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A Bayesian Approach for Active Fault Isolation
with an Application to Leakage Localization in

Water Distribution Networks
Gert van Lagen, Edo Abraham, and Peyman Mohajerin Esfahani

Abstract—This paper proposes an active fault isolation method
for application to water distribution networks (WDNs) in order
to localize leaks. The method relies on the classification of
observed outputs to a discrete set of hypothetical faults. Due
to parametric uncertainties, the outputs are random vectors
that follow unknown probability distribution functions (PDFs).
The output PDFs corresponding with the considered faults are
approximated using smooth kernel density estimation (SKDE).
They are used to calculate the posterior probability of each
hypothesis, given the observed outputs, by applying Bayes’ rule.
The difficulty to classify observed outputs to the right fault comes
from the overlap between output PDFs. An active algorithm is
introduced that proactively minimizes the joint overlap between
the output PDFs by designing optimal control inputs. Due to
physical limitations on control inputs and depending on the in-
tensity of uncertainties, full separation, and hence fault isolation,
cannot be guaranteed for a single observed output. Therefore
subsequent observations are used in an iterative framework,
where the posterior probabilities of the previous time step serve
as the prior probabilities for the next time step. The method is
applied to locate leaks in a benchmark WDN for different levels
of uncertainty in customer water demand and leakage magnitude.
Improvements in performance are observed in comparison to the
best considered passive method from literature.

Index Terms—Stochastic Active Fault Diagnosis, Water Distri-
bution Networks, Bayesian classification, Leak localization

I. INTRODUCTION

ONE of the main challenges for water utilities is the diag-
nosis and control of leakage from ageing water distribu-

tion networks (WDNs). The early detection and management
of leaks, in addition to reducing cost in non-revenue water
and conserving energy, is critical to mitigate deterioration of
pipes and surrounding infrastructure. Water loss due to leakage
varies between 5 and above 50 per cent of the supplied volume,
respectively, for well managed and older poorly maintained
networks [1]. Leakage reduction beyond the economically
optimal level of about 15 per cent [2] is further motivated
by stringent regulations and imminent risks. One risk is a
poorer water quality due to temporarily negative pressures
that allow intrusion of pollutants into the network, potentially
jeopardising public health [3]. A further threat is that very
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small leaks can gradually grow in size, eventually into pipe
bursts, which can render (a part of) the network inoperable and
result in damage to other infrastructure and also economical
losses due to flooded areas. Leaks are also known to cause
destructive and dangerous sink holes due to underground soil
erosion [4]. Finally, reducing the annual global loss of 32
billion m3 of potable water [5] will help alleviate the water
stress caused by the mutually reinforcing global issues of rapid
urbanization and increasing water scarcity.

Leakage analysis includes the fault diagnosis tasks of detec-
tion, isolation, identification and estimation. These techniques
respectively involve the determination of whether or not a leak
is present, if so, to estimate its location, type and magnitude
[6]. This paper focuses on leak localization techniques.

Different methods to locate leaks in WDNs have been
proposed in literature. Conventional deterministic techniques
include random and regular sounding surveys using listening
sticks and acoustic loggers, and step-testing of district metered
areas (DMAs) through gradual valve closures [7]. DMAs
are sub-systems that can be analytically isolated through
segregation of the WDN by means of (dynamic) boundary
valves and metering the flows at remaining open connections
[8], [9]. More advanced deterministic methods like leak noise
correlators, pig-mounted acoustic sensing and gas-injection
techniques [10] are the most precise at locating leaks. However
all these techniques come with expensive equipment cost and
are man-hour intensive, and so are not scalable. In addition, the
suppression of leakage sound signatures by reduced pressures
in active pressure management has also made these methods
of limited application [7], [10].

To make those deterministic methods scalable, recent ap-
proaches use model-based analysis to reduce the search space.
These methods use near real-time telemetry data from pressure
sensors and flow metres distributed over the network and rely
on a calibrated predictive hydraulic model. Based on observed
residuals that reflect how pressure measurements from the
leaky reality deviate from predicted pressure values in the
absence of leakage, their aim is to designate a leak location
from a discretized set of possibilities through comparison to
offline generated residual signatures corresponding to the pos-
sible locations [11]. Recent developments toward this problem
apply machine learning techniques like k-nearest neighbours,
neuro-fuzzy [12], Bayesian classifiers [13] as well as Fisher
discriminant analysis [14] and Dempster–Shafer [15] to clas-
sify observed residuals to one of the possible leak locations,
which have shown best results when applied over multiple
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time steps. Recently, there are also some progress to leverage
these tools to go beyond the problem of detection in order to
answer more complex questions such as estimating the time
and intensity of the leakage [16], [17]. Similarly, [18] makes
use of time-series analysis for detecting the start time static
and growing leaks, and then model-based passive approaches
for leak localisation.

The difficulty to classify observed residuals to one of
the possible leak locations comes from the overlap between
corresponding residual sets due to uncertainties, such that
leak isolation cannot be achieved under all possible observed
residuals. All these techniques in literature rely on nominal
input-output data from the network, i.e. control input strategies
are not adapted to improve leak localization, which we refer to
as passive fault diagnosis (PFD) methods. As the joint overlap
in residual space increases with growing uncertainties, these
PFD methods are of limited application. Therefore in this work
we present a novel active fault diagnosis (AFD) algorithm
for faster and more reliable leak isolation. Where pressure
control inputs are usually regulated at a minimum level using
pressure regulating valves (PRVs) [9], we show that they can
also be optimized to enhance active leakage isolation [19]. We
will make use of output observations directly, rather than the
common residual observations used in literature that subtract
two random ’output’ variables, because composed random
variables gain a higher joint spread and hence, unnecessarily,
stochastically deteriorate the observed samples. We also intro-
duce new control design strategies for pressure inputs that min-
imize the probability of misisolation, i.e. the overlap between
output sets corresponding with considered leak locations. The
output sets are described by probability distributions, which
are estimated by means of smooth kernel density estimation
(SKDE) [20] through extrapolation of output realizations from
Monte Carlo simulations. Due to physical limitations and reg-
ulatory constraints, the pressure control inputs to the network
are bounded. Hence it is plausible that output sets cannot be
fully separated, such that isolation is not guaranteed. However,
by iteratively applying Bayes’ rule over consecutive time steps,
leak isolation can be improved in terms of reliability and speed
compared to the PFD methods in [12]–[14]. At nighttime,
when user demand is low [21], the proposed AFD algorithm
is applied to a benchmark network for different degrees of
uncertainty. Its performance is compared to that of the best
considered PFD method proposed in [13] with the slight
adaptation of using the output space instead of the residual
space.

