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Abstract. We establish a collection of closed-loop guarantees and propose a scalable, Newton-

type optimization algorithm for distributionally robust model predictive control (DRMPC) applied

to linear systems, zero-mean disturbances, convex constraints, and quadratic costs. Via standard

assumptions for the terminal cost and constraint, we establish distribtionally robust long-term and

stage-wise performance guarantees for the closed-loop system. We further demonstrate that a com-

mon choice of the terminal cost, i.e., as the solution to the discrete-algebraic Riccati equation, renders

the origin input-to-state stable for the closed-loop system. This choice of the terminal cost also en-

sures that the exact long-term performance of the closed-loop system is independent of the choice

of ambiguity set the for DRMPC formulation. Thus, we establish conditions under which DRMPC

does not provide a long-term performance benefit relative to stochastic MPC (SMPC). To solve

the proposed DRMPC optimization problem, we propose a Newton-type algorithm that empirically

achieves superlinear convergence by solving a quadratic program at each iteration and guarantees

the feasibility of each iterate. We demonstrate the implications of the closed-loop guarantees and

the scalability of the proposed algorithm via two examples.

Keywords. Model predictive control, distributionally robust optimization, closed-loop stability,

second-order algorithms

1. Introduction

Model predictive control (MPC) defines an implicit control law via a finite horizon optimal control

problem. This optimal control problem is defined by the stage cost ℓ(x, u), state/input constraints,

and a (discrete-time) dynamical model:

x+ = f(x, u, w)

in which x is the state, u is the manipulated input, and w is the disturbance. The primary difference

between variants of this general MPC formulation (e.g., nominal, robust, and stochastic MPC) is

their approach to modeling the disturbance w in the optimization problem.

In nominal MPC, the optimization problem uses a nominal dynamical model, i.e., w = 0.

Nonetheless, feedback affords nominal MPC a nonzero margin of inherent robustness to distur-

bances [1, 13, 37]. This nonzero margin, however, may be insufficient in certain safety-critical appli-

cations with high uncertainty. Robust MPC (RMPC) and stochastic MPC (SMPC) offer a potential
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means to improve on the inherent robustness of nominal MPC by characterizing the disturbance

and including this information in the optimal control problem.

RMPC describes the disturbance via a set W and requires that the state and input constraints

in the optimization problem are satisfied for all possible realizations of w ∈ W. The objective

function of RMPC considers only the nominal system (w = 0) and these methods are sometimes

called tube-based MPC if the constraint tightening is computed offline [12, 21].

SMPC includes a stochastic description of the disturbance w ∼ P (w is distributed according to

the probability distribution P) and defines the objective function based on the expected value of the

cost function subject to this distribution [5, 8, 17, 23]. This stochastic description of the disturbance

also permits the use of so-called chance constraints. The performance of SMPC therefore depends on

the disturbance distribution P. Analogous to nominal MPC, feedback affords SMPC a small margin

of inherent distributional robustness, i.e., robustness to inaccuracies in the disturbance distribution

[22]. If this distribution is identified from limited data, however, there may be significant distribu-

tional uncertainty. Therefore, a distributionally robust (DR) approach to the SMPC optimization

problem may provide desirable benefits in applications with high uncertainty and limited data.

Advances in distributionally robust optimization (DRO) have inspired a range of distributionally

robust MPC (DRMPC) formulations. In general, these problems take the following form:

min
θ∈Π(x)

max
P∈P

EP[J(x, θ,w)] (1)

in which x is the current state of the system, θ defines the control inputs for the MPC horizon (po-

tentially as parameters in a previously defined feedback law), EP [ · ] denotes the expected value with

respect to the distribution P, and P is the ambiguity set for the distribution P of the disturbances

w. The goal is to select θ to minimize the worst-case expected value of the cost function J( · ) and
satisfy the (chance-)constraints embedded in the set Π(x). Note that SMPC and RMPC are special

cases of DRMPC via specific choices of P.

The key feature of all MPC formulations is that the finite horizon optimal control problem in (1)

is solved with an updated state estimate at each time step, i.e., a rolling horizon approach. With

this approach, DRMPC defines an implicit feedback control law κ(x) and the closed-loop system

x+ = f(x, κ(x), w) (2)

The performance of this controller is ultimately defined by this closed-loop system and the stage

cost. In particular, we often define performance based on the expected average closed-loop stage

cost at time k ≥ 1, i.e.,

Jk(P) := EP

[
1

k

k−1∑
i=0

ℓ
(
ϕ(i), κ(ϕ(i))

)]
in which ϕ(i) is the closed-loop state trajectory defined by (2) and P is the distribution for the

closed-loop disturbance.

In this work, we focus on DRMPC formulations for linear systems with additive disturbances and

quadratic costs. We note that there are also DRMPC formulations that consider parameteric uncer-

tainty [7] and piecewise affine cost functions are also considered in [24]. In both cases, the proposed

DRMPC formulation solves for only a single input trajectory for all realizations of the disturbance.
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To better address the realization of uncertainty in the open-loop trajectory, RMPC/SMPC for-

mulations typically solve for a trajectory of parameterized control policies instead of a single input

trajectory. A common choice of this parameterization is the state-feedback law u = Kx+v in which

K is the fixed feedback gain and the parameter to be optimized is v. Using this parameterization,

several DRMPC formulations were proposed to tighten probabilistic constraints for linear systems

based on different ambiguity sets [9, 16, 19, 34]. In these formulations, however, the cost function is

unaltered from the corresponding SMPC formulation due to the fixed feedback gain in the control

law parameterization.

If the control law parameterization is chosen as a more flexible feedback affine policy (see (8)), first

proposed for MPC formulations in [12], distributional uncertainty in the cost function is nontrivial

to the DRMPC problem. Van Parys et al. [36] propose a tractable method to solve linear quadratic

control problems with unconstrained inputs and a distributionally robust chance constraint on the

state. Coppens and Patrinos [6] consider a disturbance feedback affine parameterization with conic

representable ambiguity sets and demonstrate a tractable reformulation of the DRMPC problem.

