generality, we may assume that the ray passing through x̃

belongs to the interior of cone(S). (Indeed, otherwise there exists a lower-dimensional slice, to the

interior of which the ray passing through x̃ would belong.) Consequently, we can use the definition

of x̃ in (B.13) to write that

cone(S − x̃) ∪ −cone(S − x̃) = lin(S − x̃). (B.22)

Moreover, note that

lin(S − x̃) = lin(S), (B.23)

because the definition of slice in Definition 2.1 implies that 0 ∈ S. On the other hand, note that

‖L(ux)‖2 ≥ ‖L(u′)‖2 − ‖L(ux − u′)‖2 (triangle inequality)

≥ 1− δ′ − ‖L‖op · ‖ux − u′‖2 (see (B.18))

= 1− δ′ − ‖L‖op · δ > 0, (see (B.21)) (B.24)

where the last line above holds if δ′ + ‖L‖op · δ < 1. Since the choice of the point x ∈ S in (B.24)

was arbitrary, we conclude that L is an injective operator when restricted to cone(S − x̃) and,

consequently, also when restricted to −cone(S − x̃). In view of (B.22), L is also injective when

restricted to lin(S − x̃) and, by (B.23), when restricted to lin(S).

(2) Suppose that x̃ /∈ S. Recall QS′ from (B.15) and note that

〈QS′ , ux〉
‖xS′ − x̃‖2

=
〈L∗(L(x̃− xS′)), ux〉

‖xS′ − x̃‖2
(see (B.15))

= −〈L(uxS′ ),L(ux)〉 (see (B.13))

= −〈L(uxS′ ),L(u′)〉+ 〈L(uxS′ ),L(u′ − ux)〉

=
〈QS′ , u′〉
‖xS′ − x̃‖2

+ 〈L(uxS′ ),L(u′ − ux)〉

≤ 〈QS′ , u′〉
‖xS′ − x̃‖2

+ ‖L‖2op · ‖uxS′‖2 · ‖u
′ − ux‖2

≤ − cos(cone(S ′ − x̃)) + δ′ + ‖L‖2opδ (see (B.14) and (B.21))

≤ − inf
S′′∈slice

x],p
(A)

cos(cone(S ′′ − x̃)) + δ′ + ‖L‖2opδ

= − cos(θx],p(A)) + δ′ + ‖L‖2opδ < 0, (see (3.21))

where the last line above holds if

δ′ + ‖L‖2opδ < cos(θx],p(A)). (B.25)

Since the choice of the point x ∈ S above was arbitrary, we arrive at the following: There exists

QS ∈ range(L∗) such that

〈QS , x− x̃〉 < 0, ∀x ∈ S.

We may now invoke Lemma 3.11 to conclude that x] is the unique minimizer of problem (gaugep).

This completes the proof of Theorem 3.20 after choosing δ′ = cos(θx],p(A))/2.
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B.7. Proof of Lemma B.4

For x′ ∈ S ′, we write that

〈QS′ , x′ − x̃〉
‖xS′ − x̃‖2‖x′ − x̃‖2

=
〈L∗(L(x̃− xS′)), x′ − x̃〉
‖xS′ − x̃‖2‖x′ − x̃‖2

(see (B.15))

= −〈L(uxS′ ),L(ux′)〉 (see (B.13))

=
−1

4
(‖L(uxS′ + ux′)‖22 − ‖L(uxS′ − ux′)‖

2
2) (parallelogram identity)

≤ −1

4
((1− δ′)‖uxS′ + ux‖22 − ‖L‖op‖uxS′ − ux′‖

2
2) (L satisfies the probabilistic RIP, see (3.19))

= −1

4
(‖uxS′ + ux′‖22 − ‖uxS′ − ux′‖

2
2) +

δ′

4
‖uxS′ + ux′‖22 +

‖L‖op − 1

4
‖uxS′ − ux′‖

2
2

≤ −1

4
(‖uxS′ + ux′‖22 − ‖uxS′ − ux′‖

2
2) +

1

4
max(δ, ‖L‖op − 1)

(
‖uxS′ + ux′‖22 + ‖uxS′ − ux′‖

2
2

)
= −〈uxS′ , ux′〉+

1

2
max(δ, ‖L‖op − 1)

(
‖uxS′‖

2
2 + ‖ux′‖22

)
= −〈uxS′ , ux′〉+ max(δ′, ‖L‖op − 1) (see (B.13))

≤ − min
ux′′∈S′

〈uxS′ , ux′′〉+ max(δ′, ‖L‖op − 1)

= − max
ux′∈S′

min
ux′′∈S′

〈ux′ , ux′′〉+ max(δ′, ‖L‖op − 1) (see (3.17) and (B.16))

= − cos(∠cone(S ′ − x̃)) + max(δ′, ‖L‖op − 1), (see (3.17)) (B.26)

which completes the proof of Lemma B.4.