The paper is structured as follows. In Section II the active
fault isolation problem is stated and a motivating example
for leak localization in a WDN is given. In Section III-A,
an AFD algorithm is proposed that solves the stated problem
and is directly applicable to locating leaks in a WDN, which
is further elaborated in Section IV. In Section V, simulation
experiments are presented with a benchmark WDN as a case
study, in which the AFD algorithm is tested for different
leak scenarios and compared against a PFD method. Finally,
conclusions are drawn and recommendations for future work
are given in Section VI.

II. PROBLEM STATEMENT AND MOTIVATING EXAMPLE

In this section a class of models describing the steady state
of a non-linear system subject to possible faults is introduced.
Consider the set of algebraic equations

Model :

{
F (x,u,d,K) = 0

y = C(x),
(1)

where the function F models the steady state of the system,
the signal x denotes the state of the system, u is the control
input, d denotes the natural disturbances that the system may
encounter, and y is the available measurement signal. We
highlight that the bold signals x,u,d,y are time-varying and
take vector values from Rnx ,Rnu ,Rnd ,Rny , respectively. The
parameter K = [K1, . . . ,KnK ] ∈ RnK is a constant vector
representing nK different possible faults, i.e., when the ith

component of K is non-zero (i.e., Ki 6= 0), then the system
is in the ith faulty mode.

The set of algebraic equations (1) essentially describes
the input-output mapping between the variables (d,u;K)
and y. In this view, the output can be explicitly described
by y(d,u;K). For brevity, and with slight abuse of notation,
we may use the shorthand notation

y[i] := y(d,u;Ki), i ∈ {1, · · · , nK}

where y[i] denotes the output of the system (1) in the presence
of the fault i, namely, when the only component of the vector
K that is not zero is Ki. In this study we treat (d;Ki) as
random variables whose behavior follows a certain distribution
from which we have access to historical data or sample realiza-
tions. We also reserve the symbol “̂” for sample realizations
of the random variables, e.g., given realizations (d̂, K̂i), we
denote an output realization ŷ[i] = y(d̂,u; K̂i). The aim of
this study is to address the following objective.

Problem 1 (Active fault isolation). Consider the system (1)
under a single fault i∗, i.e., Kj = 0 if and only if j 6= i∗.
Given the measurement signal y and statistical information
of the natural disturbance d, synthesize a sequence of input
signal u as well as a diagnosis rule in order to maximize the
probability of identifying the fault type i∗.

The relevance of Problem 1 is endorsed by the following
motivating example.

Example 1 (Leak localization in water distribution network).
Water enters a WDN at nu inlets and is supplied to consumers
abstracted by nK nodes that are connected to the inlets
through a network of np pipes. The steady state of a WDN
can be described by a model of the form in (1), where the
state x :=

[
q h

]T ∈ Rnx consists of the flows q ∈ Rnp
through the pipes (in m3/s) and the hydraulic heads h ∈ RnK
at the nodes (in mH2O). The control inputs u are the inlet
pressures of the network, which are regulated using PRVs. The
nodal consumer demands act like natural disturbances d on
the network and need to be predicted using statistical infor-
mation. The output of the network consists of the measured
part of the system’s state, where usually ny � nx. Consider
the WDN under the presence of a single leak i∗ at one of
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the nK nodes, then, active isolation of this fault parametrised
by K involves the synthesis of a sequence of control inputs u
in order to maximize the probability of identifying the fault
type i∗ based on a sequence of measurements y.

III. PROPOSED METHODOLOGY

In this section we provide an active fault diagnosis method-
ology built on a Bayesian perspective, an approach in which
Bayes’ theorem is used to update the probability for a hy-
pothesis as more information is revealed to us. In the context
of active fault isolation, roughly speaking, the hypothesis
is our current belief about the probability of occurring for
each fault (i.e., Ki 6= 0) and the information is the output
measurement ŷ∗ = y(d̂,u; K̂i∗) from the actual system,
which is supposed to be generated by an unknown fault
mode i∗. The proposed active fault isolation in this study
comprises two main steps: (i) update our belief upon receiving
an output measurement ŷ∗, (ii) introduce an appropriate input
signal u.