Mark and Liu [20] consider a similar formulation with a simplified ambiguity set and also establish

some performance guarantees for the closed-loop system. Taşkesen et al. [35] demonstrate that for

unconstrained linear systems, additive disturbances, and quadratic costs, a linear feedback law is

optimal and can be found via a semidefinite program (SDP). Pan and Faulwasser [28] use polynomial

chaos expansion to approximate and solve the distributionally robust optimal control problem.

While these new formulations are interesting, there remain important questions about the efficacy

of including yet another layer of uncertainty in the MPC problem. For example, what properties

should DRMPC provide to the closed-loop system in (2)? And what conditions are required to

achieve these properties? Due to the rolling horizon nature of DRMPC, distributionally robust

closed-loop properties are not necessarily obtained by simply solving a distributional robust opti-

mization problem. Moreover, the conditions under which DRMPC provides significant performance

benefits relative to SMPC are currently unknown. One of the main contributions of this paper

is to provide greater insight into these questions. The focus, in particular, is on the performance

benefits and guarantees that may be obtained by considering distributional uncertainty in the cost

function (1). Chance constraints are therefore not considered in the proposed DRMPC formulation

or closed-loop analysis.

DRMPC is also limited by practical concerns related to the computational cost of solving DRO

problems. While these DRMPC problems can often be reformulated as convex optimization prob-

lems, in particular SDPs, these optimization problems are often significantly more difficult to solve

relative to the quadratic programs (QPs) that are ubiquitous in nominal, robust, and stochastic

MPC problems.

In this work, we consider a DRMPC formulation for linear dynamical models, additive distur-

bances, convex constraints, and quadratic costs. This DRMPC formulation uses a Gelbrich ambi-

guity set with fixed first moment (zero mean) as a conservative approximation for a Wasserstein

ball of the same radius [10]. The key contributions of this work are (informally) summarized in the

following two categories.
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(1) Closed-loop guarantees:

(1a) Distributionally robust long-term performance. We establish sufficient conditions for

DRMPC, in particular the terminal cost and constraint, such that the closed-loop system sat-

isfies a distributionally robust long-term performance bound (Theorem 3.1), i.e., we define a

function C(P) such that

lim sup
k→∞

Jk(P) ≤ max
P̃∈P

C(P̃) (3)

for all P ∈ P. This bound is distributionally robust because it holds for all distributions P ∈ P.
(1b) Distributionally robust stage-wise performance. If the stage cost is also positive definite,

we establish that the closed-loop system satisfies a distributionally robust stage-wise perfor-

mance bound (Theorem 3.2), i.e., there exists λ ∈ (0, 1) and c, γ > 0 such that

EP
[
ℓ
(
ϕ(k), κ(ϕ(k))

)]
≤ λkc|ϕ(0)|2 +max

P̃∈P
γC(P̃) (4)

for all P ∈ P. Moreover, this result directly implies that the closed-loop system is distribution-

ally robust, mean-squared input-to-state stable (ISS) (Corollary 3.3), i.e., the left-hand side of

(4) becomes EP
[
|ϕ(k)|2

]
.

(1c) Pathwise input-to-state stability. A common approach in MPC design is to select the ter-

minal cost based on the discrete-algebraic riccati equation (DARE) for the unconstrained linear

system. Under these conditions, we establish that the closed-loop system is in fact (pathwise)

ISS (Theorem 3.4), which is a stronger property than mean-squared ISS.

(1d) Exact long-term performance. Given this stronger property of (pathwise) ISS, we can

further establish an exact value for the long-term performance of DRMPC based on this terminal

cost and the closed-loop disturbance distribution (Theorem 3.5), i.e.,

lim
k→∞

Jk(P) = C(P) (5)

for all distributions P supported on W. Of particular interest is the fact that this result is

independent of the choice of ambiguity set P. Thus, the long-term performance of DRMPC,

SMPC, and RMPC are equivalent for this choice of terminal cost (Corollary 3.6).

(2) Scalable algorithm: Newton-type saddle point algorithm. We present a novel optimiza-

tion algorithm tailored to solve the DRMPC problem of interest (Algorithm 1). In contrast to

Frank-Wolfe algorithms previously proposed to solve DRO problems (e.g., [27, 32]), the proposed

algorithm solves a QP at each iteration instead of an LP. The Newton-type algorithm achieves

superlinear (potentially quadratic) convergence in numerical experiments (Figure 1) and reduces

computation time 50% compared to solving the DRMPC problem as an LMI optimization prob-

lem with state-of-the art solvers, i.e., MOSEK (Figure 2).

Organization. In Section 2, we introduce the DRMPC problem formulation and associated DRO

problem. In Section 3, we present the main technical results on closed-loop guarantees. In Section 4,

we provide the technical proofs and supporting lemmata for the main technical results introduced in

Section 3. In Section 5, we discuss the DRO problem of interest and introduce the proposed Newton-

type saddle point algorithm. In Section 6, we study two examples to demonstrate the closed-loop

properties established in Section 3 and the scalability of the proposed algorithm.
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Notation. Let R denote the reals and subscripts/superscripts denote the restrictions/dimensions for

the reals, i.e., Rn
≥0 is the set of nonegative reals with dimension n. The transpose of a square

matrix M ∈ Rn×n is denoted M ′. The trace of a matrix M ∈ Rn×n is denoted tr(M). A positive

(semi)definite matrix M ∈ Rn×n is denoted by M ≻ 0 (M ⪰ 0). For M ⪰ 0, let |x|2M denote the

quadratic form x′Mx. If P is a probability distribution, P(A) denotes the probability of event A.

Let EP [ · ] denote the expected value with respect to P. Let EP [ · | x] denote the expected value

with respect to P and given the value of x. A function α : R≥0 → R≥0 is said to be in class K,
denoted α( · ) ∈ K, if α( · ) is continuous, strictly increasing, and α(0) = 0.