B.8. Review of Corollary 3.3.1 in [1]

For completeness, below we review Corollary 3.3.1 in [1], adapted to our notation.

Corollary 3.3.1 in [1]. Suppose that the alphabet A ⊂ Rd is a compact set and that (2.6) holds

with equality, i.e., ext(conv(A)) = A. Consider the model x] ∈ Rd in (exact) and let L : Rd → Rm

be the linear map associated with the m × d Gaussian random matrix, populated with independent

and zero-mean normal random variables with the variance of 1/m. Then the learning machine

min
x
GA(x) subject to y = L(x),

returns x], provided that

m ≥ w(Ω)2 + 1,

and except with a probability of at most exp(−C(
√
m − w(Ω))2). Here, C is a universal constant.

Above, we set Ω := cone(A− x]/GA(x])) ∩ Sd−1. In words, Ω is the intersection of the unit sphere

with the tangent cone of conv(A) at x]/GA(x]). Moreover, w(Ω) is the Gaussian width of Ω, i.e.,

w(Ω) = Eg
[
sup
x∈Ω
〈g, x〉

]
,
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where g ∈ Rd is a standard Gaussian random vector, i.e., populated with independent, zero-mean

and unit-variance normal random variables.

Appendix C. Technical Details of Section 4

C.1. Proof of Corollary 4.2

First note that

GA,1(A]) = 1. (C.1)

We can establish (C.1) by way of contradiction: Recall the definition of gaugep function in (3.4).

It is easy to see that GA,1(A]) ≤ 1. In particular, if GA,1(A]) < 1, then there exists an atom

A′ ∈ A aligned with A] such that ‖A′‖2 > ‖A]‖2 = 1. This contradicts the assumption that

∠[A′ −A], A]] > 0 and establishes (C.1).

For atoms A,A′ ∈ A, consider the corresponding one-dimensional slices S,S ′ ∈ slice1(A), which

are specified as

S =
⋃

0≤τ≤1

τA, S ′ =
⋃

0≤τ≤1

τA′.

Note that S and S ′ are simply the line segments connecting A and A′ to the origin, respectively.

With p = 1, the distance in (3.22) between these two slices is

dist1(S,S ′) =
√

2− 2 cos (∠ [cone(S −A]), cone(S ′ −A])]) (see (3.22,C.1))

= distH

(
cone(S −A]) ∩ Sd−1, cone(S ′ −A]) ∩ Sd−1

)
(see (B.12))

≤
∥∥∥∥ A−A]

‖A−A]‖2
− A′ −A]

‖A′ −A]‖2

∥∥∥∥
2

, (C.2)

with the convention that 0/0 = −A]. In the last line above, we used the fact that the arguments of

distH are two arcs on the unit sphere. The first arc passes through −A] and (A − A])/‖A − A]‖2.

The second arc passes through −A] and (A′ − A])/‖A′ − A]‖2. The Hausdorff distance between

these two arcs is bounded by the distance of their end points, see the last line of (C.2). Since each

one-dimensional slice can be identified with its corresponding atom, it follows that

entropy(slice1(A), dist1, δ) = entropy(UA](A), ‖ · ‖2, δ),

where UA](A) =

{
A−A]

‖A−A]‖2
: A ∈ A

}
,

for every δ > 0 and with the convention that 0/0 = −A]. We can now invoke Lemma 15 from [22]

to find that

entropy(UA](A), ‖ · ‖2, δ) ≤ C ′′k log
(
δ−1(volk(A))

1
k reach(A)

)
, (C.3)

for a universal constant C ′′ and every δ > 0.

On the other hand, by definition, the critical angle in (3.21) satisfies

θ1,A](A) = sup

{
1

2
∠[A−A],−A]] : A ∈ A− {A]}

}
(see (3.21))
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= sup

{
π

2
− 1

2
∠[A−A], A]] : A ∈ A− {A]}

}
=
π

2
−
θ′
A],1

(A)

2
(see (4.1))

<
π

2
, (C.4)

where the last line above uses the assumption on the alphabet A. In view of (C.3) and (C.4), we

may now invoke Theorem 3.20 to complete the proof of Corollary 4.2.