A. Bayesian update of hypotheses probabilities

Recall that in the setting of this study we believe that the
system is faulty and that one of the modes i ∈ {1, · · · , nK}
occurs. Looking at the problem from a Bayesian perspective, it
is then natural to define the hypothesis set H = {1, · · · , nK}
along with a probability distribution P representing our current
(prior) belief about hypothesis candidates. Formally speaking,

P(i) := Prob(fault mode: i), i ∈ H. (2)

Recall also that given an input signal u, the output of the
system under fault mode i, denoted by y[i] = y(d,u;Ki),
is a random variable whose distribution is induced by the
distributions of the variables (d;Ki) through the algebraic
equations (1). With this in mind, we denote the (conditional)
distribution of the output measurements by

y[i] = y(d,u;Ki) ∼ P(dy|i,u) = p(y|i,u)dy, (3)

where p(y|i,u) represents the probability density function;
throughout this study we assume such a density function exists.
Given the definitions in (2) and (3), the marginal density
distribution of the output measurement is

p(y|u) =

nK∑
j=1

p(y|j,u)P(j) . (4)

Upon receiving a realization of the output ŷ∗ under the input
signal u, one can update the prior belief concerning the
hypothesis candidates in (2) by means of Bayes’ theorem
through the relation

P(i|ŷ∗,u) =
p(ŷ∗|i,u)

p(ŷ∗|u)
P(i) =

p(ŷ∗|i,u)P(i)∑nK
j=1 p(ŷ

∗|j,u)P(j)
, (5)

where the second equality follows from (4). The conditional
distribution P(i|ŷ∗,u) in (5) is also known as the posterior
distribution.

Approximation techniques: Given the prior distribu-
tion (2), the key ingredient is the density function p(ŷ∗|i,u)
evaluated at the measurement ŷ∗; this quantity is also known
as likelihood in the statistics literature [22, Chapter 4.4].
As pointed out earlier, this density function is essentially
determined by the distributions of (d;Ki) through the system
equations (1). In general, the analytical description of this
density is not available and one has to resort to approxi-
mation techniques for numerical purposes. For instance, for
each hypothesis i ∈ H, given an input signal u, and M
realizations

(
d̂m, K̂i,m

)
, m ∈ {1, . . . ,M}, one can simulate

the system (1) and compute M output realizations ŷ[i]
m(u),

m ∈ {1, . . . ,M}; note that these realizations depend on the
choice of u. A single realization can be obtained by fixing u
and i, generating a realization of d and solving equation (1) for
y. Now, since the required number of realizations for all con-
sidered hypotheses scales proportional to M×nK , it becomes
computationally very demanding to take a large M . Therefore,
having a moderate number of output samples {ŷ[i]

m(u)}m≤M ,
we utilize a kernel function κ : Rny ×Rny → R+ to arrive at
a smooth approximation of the conditional probability density
distribution of y given (i,u):

p(y|i,u) ≈ 1

M

M∑
m=1

κ
(
y, ŷ[i]

m(u)
)
. (6)

Considering the approximation scheme (6), the approximation
of the posterior distribution (5) then reduces to

P(i|ŷ∗,u) ≈
∑M
m=1 κ

(
ŷ∗, ŷ[i]

m(u)
)
P(i)∑nK

j=1

∑M
m=1 κ

(
ŷ∗, ŷ[j]

m (u)
)
P(j)

In the next section, we will provide a specific example of such
kernels. Note that when the prior probability P(i) = 0, then
the posterior update (5) remains P(i|ŷ∗,u) = 0 irrespective
of the observation ŷ∗. In this light, another approximation idea
to practically improve the efficiency of the Bayesian update
rule (5) is to introduce a threshold, say ζ, and set the posterior
probability P(i|ŷ∗,u) to zero if P(i|ŷ∗,u) ≤ ζ. In this way
hypotheses with a close to zero belief are set to zero so that
they can be neglected in the next iteration, speeding up the
“knockout race”. This approximation can be mathematically
described as

P(i|ŷ∗,u)←

{
P(i|ŷ∗,u)/

∑
j∈Iζ

P(j|ŷ∗,u) i ∈ Iζ

0 i /∈ Iζ ,
(7)

where Iζ := {j ∈ H : P(j|ŷ∗,u) > ζ}. We note that
kernelization is not the only way to construct an expression
for unavailable distributions. Another strong candidate would
be the Approximate Bayesian Computation method, of which
more information can be found in [23].

B. Input synthesis

This section focuses on synthesising a feasible input sig-
nal u at each time instant in order to generate an “optimal”
measurement ŷ∗ for the Bayesian update described in (5).
As a first step toward this goal we need to formally define
such an optimal process. Intuitively speaking, a key feature
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to isolate the fault modes is to separate the conditional
distribution P(dy|i,u) = p(y|i,u)dy from one another for all
i ∈ H. Note that in an ideal setting where these distributions
have zero overlap, then in the posterior distribution update
in (5), the quantity p(ŷ∗|i,u) = 0 for all i 6= i∗. This
means that the Bayes’ rule (5) immediately converges to the
optimal distribution fully supported on the true fault mode i∗.
In this view, we first choose a distance function D(P1,P2) that
essentially captures the overlaps of two distributions P1 and
P2, i.e., D(P1,P2) ≥ 0, and is zero if and only if P1 ≡ P2.
Given this distance function, we then introduce the objective
function

J(u) :=

nK∑
i,j=1

P(i)D
(
P(dy|i,u),P(dy|j,u)

)
P(j) . (8)

Our goal is to maximize the objective function (8), and
thus to reduce the similarity between the marginal distribu-
tions P(dy|i,u) for i ∈ H, over the admissible set of inputs
u ∈ U. The cumulative overlap between marginal distribu-
tions is weighted with the belief about their corresponding
hypothesis candidates, such that the algorithm at any time
focuses on separating the hypotheses with highest belief. From
a computational perspective however, the function J in (8)
may not be convex and it is not computationally feasible
to solve maxu∈U J(u) per se. Therefore, we propose the
projected gradient ascent update rule where at each iteration t,
we only require to compute the gradient ∂J∂u (ut) at a given ut.
More formally, we propose

ut+1 = ΠU

[
ut + η

∂J

∂u
(ut)

]
t ∈ N, (9)

where ΠU is the projected operation on the set U, and the
constant η is a prespecified stepsize. The key ingredient to
implement the input update (9) is the computation of ∂J