2. Problem Formulation

We consider the linear system with additive disturbances

x+ = Ax+Bu+Gw (6)

in which x ∈ Rn, u ∈ U ⊆ Rm, and w ∈W ⊆ Rq. We also consider the state/input constraints

(x, u) ∈ Z ⊆ Rn × U (7)

and the terminal constraint Xf ⊆ Rn. We consider convex constraints as follows.

Assumption 2.1 (Convex state-action constraints). The sets Z and Xf are closed, convex, and

contain the origin in their interior. The set U is compact and contains the origin. The set W is

compact and contains the origin in its interior.

To ensure constraint satisfaction, we use the following disturbance feedback parameterization [12].

u(i) = v(i) +
i−1∑
j=0

M(i, j)w(j) (8)

in which v(i) ∈ Rm and M(i, j) ∈ Rm×q. With this parameterization and a finite horizon N ≥ 1,

the input sequence u := (u(0), u(1), . . . , u(N − 1)) is defined as

u = Mw + v (9)

in which w := (w(0), w(1), . . . , w(N − 1)) is the disturbance trajectory. Note that the structure of

M must satisfy the following requirements to enforce causality.

(M,v) ∈ Θ :=

{
(M,v)

∣∣∣∣∣ M ∈ RNm×Nq, v ∈ RNm

M(i, j) = 0 ∀j ≥ i

}
The state trajectory x := (x(0), x(1), . . . , x(N)) is therefore

x = Ax+Bv + (BM+G)w (10)

and the constraints for this parameterization are given by

Π(x) :=
⋂

w∈WN

(M,v) ∈ Θ

∣∣∣∣∣∣∣
s.t. (9), (10)

(x(k), u(k)) ∈ Z ∀ k

x(N) ∈ Xf
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That is, if (M,v) ∈ Π(x) then the constraints in (7) are satisfied for all realizations of the disturbance

trajectory w ∈WN . We also define the feasible set

X := {x ∈ Rn | Π(x) ̸= ∅}

To streamline notation, we define

θ := (M,v) ∈ Π(x)

Lemma 2.1 (Policy constraints). If Assumption 2.1 holds, then Π(x) is compact and convex for all

x ∈ X and X is closed and convex.

See Appendix A for the proof. Note that Lemma 2.1 uses a slightly different formulation and

set of assumptions than in [12], and we are therefore able to establish that Π(x) is also bounded.

Moreover, if Z and Xf are polyhedral and W is a polytope, then Π(x) is also a (bounded) polytope

[12].

For the MPC problem, we consider quadratic stage and terminal costs defined as

ℓ(x, u) = x′Qx+ u′Ru Vf (x) = x′Px

with the following standard assumption.

Assumption 2.2 (Positive semidefinite cost). The matrices Q and P are positive semidefinite

(Q,P ⪰ 0) and R is positive definite (R ≻ 0).

For a given input and disturbance trajectory, we have the following deterministic cost function.

Φ(x,u,w) :=
N−1∑
k=0

ℓ(x(k), u(k)) + Vf (x(N))

If we embed the disturbance feedback parameterization in this cost function, we have

J(x, θ,w) := Φ(x,Mw + v,w) = |Hxx+Huv + (HuM+Hw)w|2

with constant matrices Hx, Hu, and Hw.

We make the following standing assumption for the remainder of this paper: The disturbances w

are zero mean, independent in time, and satisfy w ∈W with probability one. LetM(W) denote all

probability distributions of the random variable w with zero mean such that w ∈W with probability

one, i.e.,

M(W) := {P | EP [w] = 0, P (w ∈W) = 1}

For any distribution P ∈M(WN ) of w with covariance Σ := EP [ww′], we have

L(x, θ,Σ) := EP [J(x, θ,w)] = |Hxx+Huv|2 + tr
(
(HuM+Hw)

′(HuM+Hw)Σ
)

(11)

Note that L(x, θ,Σ) is quadratic in θ and linear in Σ. In SMPC, we minimize L(x, θ,Σ) for a

specific covariance Σ and the current state x.

For DRMPC, we instead consider a worst-case version of the SMPC problem in which P takes the

worst value within some ambiguity set. To define this ambiguity set, we first consider the Gelbrich
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ball for the covariance of a single disturbance w ∈ Rq centered at the nominal covariance Σ̂ ∈ Rq×q

with radius ε ≥ 0 defined as

Bε(Σ̂) :=

{
Σ ⪰ 0

∣∣∣∣ tr(Σ̂ + Σ− 2
(
Σ̂1/2ΣΣ̂1/2

)1/2
)
≤ ε2

}
To streamline notation, we define

Bd := Bε(Σ̂), where d :=
(
ε, Σ̂

)
This Gelbrich ball produces the following Gelbrich ambiguity set for the distributions of w:

Pd :=
{
P ∈M(W)

∣∣ EP[ww′] = Σ ∈ Bd

}
We further assume that this Gelbrich ambiguity set is compatible with W, i.e., all covariances

Σ ∈ Bd can be achieved by at least one distribution P ∈ M(W). For example, in the extreme case

that W = {0} then M(W) contains only one distribution with all the weight at zero and the only

reasonable Gelbrich ball to consider is Bd = {0}. Formally, we consider only ambiguity parameters

d ∈ D with

D :=

{
(ε, Σ̂)

∣∣∣∣∣ d = (ε, Σ̂), ε ≥ 0, Σ̂ ⪰ 0,

∀ Σ ∈ Bd ∃ P ∈M(W) s.t. EP[ww′] = Σ

}
Note that D depends on W, but we suppress this dependence to streamline the notation. If d ∈ D,
then for any Σ ∈ Bd there exists P ∈ Pd such that EP [ww′] = Σ.

For the disturbance trajectory w ∈ WN , we define the following ambiguity set that enforces

independence in time:

PN
d :=

N−1∏
k=0

Pd =

{
P ∈M(WN )

∣∣∣∣∣ EP[w(k)w(k)′] ∈ Bd

w(k) are independent

}
We can equivalently represent PN

d as

PN
d =

{
P ∈M(WN )

∣∣∣∣∣ EP [ww′] = Σ ∈ BN
d

w(k) are independent

}
in which the set BN

d is defined as

BN
d :=

Σ =


Σ0 . . . 0
...