C.2. Proof of Proposition 4.4

Let

U := {u ∈ Rd : ‖u‖2 = 1, ‖u‖0 ≤ k}, (C.5)

for short. For a fixed vector u ∈ U , note that E[u>zi] = 0 and that

E[(u>zi)
2] = u>E[ziz

>
i ]u = u>Σu

= u>A]u+ θ‖u‖22 = (u>u])2 + θ, (see (4.5)) (C.6)

for every i ≤ n. In the second line above, we used the fact that any vector u ∈ U has unit `2-norm.

We are particularly interested in the deviation of the random variable (u>zi)
2 from its expectation.

Throughout, C is a universal constant, the value of which might change in every appearance.

Recall from [80, Definition 2.7] the notion of sub-exponential norm of a random variable, which we

denote by ‖·‖ψ1 . In particular, the sub-exponential norm of the random variable (u>zi)
2−(u>u])2−θ

can be calculated as∥∥∥(u>zi)
2 − (u>u])2 − θ

∥∥∥
ψ1

≤ C
∥∥∥(u>zi)

2
∥∥∥
ψ1

[80, Lemma 2.6.8]

= C‖u>zi‖2ψ2
[80, Lemma 2.7.6]

≤ CE[(u>zi)
2], [80, Example 2.5.8] (C.7)

where ‖ · ‖ψ2 returns the sub-Gaussian norm of a random variable [80, Definition 2.5.6]. In view

of (C.6), we can revisit (C.7) and write that∥∥∥(u>zi)
2 − (u>u])2 − θ

∥∥∥
ψ1

≤ C(u>u])2 + Cθ ≤ C, (C.8)

where the last inequality above uses the fact that u, u] ∈ U are unit-norm vectors and that θ < 1.

Because {zi}ni=1 are independent random variables, we can now apply the Bernstein inequality [80,

Corollary 2.8.3] and find that∣∣∣u>yu− (u>u])2 − θ
∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

(u>zi)
2 − (u>u])2 − θ

∣∣∣∣∣ ≤ δ, (see (4.6)) (C.9)

except with the probability of at most exp(−C min(δ2, δ)n) and for every δ > 0. Here, we used the

fact that θ < 1 to simplify the failure probability.

The remainder of the proof is a standard covering argument. For ε > 0 to be set later, let Uε
denote a minimal ε-net for U , with respect to the `2-norm, see Definition 3.16 or [80, Definition
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4.2.1]. By construction, log |Uε| = entropy(U , ε), where | · | returns the size of a finite set and the

right-hand side denotes the entropy number of U at resolution ε. Using the definition of U in (C.5),

it is not difficult to calculate that

log |Uε| = entropy(U , ε) ≤ Ck (log d+ log(1/ε)) . (see [80, Corollary 4.2.13]) (C.10)

Applying the union bound to (C.9) and using (C.10), we find that

max
u∈Uε

∣∣∣u>yu− (u>u])2 − θ
∣∣∣ ≤ δ, (C.11)

except with a probability of at most exp(Ck log d− Ck log(1/ε)− C min(δ2, δ)n).

Next, consider an arbitrary u ∈ U and choose uε ∈ Uε such that ‖u− uε‖2 ≤ ε. Such a point uε is

guaranteed to exist by construction of the ε-net Uε. Using the reverse triangle inequality, we then

write that ∣∣∣u>yu− (u>u])2 − θ
∣∣∣− ∣∣∣u>ε yuε − (u>ε u

])2 − θ
∣∣∣

≤
∣∣∣(u>yu− u>ε yuε)− ((u>u])2 − (u>ε u

])2
)∣∣∣ (reverse triangle inequality)

≤
∣∣∣u>yu− u>ε yuε∣∣∣+

∣∣∣(u>u])2 − (u>ε u
])2
∣∣∣ (triangle inequality)

=
1

n

∣∣∣∣∣
n∑
i=1

(u>zi)
2 − (u>ε zi)

2

∣∣∣∣∣+
∣∣∣(u>u])2 − (u>ε u

])2
∣∣∣ (see (4.6))