∂u , the
gradient of the cost function. This quantity indeed entails the
behavior of the algebraic equations (1). We note that the choice
of the distant function D(P1,P2) is a degree of freedom
as long as the basic properties of a metric on the space of
distributions are fulfilled. In anticipation of the application in
the next section and for numerical purposes, we consider the
Hellinger distance defined as follows:

D(P1,P2) = 1−
∫ √

p1(y)p2(y)dy . (10)

The Hellinger distance (10) is qualified as a metric, as op-
posed to the common KL-divergence measure. This metric
is also perceived as the stochastic analog of the Euclidean
distance. The metric can therefore be implemented intuitively
and unambiguously, because the three basic axioms (iden-
tity of indiscernibles, symmetry, and the triangle inequality)
hold. Specifically, the symmetry axiom is important in this
application, because the degree of overlap does not change
with perspective between two overlapping spatial objects, i.e.,
D(P1,P2) = D(P2,P1).

Proposition 1 (Cost function gradient). Let the cost func-
tion J(·) be defined as in (8) where the distance function
is (10). Given u ∈ U and realizations of random vari-
ables {d̂m, K̂i,m}, i ∈ Iζ , let the set {x̂(u)

[i]
m, ŷ(u)

[i]
m : i ∈

Algorithm 1 Bayesian based active fault detection
Input: u0, P0, η, ζ, pmax, tmax
Output: ut, Pt
Ensure: t = 1, P(i) = P0(i),∀i ∈ H

1: while max
i∈H

P(i) ≤ pmax and t ≤ tmax do

2: Compute ∂J
∂u (ut−1) using (11)

3: Update control ut using (9)
4: Measure real output ỹ∗t
5: for i ∈ H do
6: Construct conditional distributions using (6)
7: Sequentially update posterior distribution P(i|ŷ∗t , ut)

using (5) and (7)
8: end for
9: t← t+ 1

10: end while

Iζ , 1 6 m 6M} be ‘M’ measurements of the model (1).
Suppose κ to be a kernel function and P(y|u) is approximated
by (6). Then,

∂J

∂u
=

1

2

∑
i,j

P(i)
(∫

γi,j(y,u) + γj,i(y,u)dy
)
P(j) ,

(11)

where the function γi,j is defined as

γi,j :=

∑M
m=1 κ

(
y, ŷ[i]

m(u)
)∑M

m=1 κ
(
y, ŷ[j]

m (u)
)( 1

M

M∑
m=1

∂κ

∂ŷ
(y, ŷ[j]

m (u))
∂ŷ[j]

∂u

)
,

∂ŷ[j]

∂u
=
∂C

∂x

(∂F
∂x

)−1 ∂F
∂u

(x̂[j]
m (u), d̂m,u, K̂j,m).

Proof: The proof comprises the following steps:
(i) Distance function gradient: Suppose p1(y|u)

and p2(y|u) are two input-dependent density functions.
Given distance function (10), we have by the chain rule

∂

∂u
D
(
P1(·),P2(·)

)
=

− 1

2

∫ (√
p2(·)
p1(·)

∂p1(·)
∂u

+

√
p1(·)
p2(·)

∂p2(·)
∂u

)
dy.

(ii) Output perturbations: Suppose y(u) is the solution to (1).
Then, given (d,K), we have

∂y

∂u
= −∂C(x)

∂x

(
∂F

∂x

)−1
∂F

∂u
.

Now the proof follows from the observations (i) and (ii),
the description of the probability distribution (6) and (10).

We close this section with Algorithm 1 summarizing the
proposed Bayesian approach comprising two pivotal steps of
the input synthesis (9) and the posterior update rule (5).

IV. LEAKAGE LOCALIZATION IN A WDN
In this section, the proposed methodology is further speci-

fied for the application to active leak localization in a WDN
as described in Example 1. To this end, we first show how the
mathematical model of WDNs fall into this category.



5

1) Model of a WDN: For the case of a WDN, the hypothesis
candidates {1, . . . , nK} correspond to possible leak locations
at one of the nK nodes. For a WDN at steady state, the
equations describing the state x =

[
q h

]T
of the network

under leak mode i, can be represented by substitution of:

F [i](x[i],u,d,K [i]) :

{
E[i](x[i],u,d, g[i]) = 0,

g[i] = L(x[i];K [i]),
,

in (1) we have

Model[i] :


E[i](x[i],u,d, g[i]) = 0,

g[i] = L(x[i];K [i]),

y[i] = Cx[i],

, (12)

where following [24] the term E[i](·) takes the form

E[i](·) =

[
A11(q[i]) A12

AT12 0

] [
q[i]

h[i]

]
+[

A10u
0

]
+

[
0

−d− g[i]
]

= 0 (13)

with leak magnitude g[i] in m3/s being a function of the
pressure pi (part of the state vector x[i]) in mH2O at the
leak’s location [25]. This yields

g[i] = L(x[i];K [i]) = K [i]pαi , pi = ρwgc(hi − zi). (14)

The diagonal matrix A11 ∈ Rnp×np consists of the elements

A11(j, j) = Rj |q[i]j |
τ−1, j = 1, . . . , np,

with Rj the resistance coefficient of pipe j; see [26] for
further information. The matrices A12 ∈ Rnp×nn and A10 ∈
Rnp×nu are incidence matrices that denote the connectivity
between the nn unknown head nodes and the nu nodes
with regulated pressure heads u ∈ U , respectively. Using
the Hazen-Williams (HW) energy loss model to describe
the friction of pipes to flow, we have τ = 1.852, Rj =
10.670Lj/(C

1.852
j D4.871

j ) where Lj , Cj , Dj denote the length
in m, the unitless roughness coefficient and the diameter in
m of pipe j, respectively [26]. The parameters describing the
leak magnitude (ρw, gc, zi,Ki, α) denote the density of water
in kg/m3, gravity in m/s2, elevation head zi in mH2O and
the discharge constant Ki > 0 and 0 < α < 1 are parameters
dependent on the leak size and pipe material. Finally, y[i]

denotes the measured part of state x[i] with C ∈ Rny×nx .
With slight abuse of notation we use Cx instead of C(x),
because in this specific application y is a linear combination
of x.