. . .
...

0 . . . ΣN−1


∣∣∣∣∣∣∣∣ Σk ∈ Bd ∀k


The worst-case expected cost is defined as

Vd(x, θ) := max
P∈PN

d

EP [J(x, θ,w)] = max
Σ∈BN

d

L(x, θ,Σ) (12)

We note that equality between the two maximization problems in (12) holds because d ∈ D. We

now define the DRO problem for DRMPC as

V 0
d (x) := min

θ∈Π(x)
max
P∈PN

d

EP [J(x, θ,w)] = min
θ∈Π(x)

Vd(x, θ) (13)

and we denote the solution(s) to the outer minimization problem as θ0d(x). Note that SMPC

(d = (0, Σ̂)) and RMPC (d = (0, 0)) are special cases of the optimization problem in (13). Thus,
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all subsequent statements about DRMPC include SMPC and RMPC as special cases of d ∈ D.
Fundamental mathematical properties for this optimization problem (e.g., existence, continuity, and

measurability) are provided in Appendix C.

3. Closed-loop guarantees: Main results

3.1. Preliminaries and closed-loop system

We now define the controller and closed-loop system derived from this DRMPC formulation. The

control law is defined as the first input given by the optimal control law parameterization θ0d(x).

Although θ0d(x) may be set-valued, i.e., there are multiple solutions, we assume that some selection

rule is applied such that the control law κd : X → U is a single-valued function that satisfies

κd(x) ∈
{
v0(0) | (M0,v0) ∈ θ0d(x)

}
With this control law, the closed-loop system is

x+ = Ax+Bκd(x) +Gw (14)

Let ϕd(k;x,w∞) denote the closed-loop state of (14) at time k ≥ 0, given the initial state x ∈ X and

the disturbance trajectory w∞ ∈ W∞, i.e., a disturbance trajectory in the ℓ∞ space of sequences.

Define the infinity norm of the sequence w∞ as ||w∞|| := supk≥0 |w(k)|. Note that the deterministic

value of ϕd(k;x,w∞) for a given realization of w∞ ∈ W∞ is a function of d ∈ D via the DRMPC

control law.

The goal of this section is to demonstrate the the closed-loop system in (14) obtains some desirable

properties for the class of distributions considered in Pd. We consider the set of all distributions for

the infinite sequence of disturbances w∞ such that the disturbances are independent in time and

their marginal distributions are in Pd, i.e., we consider the set

P∞
d :=

∞∏
k=0

Pd =

{
P ∈M(W∞)

∣∣∣∣∣ EP[w(k)w(k)′] ∈ Bd

w(k) are independent

}

An important property for the DRMPC algorithm is robust positive invariance, defined as follows.

Definition 3.1 (Robust positive invariance). A set X ⊆ Rn is robustly positively invariant (RPI)

for the system in (14) if x+ ∈ X for all x ∈ X, w ∈W, and d ∈ D.

Note that this definition is adapted for DRMPC to consider all possible d ∈ D. If we choose

D = {(0, 0)} (RMPC) then this definition reduces to the standard definition of RPI found in, e.g.,

[30, Def 3.7]. Since the control law κd : X → U is defined on only the feasible set X , the first step in

the closed-loop analysis is to establish that this feasible set is RPI. We define the expected average

performance of the closed-loop system for k ≥ 1, given the initial state x ∈ X , ambiguity parameters

d ∈ D, and the distribution P ∈ P∞
d , as follows.

Jk(x, d,P) := EP

[
1

k

k−1∑
i=0

ℓ(ϕd(i;x,w∞), κd

(
ϕd(i;x,w∞))

)]
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3.2. Main results and key technical assumptions

To establish desirable properties for the closed-loop system, we consider the following assumption

for the terminal cost Vf (x) = x′Px and constraint Xf . This assumption is also used in SMPC and

RMPC analysis.

Assumption 3.1 (Terminal cost and constraint). The terminal cost matrix P is chosen such that

there exists Kf ∈ Rm×n satisfying

P −Q−K ′
fRKf ⪰ (A+BKf )

′P (A+BKf ) (15)

Moreover, the terminal set Xf contains the origin in its interior and is chosen such that (x,Kfx) ∈ Z
and (A+BKf )x+Gw ∈ Xf for all x ∈ Xf and w ∈W.

Verifying Assumption 3.1 is tantamount to finding a stabilizing linear control law u = Kfx, i.e.,

A+BKf is Schur stable, that satisfies the required constraints (x,Kfx) ∈ Z within some robustly

positive invariant neighborhood of the origin Xf . With this stabilizing linear control law, we can

then construct an appropriate terminal cost matrix P by, e.g., solving a discrete time Lyapunov

equation. With this assumption, we can guarantee that the feasible set X is RPI and establish the

following distributionally robust long-term performance guarantee. This performance guarantee is a

distributionally robust version of the stochastic performance guarantee typically derived for SMPC

(e.g., [5, 14, 17]).

Theorem 3.1 (DR long-term performance). If Assumptions 2.1, 2.2 and 3.1 hold, then the set X
is RPI for (14) and

lim sup
k→∞

Jk(x, d,P) ≤ max
Σ∈Bd

tr(G′PGΣ) (16)

for all P ∈ P∞
d , d ∈ D, and x ∈ X .

Theorem 3.1, however, applies only to the average performance in the limit as k → ∞. If we

are also interested in the transient or stage-wise behavior of the closed-loop system at a given time

k ≥ 0, one can include the following assumption.

Assumption 3.2 (Positive definite stage cost). The matrix Q is positive definite, i.e., Q ≻ 0.

Moreover, the feasible set X is bounded or Xf = Rn.

By also including Assumption 3.2, we can establish the following distributionally robust stage-wise

performance guarantee.

Theorem 3.2 (DR stage-wise performance). If Assumptions 2.1, 2.2, 3.1 and 3.2 hold, then there

exist λ ∈ (0, 1) and c, γ > 0 such that

EP [ℓ(x(k), u(k))] ≤ λkc|x|2 + γ

(
max
Σ∈Bd

tr(G′PGΣ)

)
(17)

in which x(k) = ϕd(k;x,w∞), u(k) = κd(x(k)) for all P ∈ P∞
d , d ∈ D, x ∈ X , and k ≥ 0.