≤ ‖u− uε‖2(‖u‖2 + ‖uε‖2)
1

n

n∑
i=1

‖zi‖22 + ‖u− uε‖2(‖u‖2 + ‖uε‖2)‖u]‖22, (C.12)

where the last line above uses the Cauchy-Schwarz’s inequality multiple times. By construction, u

and uε satisfy ‖u‖2 = ‖uε‖2 = ‖u]‖2 = 1 and ‖u− uε‖2 ≤ ε. With this in mind, we bound the last

line above ∣∣∣u>yu− (u>u])2 − θ
∣∣∣− ∣∣∣u>ε yuε − (u>ε u

])2 − θ
∣∣∣ ≤ 2ε

n

n∑
i=1

‖zi‖22 + 2ε. (C.13)

Recall that zi ∼ normal(0,Σ), which allows us to write that zi
dist.
= Σ

1
2 z′i for a standard Gaussian

random variable z′i ∼ normal(0, Id). Because {zi}ni=1 are statistically independent, then so are the

new random variables {z′i}ni=1. We now revisit (C.13) and write its right-hand side as∣∣∣u>yu− (u>u])2 − θ
∣∣∣− ∣∣∣u>ε yuε − (u>ε u

])2 − θ
∣∣∣ ≤ 2ε

n

n∑
i=1

‖Σ
1
2 z′i‖22 + 2ε

≤ 2ε‖Σ‖
n

n∑
i=1

‖z′i‖22 + 2ε

≤ 4ε

n

n∑
i=1

‖z′i‖22 + 2ε, (C.14)

where the last line above follows because ‖Σ‖ = 1 + θ < 2, see (4.5). Note that
∑n

i=1 ‖z′i‖22 is a Chi-

square random variable of degree nd because {z′i}ni=1 are independent standard Gaussian random
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vectors. The tail probability of a Chi-square random variable is well-known and we therefore have

that ∣∣∣u>yu− (u>u])2 − θ
∣∣∣− ∣∣∣u>ε yuε − (u>ε u

])2 − θ
∣∣∣ ≤ Cεd, (C.15)

except with a probability of at most exp(−Cnd). Together, (C.11) and (C.15) imply that

max
u∈U

∣∣∣u>yu− (u>u])2 − θ
∣∣∣ ≤ max

u∈Uε

∣∣∣u>yu− (u>u])2 − θ
∣∣∣+ Cεd

≤ δ + Cεd, (C.16)

except with a probability of at most

exp
(
Ck log d+ Ck log(1/ε)− C min(δ2, δ)n

)
+ exp(−Cnd). (C.17)

Consider a sequence {kl, dl, nl}l such that liml→∞ nl = ∞. Consider also the sequence {εl}l with

εl = 1/d2
l . As l→∞, in view of (C.16) and (C.17), there exists a sequence {δl}l such that

max
u∈U

∣∣∣u>yu− (u>u])2 − θ
∣∣∣→ 0, (C.18)

with a probability that converges to one and provided that

lim
l→∞

kl log(dl)/nl = 0.

Lastly, we note that u] is the unique maximizer of the function u → (u>u])2 + θ. This completes

the proof of Proposition 4.4.

C.3. Proof of Proposition 4.5

Consider nonnegative coefficients {ci}pi=1 and atoms {Ai}pi=1 ⊂ A that are feasible for the opti-

mization problem (gaugep), i.e.,
∑p

i=1 ci ≤ GA,p(x]). Note that∥∥∥∥∥y −
p∑
i=1

ciAi

∥∥∥∥∥
2

F

= ‖y‖2F − 2

p∑
i=1

ci〈y,Ai〉+

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

,

where only the second and third components depend on {ci, Ai}i. Consequently, the problem (gaugep)

has the same solutions as

min

−2

p∑
i=1

ci〈y,Ai〉+

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A

 . (C.19)

Since y in (4.6) is random, the only random term above is
∑p

i=1 ci〈y,Ai〉. We will focus on this

random term first. For every i ≤ p, Ai ∈ A implies that there exists ui ∈ U such that Ai = uiu
>
i .