2) Specifications: Thanks to the WDN’s model built above,
the proposed methodology can now be applied for active
leak localization in a real WDN as described by (12). What
complicates the application is that in a real world setting the
amount of leakage g is not known exactly. To mimic this
situation, we therefore assume that only an estimate of g
is available. For the M realizations needed to approximate
the propagation of parametric uncertainties (d, g) into output
distribution functions P(dy|i,u), i ∈ H, it is assumed that
the nodal demands are realizations d̂m from a Gaussian
distribution P̂d. The availability of ĝ is mimicked by drawing

a realization from the uniform distribution g ∼ Ug(g−, g+)

centered at the actual leak magnitude g, i.e., g−+g+

2 = g.
Lastly, it is reasonably assumed that the parameters describing
network characteristics like pipe diameter Dj and roughness
coefficient Cj are calibrated using historical data and are time-
invariant within fault detection time scales.

3) Input synthesis: Recall that synthesising a feasible input
signal u using the gradient ascent update rule as proposed
in equation (9) iteratively maximizes the cost function J(u)
in (8). The key ingredient is the computation of ∇uJ(ut)
which entails the behavior of the WDN as described by (12).
From Proposition 1 it follows that the only information needed
to be able to compute (11) is to know how to compute ∇uy
and how to determine η.

Proposition 2 (WDN Cost function gradient). Suppose
that y[i](u) is a realization of (12) under fault mode i. Then,
the sensitivity of a realization with respect to the input u is a
matrix Rnu×ny defined as

∇uy
[i] :=


∂y

[i]
1

∂u1
. . .

∂y
[i]
1

∂unu
...

. . .
...

∂y[i]
ny

∂u1
. . .

∂y[i]
ny

∂unu

 =
(
∇gy

[i] ∂g

∂hi

)
⊗∇uhi

= K̄CS[i]
g ⊗ S[i]

u [np + i]

where K̄ = ∂g
∂hi

> 0, S[i]
g ∈ Rnx , and S[i]

u ∈ Rnx×nu are the
sensitivities of the state x with respect to leak magnitude g
and to the inputs u, respectively, i.e.,

S[i]
g :=

[
∂q
∂g

∂h
∂g

][i],T
, S[i]

u :=
[
∇uq ∇uh

][i],T
. (15)

Remark 1 (Measurement input-sensitivity). Note that, due to
the Kronecker product, the term ∇uhi does not affect the
direction of ∇uŷ

[i]
j but only its magnitude, which corresponds

with the intuition that changing inputs at different locations
has a different impact on hi.

Proof: Application of the chain rule to a single element

of ∇uy
[i] yields:

∂y
[i]
j

∂uν
=

∂y
[i]
j

∂g
∂g
∂hi

∂hi
∂uν

, which comprises of
the following parts:

(i)

∂y
[i]
j

∂g
= CS[i]

g

(ii) As we assume an underlying leak model of the form in
(14), this unidentifiable derivative can be elaborated as:

K̄ =
∂g

∂hi
= ρwgcαKi

(
ρwgc(hi − zi)

)α−1
> 0

(iii)
∂hi
∂uν

= S[i]
u [np + i; ν]

Now the proof follows from (i), (ii) and (ii).
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4) Sensitivities: It is often claimed that the sensitivity
matrix of the state with respect to leak magnitude g “is
extremely difficult to calculate analytically” [11] because the
non-linear hydraulic equations in (13) are implicit. In this
paper the sensitivities are computed analytically by using
the implicit function theorem, which reduces computational
complexity and makes the proposed approach tractable. In
the following proposition we address when the sensitivities
required in equation (15) can be computed efficiently.

Proposition 3 (Analytical description of S[i]
g , S[i]

u ). Let x∗

be a solution to algebraic equation (13) where the Jaco-
bian ∂F [i]/∂x at x∗ is invertible, i.e., the equation is non-
degenerate. Then, the sensitivity matrices S[i]

g and S[i]
u in (15)

can be calculated via[
S
[i]
g S

[i]
u

]
=

[
diag(γi)A11(q̂[i]) A12

AT12 0

]−1 [
B

[i]
g B

[i]
u

]
.

Proof: Since the function F [i](·) is continuously differen-
tiable around such a solution x∗ [24, Appx. 1], by the implicit
function theorem [27, Thm. A.2], we have

∂F [i](·)
∂x

∂x

∂g
= −∂F

[i](·)
∂g[

NAA11(q̂[i]) A12

AT12 0

]
︸ ︷︷ ︸

A[i]

[
∂q
∂g
∂h
∂g

][i]
︸ ︷︷ ︸
S

[i]
g

=

[
0
I [i]

]
︸ ︷︷ ︸
B

[i]
g

where NA = diag(γi), i = 1, . . . , np and the only nonzero
element of vector I [i] ∈ Rnn is I [i](i) = 1. Therefore,
sensitivity S

[i]
g can be computed by solving the nx linear

equations, i.e., S[i]
g = A[i]\B[i]

g .
Likewise, at the same steady state solution x∗ we can write:

∂F [i](·)
∂x

∇ux = −∇uF
[i](·)

A[i]S[i]
u = B[i]

u ,

where B[i]
u =

[
A10

0

]
and we obtain S[i]

u = A[i]\B[i]
u .