Theorem 3.2 ensures that the effect of the initial condition x on the closed-loop stage cost vanishes

exponentially fast as k → ∞. There is also a persistent term on the right-hand side of (17) that
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accounts for the continuing effect of the disturbance. We note, however, that the persistent term on

the right-hand side of (17) is a constant that depends on the design of the DRMPC algorithm and

does not depend on the actual distribution P. Since Q ≻ 0, we can also establish a the following

corollary of Theorem 3.2.

Corollary 3.3 (DR, mean-squared ISS). If Assumptions 2.1, 2.2, 3.1 and 3.2 hold, then there exist

λ ∈ (0, 1) and c, γ > 0 such that

EP
[
|ϕd(k;x,w∞)|2

]
≤ λkc|x|2 + γ

(
max
Σ∈Bd

tr(G′PGΣ)

)
(18)

for all P ∈ P∞
d , d ∈ D, x ∈ X , and k ≥ 0.

The ISS-style bound in (18) applies to themean-squared norm of the closed-loop state, a commonly

referenced quantity in stochastic stability analysis. Note that (18) also implies a similar bound for

EP [|ϕd(k;x,w∞)|] via Jensen’s inequality. In MPC formulations, a common strategy is to choose

the terminal cost matrix P according to the discrete algebraic Riccati equation (DARE), i.e., the

cost for the linear-quadratic regulator (LQR) of the unconstrained linear system.1 Specifically, we

now consider the following stronger version of Assumption 3.1.

Assumption 3.3 (DARE terminal cost). The matrix P ≻ 0 satisfies

P = A′PA−A′PB(R+B′PB)−1B′PA+Q (19)

and Kf := −(R+B′PB)B′PA. Moreover, (x,Kfx) ∈ Z and (A+BKf )x+Gw ∈ Xf for all x ∈ Xf

and w ∈W. The terminal set Xf contains the origin in its interior.

With this stronger assumption, we can establish significantly stronger properties for the DRMPC

controller, similar to results for SMPC reported in [11, Lemma 4.18]. In particular, we can establish

that the closed-loop system is (pathwise) ISS.

Theorem 3.4 (Pathwise ISS). Let Assumptions 2.1, 2.2, 3.2 and 3.3 hold. Then, for any d ∈ D,
the origin is (pathwise) ISS for (14), i.e., there exist λ ∈ (0, 1), c > 0, and γ( · ) ∈ K such that

|ϕd(k;x,w∞)| ≤ λkc|x|+ γ(||w∞||) (20)

for all k ≥ 0, w∞ ∈W∞, and x ∈ X .

The property of (pathwise) ISS in Theorem 3.4 is notably stronger than mean-squared ISS in

Corollary 3.3. The key distinction is that the persistent term on the right-hand side of (20) is specific

to a given realization of the disturbances trajectory w∞, while the persistent term in Corollary 3.3

depends only on the DRMPC design. f w∞ = 0 then (20) implies that the origin is exponentially

stable. By contrast, the weaker restriction on the terminal cost in Assumption 3.1 does not ensure

that the closed-loop system is ISS. We demonstrate this fact in Section 6 via a counterexample.

We now consider a class of disturbances that are both independent and identically distributed

(i.i.d.) in time. We also require that arbitrarily small values of these disturbances occur with

1This strategy is in fact optimal in terms of minimizing tr(G′PGΣ). See Appendix B.
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nonzero probability. Specifically, we define the following set of distributions.

Q :=
∞∏
k=0

{P ∈M(W) | ∀ ε > 0, P(|w| ≤ ε) > 0}

Note that Q includes most distributions of interest such as uniform, truncated Gaussian, and even

finite distributions with P(w = 0) > 0. For this class of disturbances, we have the following exact

long-term performance guarantee.

Theorem 3.5 (Exact long-term performance). Let Assumptions 2.1, 2.2, 3.2 and 3.3 hold. Then,

lim
k→∞

Jk(x, d,P) = tr(G′PGΣ) (21)

in which Σ = EP [w(i)w(i)′] for all d ∈ D, x ∈ X , and P ∈ Q.

Note that (21) provides an exact value for the long-term performance based on the distribution

of the disturbance in the closed-loop system. By contrast, (16) provides a conservative and constant

bound based on the design parameter d ∈ D. Furthermore, the values of d ∈ D do not affect the

long-term performance in (21). By recalling that SMPC and RMPC are special cases of DRMPC,

we have the following corollary of Theorem 3.5.

Corollary 3.6 (DRMPC versus SMPC). If Assumptions 2.1, 2.2, 3.2 and 3.3 hold, then the long-

term performance of DRMPC, SMPC (ε = 0), and RMPC (ε = 0, Σ̂ = 0) are equivalent, i.e.,

lim
k→∞

Jk
(
x, (ε, Σ̂),P

)
= lim

k→∞
Jk

(
x, (0, Σ̂),P

)
= lim

k→∞
Jk

(
x, (0, 0),P

)
for all x ∈ X , P ∈ Q, and (ε, Σ̂) ∈ D.

Although selecting P to satisfy (19) is a standard design method in MPC, there are also systems

in which one cannot satisfy the requirements of Assumption 3.3 for a given Q,R ≻ 0. In particular,

if the origin is sufficiently close to (or on) the boundary of Z, then satisfying all of the requirements

in Assumption 3.3 is typically not possible. In chemical process control, for example, processes

often operate near input constraints (e.g., maximum flow rates) to ensure high throughput for the

process. Thus, the terminal cost and constraint are chosen to satisfy only the weaker condition

in Assumption 3.1. In this case, there is a possibility that DRMPC produces superior long-term

performance relative to SMPC and RMPC. We therefore focus on examples in Section 6 that satisfy

Assumption 3.1, but cannot satisfy Assumption 3.3.