Recall that the sets A and U were defined in (gaugep : SPCA) and (C.5), respectively. We can now

rewrite the only random term in (C.19) as

p∑
i=1

ci〈y,Ai〉 =
1

n

p∑
i=1

n∑
j=1

ci

〈
zjz
>
j , uiu

>
i

〉
=
∑
i,j

ci〈ui, zj〉2. (see (4.6)) (C.20)

Recall from (C.6) that

E[〈y,Ai〉] = E[〈ui, zj〉2] = 〈Σ, Ai〉 = u>i Σui (see (C.6))
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= u>i

 r∑
j=1

c]ju
]
j(u

]
j)
> + θI

ui (see (multiple spikes))

=
r∑
j=1

c]j(u
>
i u

]
j)

2 + θ
r∑
j=1

c]j‖ui‖
2
2

=
r∑
j=1

c]j(u
>
i u

]
j)

2 + θ
r∑
j=1

c]j , (see (C.5)) (C.21)

where the last line follows because ui ∈ U is a unit-length vector for every i. On the other hand,

following the same steps as in the proof of Proposition 4.4, it is easy to verify that

max
u∈U

∣∣∣∣∣∣u>yu−
r∑
j=1

c]j(u
>u]j)

2 − θ
r∑
j=1

c]j

∣∣∣∣∣∣ ≤ δ + Cεd, (C.22)

except with a probability of at most

exp
(
Ck log d+ Ck log(1/ε)− C min(δ2, δ)n

)
+ exp(−Cnd). (C.23)

Only this time, the factor C in (C.22) and (C.23) may depend on Gp(x]). With (C.22) and (C.23)

at hand, we now write that∣∣∣∣∣
p∑
i=1

ci〈y,Ai〉 −
p∑
i=1

ci〈Σ, Ai〉

∣∣∣∣∣ =

∣∣∣∣∣
p∑
i=1

ci〈y,Ai〉 −
p∑
i=1

ciE[〈y,Ai〉]

∣∣∣∣∣ (see the first line of (C.21))

≤
p∑
i=1

ci ·max
A∈A
|〈y,A〉 − E[〈y,A〉]| (Holder’s inequality)

=

p∑
i=1

ci max
u∈U

∣∣∣∣∣∣u>yu−
r∑
j=1

c]j(u
>u]j)

2 − θ
r∑
j=1

c]j

∣∣∣∣∣∣ (see (C.21))

≤
p∑
i=1

ci (δ + Cεd) (see (C.22))

≤ GA,p(x]) (δ + Cεd) , (feasibility of {ci}pi=1) (C.24)

except with the failure probability specified in (C.23). With the same argument as in the proof of

Proposition 4.4, we find that (C.19) has asymptotically the same minimizers as

min

−2

p∑
i=1

ci〈Σ, Ai〉+

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A

 , (C.25)

provided that (C.1) holds. We next focus on the deterministic optimization problem (C.25). Recall

from (multiple spikes) that

Σ = x] + θI =

r∑
i=1

c]iA
]
i + θI.

Substituting for Σ in (C.25), we find that

min

−2

〈
r∑
j=1

c]jA
]
j ,

p∑
i=1

ciAi

〉
− 2θ

p∑
i=1

ci trace(Ai) +

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ Gp(x]), ci ≥ 0, Ai ∈ A


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= min

−2

〈
r∑
j=1

c]jA
]
j ,

p∑
i=1

ciAi

〉
− 2θ

p∑
i=1

ci +

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A


≥ min

−2

〈
r∑
j=1

c]jA
]
j ,

p∑
i=1

ciAi

〉
− 2θGp(x]) +

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A

 ,

(C.26)

where the second line above uses the fact that Ai ∈ A satisfies trace(Ai) = 1. (We will later show

that the relaxation in the last line above is, in fact, tight.) In the last line above, note also that

we can remove the term −2θGA,p(x]) without changing the minimizers. That is, instead of the

optimization problem in the last line above, we can solve

min

−2

〈
r∑
j=1

c]jA
]
j ,

p∑
i=1

ciAi

〉
+

∥∥∥∥∥
p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A

 . (C.27)

We can add and subtract ‖
∑r

j=1 c
]
jA

]
j‖2F to the objective function above. By doing so, we observe

that (C.27) has, in turn, the same minimizers as

min


∥∥∥∥∥

r∑
i=1

c]iA
]
i −

p∑
i=1

ciAi

∥∥∥∥∥
2

F

:

p∑
i=1

ci ≤ GA,p(x]), ci ≥ 0, Ai ∈ A

 , (C.28)