Remark 2 (Computational complexity). The complexity of the
proposed algorithm is determined by solving nn×nx× (M +
1 +nu) linear algebraic equations where nn is the number of
unknown nodes, nx is the number of the states including all
the flows and hydraulic heads, nu is the number of inlets, and
M is the number of realizations.

V. CASE STUDY

In this section, the proposed AFD method is numerically
evaluated by comparing to a PFD method under different levels
of demand uncertainty. It is assumed that no prior information
is available about where approximately the leak is located,
such that the initial belief is a uniform distribution over the
nodes.

A. Hanoi Network

In order to assess Algorithm 1, its performance is tested on
the benchmark Hanoi network [28] and compared against the
state-of-the-art PFD method introduced in [13] with the slight
difference that the output space is directly used here. This is
implemented by using Algorithm 1 without the active control
rules, i.e. lines 2 and 3 are skipped. Figure 1 shows a schematic
representation of this network, which is fed by two reservoirs.
This trunk model consists of 31 nodes connected by 33 pipes.
At nodes 14, 22 and 30, pressure loggers are installed. The
pressures at nodes 1 and 9 are controlled by means of PRVs,
which will be referred to as inputs u1 and u2, respectively.
To demonstrate the algorithm’s ability to handle multiple
inputs,the default Hanoi network from [28] is extended with
an extra reservoir and PRV at node 9. The WDN contains two
trees (i.e. acyclic, connected subgraphs of the network): 9-10-
11-12 and 19-20-21. Leaks at these nodes of equal magnitude
affect the pressure distribution across the looped part of the
network identically and are therefore not isolable. Therefore,
as is done in model reduction for WDNs [29], the nodes
in these trees are grouped into corresponding sets and are
represented by the root node of the tree - nodes 9 and 19,
respectively. This prevents the algorithm from getting stuck in
an attempt to isolate non-isolable leaks.

The size of each time step during fault diagnosis is in the
order of minutes, such that steady state can be considered and
dynamic sub-second processes can be neglected.

Fig. 1: The benchmark Hanoi trunk network.

B. Simulation Setup

Since the real Hanoi network is not available to validate
the proposed AFD algorithm, we resort to simulating the
hydraulics described via (1) for numerical purposes. To this
end, a single leak scenario is investigated where the node i∗

is the location of the leak whose level of the leakage is
described by (14). In this setting, the leak parameters used
in the simulation experiments are listed in Table I.

The obtained model Mi∗ is used as if it were the real Hanoi
network. Figure 2 shows a schematic representation of how
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TABLE I: Leak model characteristics

K α ρw[kg/m3] gc[m/s2]
0.0005 0.75 0.5 9.81

inputs and outputs of the ’real’ network are imitated and how
these interact with the AFD method. The consumer demands
d̂t projected at the nodes of the ‘real’ (Mi∗ ) network are
determined by:

dk,j = max(ξd, 0)µtbj , ∀j ∈ In (16)

where bj is the base demand of the jth node, µt is the
demand multiplier at time step t and ξd is randomly drawn
from normal distribution ξd ∼ N (1, σd) [30].

Fig. 2: Schematic representation of the simulation setup to
mimic a real implementation of the AFD algorithm on the
Hanoi water distribution network for a single time step.

The output at each time step is generated by solving the
non-linear hydraulic equation of Mi∗ and obtaining its output
ỹt. The FE (Fault Estimation) block in Figure 2 models
the magnitude estimation of leak g and predicts its value
according to ĝt = gt + ξg where ξg ∼ N (0, σg). The AFD
block takes as input the estimated leak magnitude ĝt and the
output observation ỹt and based on these updates the input
ut and likelihood vector Pt. Within the AFD block the leak
magnitude PDF Pg and output PDF Py are estimated at each
time step t and used for execution of algorithm 1. The leak
magnitude PDF is assumed to be uniformly distributed around
the estimated leak magnitude, i.e., g ∼ U(ĝ − 3σg, ĝ + 3σg).
The output PDF is estimated as described in section IV.
For this setup a Gaussian kernel was used with bandwidth
determination based on Scott’s rule, [31]. The control inputs
have the upper bound umax and are lower bounded by the
required minimal service level pressure head of 15 m at the
critical point, node 30 in this case being the node in the
lowest pressure area of the network [9]. In any case the
pressure at this critical point needs to be maintained above
its critical level. Therefore, dependent on the scenario, the
inlet pressure heads u1 and u2 have a different lower bound
per steady state. This is the reason that the inputs in Figure
3b (passive method) are not straight lines. Furthermore, a
constraint ∆u,max is imposed on the input change rate due
to the PRV’s characteristics. The leak magnitude is bounded
by about [0.02, 0.05] m3/s ⇔ [1.0, 2.5%] of the mean total
demand between 0AM and 5AM. All necessary simulation
constants are specified in Table II. Since the amount of
computing power required to perform the simulations depends
on M , its value has has been minimized. Lower values for M
make that the PDF estimates are filled with gaps, such that the
actual output space is not covered. Likewise the stepsize η is
a design parameter and has been optimized in such a fashion

that the gradient in (9) controls ∆u = η ∂J∂u . Taking a too large
η makes that always ∆u = ∆u,max, such that the gradient is
in fact out of play. On the other hand when η goes to zero, the
active algorithm becomes passive. The simulation experiments

TABLE II: Simulation constants

M ζ umax[mH2O] pmax

80 5/104 100 0.95
∆u,max[mH2O] η σg [m3/s] tmax

5 50 0.003 60

were performed using the WNTR Python package [32] and
its built-in hydraulic solver.

C. Experiments and Scenarios

The following numerical experiments are set up and per-
formed 5 times for scenarios with different nodal demand
realizations:

(i) i∗ is varied over all 26 considered leak locations, i.e.
all classes of nodes where trees are aggregated into
corresponding root nodes. The AFD algorithm is directly
compared to its PFD counterpart. The two algorithms
have identical initial conditions and are activated during
nighttime between 0AM and 5AM with a time step of 5
minutes. The algorithms try to isolate the leak location
within this time frame.