Remark 3.1 (Detectable stage cost). We can also weaken Assumption 3.2 to Q ⪰ 0 and (A,Q1/2)

detectable. By defining an input-output-to-state stability (IOSS) Lyapunov function, e.g., [30,

Thm. 2.24 ], we can apply the same approach use for nominal MPC to establish Theorem 3.2 and

Corollary 3.3 for DRMPC under this weaker restriction for Q.

4. Closed-loop guarantees: Technical proofs

This section includes several technical lemmata that serve as a preliminary to prove the main

results of this study.
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4.1. Distributionally robust long-term performance

To establish Theorem 3.1, we begin by establishing that feasible set X is RPI and providing a

distributionally robust expected cost decrease condition.

Lemma 4.1 (DR cost decrease). If Assumptions 2.1, 2.2 and 3.1 hold, then the feasible set X is

RPI for (14) and

EP
[
V 0
d (x

+)
]
≤ V 0

d (x)− ℓ(x, κd(x)) + max
Σ∈Bd

tr(G′PGΣ) (22)

for all P ∈ Pd, d ∈ D, and x ∈ X .

Proof. Choose x(0) ∈ X and d ∈ D. Define (M0,v0) = θ0 ∈ θ0d(x(0)). Consider the subsequent

state x(1) = Ax(0)+Bv0(0)+Gw(0) for some w(0) ∈W. For the state x(1), we choose a candidate

solution

θ̃+(w(0)) =
(
M̃+, ṽ+(w(0))

)
(23)

such that the open-loop input trajectory remains the same as the previous optimal solution, i.e.,

u(k) = v0(k) +
k−1∑
j=0

M0(k, j)w(j) = ṽ+(k) +
k−1∑
j=1

M̃+(k, j)w(j) (24)

for all k ∈ {1, . . . , N − 1} and w ∈ WN . With this choice of parameters, the open-loop state

trajectories x(k) are also the same for all k ∈ {1, . . . , N − 1} and w ∈WN . The candidate solution

is therefore

M̃+ =


0 · · · · · · 0 0

M0(2, 1) 0 · · · 0 0
...

. . .
. . .

...
...

M0(N − 1, 1) · · · M0(N − 1, N − 2) 0 0

M̃+(N, 1) · · · M̃+(N,N − 2) M̃+(N,N − 1) 0



ṽ+(w(0)) =


v0(1) +M0(1, 0)w(0)

v0(2) +M0(2, 0)w(0)
...

v0(N − 1) +M0(N − 1, 0)w(0)

ṽ+(N)


in which that last rows of M̃+ and ṽ+(w(0)) are not yet defined. We define these last rows by the

terminal control law u(N) = Kfx(N). Specifically, we have

Kfx(N) = ṽ+(N) +

N−1∑
i=1

M̃+(N, i)w(i) (25)

By definition of x(N), we have

x(N) = AN−1x(1) +

N−1∑
i=1

AN−1−i
(
Bu(i) +Gw(i)

)
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We then substitute the values of u(i) for the candidate solution in (24) to give

x(N) = AN−1x(1) +

N−1∑
i=1

AN−1−iB
(
v0(i) +M0(i, 0)w(0)

)

+
N−1∑
i=1

AN−1−i

 i−1∑
j=1

BM0(i, j)w(j) +Gw(i)


With some manipulation, we can therefore define

ṽ+(N) = KfA
N−1x(1) +

N−1∑
i=1

KfA
N−1−iB

(
v(i) +M0(i, 0)w(0)

)

M̃+(N, i) = Kf

 N−1∑
j=i+1

AN−1−jBM0(j, i) +AN−1−iG


to satisfy (25). Note that M̃+ is independent of w(0) and ṽ+(w(0)) is an affine function of w(0).

We first establish that this candidate solution is feasible for any w(0) ∈ W and that X is RPI.

Since (M0,v0) ∈ Π(x(0)), then (x(k), u(k)) ∈ Z for all k ∈ {1, . . . , N − 1} and x(N) ∈ Xf for

all w ∈ WN . From Assumption 3.1, we also have that (x(N),Kfx(N)) ∈ Z for all w ∈ WN .

Therefore, (x(N), u(N)) ∈ Z and x(N + 1) = (A + BKf )x(N) + Gw(N) ∈ Xf for all w(N) ∈ W
by Assumption 3.1. Thus, (M̃+, ṽ+) ∈ Π(x(1)). Since Π(x(1)) ̸= ∅, we also know that x(1) ∈ X
for any w(0) ∈ W. Since the choice of x(0) ∈ X and d ∈ D was arbitrary, we have that X is RPI.

Choose w = (w(0), . . . , w(N − 1)) ∈ WN and define w+ = (w(1), . . . , w(N)) with some additional

w(N) ∈W. We have that

J(x(1), θ̃+(w(0)),w+)− J(x(0), θ0,w) = −ℓ(x(0), v0(0))

+ Vf (x(N + 1))− Vf (x(N)) + ℓ(x(N),Kfx(N)) (26)

We define

Σ+ = arg max
Σ∈BN

d

L(x(1), θ̃+(w(0)),Σ) = arg max
Σ∈BN

d

tr
(
(HuM̃

+ +Hw)
′(HuM̃

+ +Hw)Σ
)

and note that Σ+ is independent of w(0) because M̃+ is independent of w(0). We also define the

distribution Q ∈ M(WN ) for w+ such that EQ[(w+)(w+)′] = Σ+. Note that such a Q exists

because d ∈ D. For this distribution, we take the expected value of each side of (26) to give

EQ
[
J(x(1), θ̃+(w(0)),w+)− J(x(0), θ0,w) | w(0)

]
=

EQ [Vf (x(N + 1))− Vf (x(N)) + ℓ(x(N),Kfx(N)) | w(0)]− ℓ(x(0), v0(0))

From Assumption 3.1 and the fact that x(N) ∈ Xf for all w ∈WN , we have that

EQ [Vf (x(N + 1))− Vf (x(N)) + ℓ(x(N),Kfx(N)) | w(0)] ≤ tr(G′PGΣN ) ≤ δd

in which ΣN = EQ[w(N)w(N)′] ∈ Bd and δd := maxΣ∈Bd
tr(G′PGΣ). From the definition of Σ+

and optimality, we have

Vd

(
x(1), θ̃+(w(0))