Recall from (multiple spikes) that x] =
∑r

i=1 c
]
iA

]
i. Let x] =

∑p
i=1 ciAi be a different decomposition

of x], where ci ≥ 0 and Ai ∈ A for every i ≤ p. If we take the trace of both sides of the last identity,

we find that
p∑
i=1

ci =

p∑
i=1

ci trace(Ai) = trace(x]) =

r∑
i=1

c]i trace(A]i) =

r∑
i=1

c]i , (C.29)

where we also used the fact that every atom A ∈ A satisfies trace(A) = 1. After recalling the

definition of the gaugep function in (3.4), note that (C.29) implies

GA,p(x]) = trace(x]). (C.30)

It follows from (C.30) that {ci, Ai}pi=1 is feasible for the problem (C.28). Note also that

r∑
i=1

c]iA
]
i −

p∑
i=1

ciAi = x] − x] = 0. (C.31)

That is, {A]i}ri=1∪{Ai}
p
i=1 are linearly dependent. Recalling the definition of spark, we conclude that

r + p ≥ spark(A). In other words, if we take p < spark(A) − r, then x] =
∑r

i=1 c
]
iA

]
i is the unique

p-sparse decomposition of x] in the alphabet A. Consequently, {c]i , A
]
i}ri=1 is the unique solution

of (C.28). In fact, as we saw earlier, (C.28) has the same minimizers as the problem in the last line

of (C.26). Therefore, {c]i, A
]
i}ri=1 is also the unique solution of the problem in the last line of (C.26).

Recall from (C.29) and (C.30) that
∑r

i=1 c
]
i = Gp(x]). Therefore, for the choice of {c]i, Ani }ri=1, the

objective function in the second and third lines of (C.26) coincide. That is, the relaxation in (C.26)

is tight and we can replace the inequality in (C.26) with equality. This completes the proof of

Proposition 4.5.
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Appendix D. Technical Details of Section 5.1

D.1. Proof of Lemma 5.1

It is straightforward to see that the continuous variables ci = 0 if and only if the binary vari-

ables si = 0. Therefore, the constraint
∑l

i=1 si = p of the binary variables directly imposes the

required p-sparsity condition on c.

D.2. Proof of Proposition 5.2

First, observe that the machine (gaugep) (or equivalently the MIQP reformulation (5.1)) can be

rewritten as

min
c

{
‖L(A)c− y‖22 : c ≥ 0, 1>c ≤ GA,p(x]), ‖c‖0 ≤ p

}
.

Above, as usual, ‖c‖0 denotes the number of nonzero entries of the vector c. One can encode the

nonzero elements of the vector c as a subset S ⊂ [|A|]. That is, we can introduce a new vector cS

such that (cS)i = (c)i, when i ∈ S, otherwise [cS ]i = 0. In this way, the above optimization program

can be rewritten as

min
S ⊂ [|A|]
|S| ≤ p

min
cS ,z

{
‖z‖22 : z = L(A)cS − y, CcS ≤ g

}
, (D.1)

where the matrix C and the vector g were defined in the proposition. Note that the inner opti-

mization program in (D.1) is indeed a convex quadratic programming. This observation allows us

to claim two things: (i) We can add an additional term ‖cS‖22/γ in the objective function where

for all sufficiently large γ the optimal solution does not change. Indeed, the objective value of the

convex inner problem does not change by adding the constraint ‖cS‖2 ≤ ε for a sufficiently large ε.

By convexity of the inner problem, this is equivalent to adding the penalty term ‖cS‖22/γ for a

sufficiently large γ. (ii) Thanks to the convexity, we can dualize the linear constraints and arrive at

the equivalent optimization program

min
S ⊂ [|A|]
|S| ≤ p

max
µ≥0,λ

min
cS ,z

(
‖z‖22 +

1

γ
‖cS‖22 + λ>

(
L(A)cS − y − z

)
+ µ>

(
CcS − g

))
.

Note that the most inner minimization above is an unconstrained convex quadratic program. Com-

puting the analytical solution for the variables (cS , z) yields the desired program (5.2). With regards

to the algorithm described through the dynamics (5.3), first observe that the relation (5.3b) is the

same as the maximizer of the objective function (5.2) when the set is fixed to Sk. Note further

that the fixed point of (5.3) is indeed a saddle-point equilibrium for the zero-sum game between the

player S and (µ, λ). Therefore, the equilibrium S? is in fact also a “policy security”, i.e., the pair

is the solution to the minimax program (5.2) and its dual when the order of the minimization and

maximization operators are changed [81, Proposition 4.2].
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