(ii) Step (i) is repeated for 2 different values of the demand
distribution variance σd, namely: σd ∈ [0.01, 0.10].

To measure the performance of the AFD and PFD methods,
accuracy and average distance are used as metrics. Accuracy
is measured by the percentage of leaks that are classified
to the correct leak location within the time frame of 0AM
and 5AM. The average distance is the mean distance in
kilometers between the ‘as classified’ and actual leak location
i∗, calculated with Dijkstra’s algorithm [33].

Remark 3. The experiments simulate fault diagnosis at night-
time, because the ratio between leakage and total inflow at the
inlets is the largest in these hours [34]. Nodal consumer de-
mands are more predictable as well, i.e. have a lower variance,
such that leaks to a lesser extend are getting obscured by the
increased uncertainty imposed by a higher variance. [21].

D. Results

Figures 3a and 3b show the input and likelihood trajectories
resulting from a single AFD and PFD diagnosis with a leak
at node 1, i.e. i∗ = 1, and demand distribution variance σd =
0.10. Figures 4a and 4b show similar trajectories for a leak
at node 6, i.e. i∗ = 6, under equal conditions. The spatial
distribution of the nodes is shown in Figure 1. All scenarios
are equally initiated regarding demands and leak magnitude
estimation.

In both cases (i∗ = 1, i∗ = 6) the AFD trajectories can be
roughly divided into two periods: 1) leak area selection and
2) isolation of the most likely leak node or location, described
below.

1) The pressures in the network are low and many hypothe-
ses are initially posed. The algorithm aims to fan out
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(a)

(b)

Fig. 3: Input and likelihood trajectories for a single experiment
with initially equal scenarios resulting from (a) AFD and (b)
PFD diagnosis (i∗ = 1).

all the corresponding densely packed output PDFs by
increasing the control inputs, sometimes at the maximum
allowed rate. In this way it aims to stepwise maximize
the objective function J(·) in (8).

2) In this period, many hypotheses have been rejected based
on a sequence of output measurements and the algorithm
focuses on separating the output PDFs of the remaining
hypotheses. It is observed that the inputs diverge due to
their different effect on separating the remaining output
PDFs, i.e., ∂J

∂u1
and ∂J

∂u2
diverge from each other. As

the likelihood vector Pt changes over time (line 7 in
Algorithm 1), the varying dominant hypotheses determine
the stagnation or increase of the different inputs. This
clearly demonstrates the adaptive behavior of the AFD
algorithm, which determines the input directions based on
the ’current belief’. When the hypotheses of two spatially
closely related nodes have both a high likelihood, it is
observed that the inputs tend to grow faster due to the
relative high overlap between their output PDFs. It can
be observed that, as a rule of thumb, when output PDFs
of the most likely hypotheses at a certain time step have
little overlap, the inputs stagnate. In contrast, when the
dominant hypotheses are have a high overlap of output
PDFs in the full output space, the input vector takes a
step in the direction in which maximum separation of the
output PDFs corresponding with the dominant hypotheses

(a)

(b)

Fig. 4: Input and likelihood trajectories for a single experiment
with initially equal scenarios resulting from (a) AFD and (b)
PFD diagnosis( i∗ = 6).

is expected, that is, maximising J with respect to u.
Comparing the trajectories of Pt between the PFD and

AFD in these two experiments shows that the PFD method
has a poorer performance in terms of speed, accuracy and
decisiveness. The different hypotheses struggle for precedence,
but their corresponding output PDFs clearly have too much
overlap which makes that the PFD algorithm comes no further
than region selection. Of course this does not mean that
the AFD algorithm is superior in every experiment. Both
algorithms are heavily dependent on the ‘separating quality’
of observed outputs at each time step. To show that the AFD
algorithm has an overall better performance than its PFD
counterpart, in Figure 5 the accuracy and average distance
time-lapse trajectories over all 130 scenarios (26 experiments
repeated with 5 demand realizations) are plotted for the two
different levels of demand uncertainty (different values of σd).

The upper plot shows how the accuracy evolves over diag-
nosis time for different values of demand distribution variance
σd. Likewise the lower plot shows the development over time
for the average ‘distance to actual leak’ performance metric in
kilometers. Compared to the PFD algorithm, the accuracy of
the AFD algorithm is higher by 12 and 9 per cent for the de-
mand variance values of 0.01 and 0.1, respectively. Similarly,
the average distance is lower for the AFD by, respectively,
0.37 and 0.75 kilometers. Finally, the mean diagnosis time for
the AFD are 117 and 164 minutes, whereas the PFD takes 45
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(a)

(b)

Fig. 5: Performance of AFD and PFD methods over a 5 hour
diagnosis period. The performance measures are averaged over
all experiments, where leaks are placed at different nodes
in each experiment. Two scenarios with different levels of
demand uncertainty are considered. (a) accuracy in finding
exact leak nodes [%] and (b) average distance of nodes
classified as leak location to actual leak nodes [km].

TABLE III: Results sensitivity-analysis of parameter M

M 10 20 40 60 80 100 120
Accuracy [%] 27 13 7 11 31 15 25

Average distance [km] 2.2 1.7 1.4 1.0 1.1 1.2 1.1
Vardistance [km] 2.0 1.3 0.9 0.7 0.9 0.6 0.6

and 50 minutes longer, respectively.

E. Robustness of the proposed AFD algorithm

Algorithm 1 depends on a number of parameter choices
as inputs, whose values are presented in Table II. Some of
these are hyperparameters as their value controls the Bayesian
learning process of the algorithm. Here we investigate the sen-
sitivity of the AFD’s performance to some of these parameter
choices.