)
= EQ

[
J(x(1), θ̃+(w(0)),w+) | w(0)

]
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and therefore

Vd

(
x(1), θ̃+(w(0))

)
≤ EQ

[
J(x(0), θ0,w) | w(0)

]
− ℓ(x(0), v0(0)) + δd (27)

Choose any P ∈ Pd for the distribution of w(0). From the definition of P and Q, we have

EP
[
EQ

[
J(x(0), θ0,w) | w(0)

]]
≤ Vd(x(0), θ

0) = V 0
d (x(0))

because θ ∈ θ0d(x(0)). We take the expected value of (27) with respect to P and use this inequality

to give

EP
[
Vd

(
x(1), θ̃+(w(0))

)]
≤ V 0

d (x(0))− ℓ(x(0), v0(0)) + δd (28)

By optimality, we have

V 0
d (x(1)) ≤ Vd

(
x(1), θ̃+(w(0))

)
We combine this inequality with (28) and substitute in x = x(0), x+ = x(1), κd(x) = v0(0) to give

(22). Note that the choices of P ∈ Pd, d ∈ D, and x(0) ∈ X were arbitrary and therefore (22) holds

for all values in these sets. □

The key difference between Lemma 4.1 and the typical expected cost decrease condition for SMPC

is that this inequality holds for all distributions P ∈ Pd, i.e., the inequality is distributionally robust.

We can then apply Lemma 4.1 to prove Theorem 3.1.

Proof of Theorem 3.1. Choose x ∈ X , d ∈ D, and P ∈ P∞
d . Define x(i) = ϕd(i;x,w∞) and

u(i) = κd(x(i)). From Lemma 4.1, we have that X is RPI and

EQ
[
V 0
d (x(i+ 1)) | x(i)

]
≤ V 0

d (x(i))− ℓ(x(i), u(i)) + max
Σ∈Bd

tr(G′PGΣ) (29)

for all Q ∈ Pd. Let δd := maxΣ∈Bd
tr(G′PGΣ) to streamline notation. From the law of total

expectation and (29), we have

EP [ℓ(x(i), u(i))] ≤ EP
[
V 0
d (x(i))

]
− EP

[
V 0
d (x(i+ 1))

]
+ δd

We sum both sides of this inequality from i = 0 to i = k − 1 and divide by k ≥ 1 to give

Jk(x, d,P) ≤
EP

[
V 0
d (x(0))

]
− EP

[
V 0
d (x(k))

]
k

+ δd

Note that V 0
d (x(k)) ≥ 0. We take the lim sup as k →∞ of both sides of the inequality and substitute

in the definition of δd to give (16). □

4.2. Distributionally robust stage-wise performance

To establish Theorem 3.2, we first establish the following upper bound for the optimal cost

function.

Lemma 4.2 (Upper bound). If Assumptions 2.1, 2.2, 3.1 and 3.2 hold, then

V 0
d (x) ≤ c2|x|2 +N

(
max
Σ∈Bd

tr(G′PGΣ)

)
(30)

for all d ∈ D and x ∈ X .



DISTRIBUTIONALLY ROBUST MODEL PREDICTIVE CONTROL 15

Proof. For any x ∈ Xf , we define the control law as u = Kfx from Assumption 3.1. Therefore,

u = Kfx, x = (I −BKf )
−1(Ax+Gw)

in which Kf :=
[
IN ⊗Kf 0

]
. Note that the inverse (I − BKf )

−1 exists because BKf is nilpo-

tent (lower triangular with zeros along the diagonal). We represent this control law as θf (x) =

(Mf ,vf (x)) so that

vf (x) := Kf (I −BKf )
−1Ax Mf := Kf (I −BKf )

−1G (31)

We have from Assumption 3.1 that this control law ensures that (x(k), u(k)) ∈ Z and x(k+1) ∈ Xf

for all k ∈ {0, . . . , N − 1}. Therefore θf (x) ∈ Π(x) for all x ∈ Xf and d ∈ D. Choose any x ∈ Xf

and d ∈ D. Choose any Σ ∈ BN
d and corresponding P ∈ PN

d such that EP [ww′] = Σ. From

Assumption 3.1, we have that

EP [Vf (x(k + 1))− Vf (x(k)) + ℓ(x(k),Kfx(k))] ≤ tr(G′PGΣk) ≤ δd

in which x(k + 1) = (A + BKf )x(k) + Gw(k) for all k ∈ {0, 1, . . . , N − 1}, x(0) = x, and δd :=

maxΣ∈Bd
tr(G′PGΣ). We sum both sides of this inequality from k = 0 to k = N − 1 and rearrange

to give

L(x, θf (x),Σ) ≤ Vf (x(0)) +Nδd

for all Σ ∈ BN
d . Therefore,

V 0
d (x) ≤ Vd(x, θf (x)) ≤ Vf (x) +Nδd ≤ λ̄P |x|2 +Nδd

in which λ̄P is the maximum eigenvalue of P for all x ∈ Xf . If Xf = Rn, the proof is complete

because X ⊆ Rn. Otherwise, we use the fact that X is bounded to extend this bound to all x ∈ X .
Define the function

F (x) = sup
{
V 0
d (x)−Nδd

∣∣ d ∈ D}
Since W is bounded, D is bounded as well (Lemma A.1). Therefore, F (x) is finite for all x ∈ X .
We further define

r := sup

{
F (x)

|x|2

∣∣∣∣ x ∈ X \ Xf

}
Note that since Xf contains the origin in its interior and F (x) is finite for all x ∈ X , r exists and is

finite. Therefore,

V 0(x) ≤ F (x) +Nd ≤ r|x|2 +Nδd

for all x ∈ X \ Xf . We define c2 := max{r, λ̄P } and substitute in the definition of δd to complete

the proof. □

With this upper bound, we prove Theorem 3.2 by using V 0
d (x) as a Lyapunov-like function.