Hyperparameter M : The parameter M denotes the num-
ber of realizations sampled to construct Probability Density
Functions corresponding to the different hypotheses as in
Equation (6). As such it affects how well we estimate the
output distributions at each iteration, and therefore overall
performance of the algorithm. We performed closed-loop
simulations of our AFD algorithm for hyperparameter M ;
for each M in {10, 20, 40, 60, 80, 100, 120} the algorithm’s
performance was tested using different performance metrics.

Table III shows performance for the diagnosis with respect to
M , while the other parameters in Table II were fixed. As an
example, a leak at node 3 is simulated and the algorithm is
tested with 15 closed-loop experiments to assess its average
performance and variances in performance; 15 experiments
were found, a posteriori, to be sufficient to show convergence
in these performance metrics shown in Table III.

From this example analysis in Table III, we can observe the
following regarding the sensitivity of performance to M :

• The Average Distance between the node classified as
leaky and the actual leaky node i∗ drops with increasing
M . After M > 60 it stagnates at ∼ 1km distance for this
network example. The variance Vardistance of this metric
also saturates beyond M = 80.

• When M is increased, the algorithms takes more itera-
tions to reject hypotheses, because the overlap of output
PDFs increases with M . The result is that the algorithm
converges slower with increasing M.

• When M is small (eg. M = 10), the algorithm converges
very fast and its results can therefore be qualified as quick
guesses with outliers far outside the neighborhood of i∗.

• M largely affects the computation speed because the
water distribution network needs to be simulated M
times, at each iteration of the AFD algorithm and for
each hypothesis with nonzero belief. However, it is also
important to emphasize that these network simulations
between hypothesis and control updates are fully par-
allelisable (the for loop in lines 5-8 of Algorithm 1);
network simulations can be done in parallel across the
different hypotheses with nonzero belief and across the
M samples made for each hypothesis.

From similar simulations over many leaks, we can conclude
that the proposed AFD algorithm was found to be robust to this
hyperparameter values since a sufficiently large M value could
be found to ascertain good performance in terms of distance to
actual leak and with low variance of this performance. For the
network example in this manuscript, and as also depicted in
Table III, M = 80 (the value selected for the experiments in
Table II) gives a good trade-off between computational burden
and performance.

Other (hyper)parameters:
As shown in Figure 5, impact of the uncertainty of nodal

demands σd, has a big impact on the performance of the
algorithm as it accounts for the uncertainty within the system
under normal operations, even without a leak. Unlike for M ,
σd has little impact on the algorithm convergence rate but
rather does affect its ability to find the accurate leak location
or proximity to it. As diurnal demand uncertainty becomes
larger, the impact of a leak on the measured output variable ŷ∗

falls within normal operations and therefore its identification
becomes less accurate, and less precise in distance to actual
leak.

Other parameters in Table II did not affect the algorithm
performance, or were controlled design or system parameters.
These are:

• ζ: this hyperparameter can always be set sufficiently close
to zero and could be controlled to have no influence on
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the algorithm’s performance. It has an influence on the
computational speed, since hypotheses that have a belief
lower than zeta get set to zero, after which the belief
vector is renormalized. This is because at each iteration,
the algorithm has to construct the PDF’s of all unrejected
hypotheses. However, this burden is fully parallelisable
and so can be mitigated with parallel computational
resources.

• umax: this parameter comes from regulatory constraints
on system pressure only sets a maximum on the input
vector, such that the pressure in a physical water distri-
bution network does not exceed its maximum allowable
pressure.

• pmax: this parameter is used as a stopping criterion,
whenever the belief of a single hypothesis exceeds pmax,
set to 0.95 here, the algorithm terminates and qualifies
that node to be the leaky one.

• ∆u,max: this parameter limits the stepsize in u in a single
control time step. This often comes from pressure control
valve operation constraints.

• η: this hyperparameter determines how active the al-
gorithm is. When chosen close to zero it the active
algorithm converges to its passive counterpart. So it does
not directly make the algorithm robust but rather controls
it to be more or less active.

• σg: this is a design parameter for the experiments;
• tmax: this is a design parameter for the experiments.

VI. CONCLUSION & FUTURE DIRECTIONS

A tractable active fault isolation method is proposed for
a class of non-linear models subject to faults and applied to
locate leaks in a WDN with uncertain user demands and un-
known leak magnitude. The method relies on the classification
of output observations to a discrete set of hypotheses. The
uncertainties are captured by output PDFs which are used to
iteratively update the posterior probability of each hypothesis
in a Bayesian framework. The AFD algorithm proactively
minimizes the joint overlap between output PDFs by designing
optimal control inputs. A new numerically scalable approach
for synthesising such control inputs on the fly is derived. The
performance is tested for two levels of demand uncertainty
and compared to the PFD counterpart method. Improvements
of the performance metrics accuracy and average distance as
well as diagnosis speed are observed. It can be concluded
that the AFD method is more reliable and faster compared to
its state-of-the-art PFD counterpart. It is further shown that
the AFD algorithm updates the inputs in an economical way,
i.e., the inputs are only adjusted when this is in favor of
the objective. The robustness of the AFD algorithm was also
tested, showing that hyperparameter values could be selected
appropriately to guarantee good performance. The number of
output realisations of the system, sampled to estimate the
output Probability Density Functions corresponding to the
different hypotheses, was shown as main hyperparameter that
affects performance and computational burden. We note that
the number of system simulations required at each iteration,
which grows linearly with number of realisations sampled and

number of hypothesis not yet rejected, is fully parallelisable
and may not be burdensome even for large number of reali-
sations sampled. Future follow-up studies are encouraged to
study optimal sensor and input placement to facilitate AFD.
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