Proof of Theorem 3.2. Since Q ≻ 0, there exists c1 > 0 such that

c1|x|2 ≤ ℓ(x, κd(x)) ≤ V 0
d (x)

for all x ∈ X . Let δd = maxΣ∈Bd
tr(G′PGΣ). From (30), we have

−|x|2 ≤ −(1/c2)V 0
d (x) + (Nδd/c2)
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We combine this inequality and the lower bound for ℓ(x, κd(x)) with (22) to give

EQ
[
V 0
d (x

+) | x
]
≤ λV 0

d (x) + (1 +Nc1/c2)δd (32)

in which λ = (1− c1/c2) ∈ (0, 1) and x+ = Ax+Bκd(x) +Gw for all Q ∈ Pd, d ∈ D, and x ∈ X .

Choose x ∈ X , d ∈ D, and P ∈ P∞
d . Define x(k) = ϕd(k;x,w∞) and u(k) = κd(x(k)). Note

that because X is RPI for the closed-loop system (Lemma 4.1), x(k) ∈ X for all x ∈ X , d ∈ D,
w∞ ∈W∞, and k ≥ 0. Therefore, from (32) we have

EQ
[
V 0
d (x(k + 1)) | x(k)

]
≤ λV 0

d (x(k)) + (1 +Nc1/c2)δd (33)

for all Q ∈ Pd. We take the expected value of (33) with respect to P and the corresponding Q to

give

EP
[
V 0
d (x(k + 1))

]
≤ λEP

[
V 0
d (x(k))

]
+ (1 +Nc1/c2)δd (34)

By iterating (34), we have

EP
[
V 0
d (x(k))

]
≤ λkV 0

d (x(0)) +
1 +Nc1/c2

1− λ
δd

Substitute in the lower and upper bounds for V 0
d ( · ), rearrange, and define c := c2/c1 and γ :=

N + (c−1
1 +Nc−1

2 )/(1− λ) to give (17). □

4.3. Pathwise input-to-state stability

To establish Theorem 3.4, we first establish the following interesting property for the DRMPC

control law within the terminal region Xf , similar to [11, Lemma 4.18].

Lemma 4.3 (Terminal control law). If Assumptions 2.1, 2.2, 3.2 and 3.3 hold, then

κd(x) := Kfx

for all x ∈ Xf and d ∈ D. Moreover, Xf is RPI for the closed-loop system in (14).

Proof. From the definition of P and Kf in Assumption 3.3 and any P ∈M(WN ), we have

EP [Φ(x,u,w)] = |x|2P + EP
[
|u−Kfx|2S

]
+ EP

[
|w|2P

]
in which Kf :=

[
IN ⊗Kf 0

]
, S := IN ⊗ (R + B′PB) P := IN ⊗ (G′PG) (see [11, eq. (4.46)]).

Using the control law parameterization θ = (M,v), we have

EP [J(x, θ,w)] = |x|2P + |v −KfAx−KfBv|2S (35)

+ EP
[
|(M−KfBM−KfG)w|2S

]
+ EP

[
|w|2P

]
(36)

We have that the optimal solution is bounded by

min
θ∈Π(x)

max
P∈PN

d

EP [J(x, θ,w)] ≥ |x|2P + max
Σ∈BN

d

tr
(
PΣ

)
(37)

for all x ∈ X . This lower bound is obtained by the candidate solution

vc(x) := (I −KfB)−1KfAx Mc := (I −KfB)−1KfG

and θc(x) = (Mc,vc(x)) for any P ∈ PN
d . Note that the inverse (I −KfB)−1 exists because KfB

is nilpotent (lower triangular with zeros along the diagonal). By application of the matrix inversion



DISTRIBUTIONALLY ROBUST MODEL PREDICTIVE CONTROL 17

lemma, we have that θc(x) = θf (x) in (31). Therefore θc(x) = θf (x) ∈ Π(x) for all x ∈ Xf .

Moreover, the solution vc(x) is unique because S ≻ 0. Therefore,

κd(x) = v0(0;x) = vc(0;x) = Kfx

is the unique control law for all x ∈ Xf . Since κd(x) = Kfx for all x ∈ Xf and Xf is RPI for the

system x+ = (A+BKf )x+Gw, we have that Xf is also RPI for (14). □

Lemma 4.3 ensures that within the terminal region, the DRMPC control law is equivalent to the

LQR control law defined by the DARE in Assumption 3.3. Moreover, this controller is the same

regardless of the choice of d ∈ D. This control law also renders the terminal set RPI. Therefore,

once the state of the system reaches the terminal region, there is no difference between the control

laws for DRMPC, SMPC, RMPC, and LQR. With this result, we can now prove Theorem 3.4.

Proof of Theorem 3.4. Choose d ∈ D and x ∈ X . We define (M0,v0) = θ0 ∈ θ0d(x) and the

corresponding candidate solution (ṽ+(w), M̃+) = θ̃+(w) defined in (23). Recall that ṽ+(w) is an

affine function of w, i.e.,

ṽ+(w) = c+ Zw

in which c ∈ RNm and Z ∈ RNm×q are fixed quantities for a given θ0. Let

x̂+ = Ax+Bκd(x) = Ax+Bv0(0)

From the Proof of Lemma 4.1, we have that

EQ
[
Vd(x̂

+ +Gw, θ̃+(w))
]
≤ V 0

d (x)− ℓ(x, v(0)) + δd (38)

for all Q ∈ Pd in which δd := maxΣ∈Bd
tr(G′PGΣ). Define

Σ+ := arg max
Σ∈BN

d

L(x̂+ +Gw, θ̃+(w),Σ) = arg max
Σ∈BN

d

tr
(
(HuM̃

+ +Hw)
′(HuM̃

+ +Hw)Σ
)

and note that Σ+ is independent of w because M̃+ is independent of w. We also define P ∈ PN
d

such that Σ+ = EP [(w+)(w+)′]. By applying (35), we have

L(x̂+, θ̃+(0), Σ̃
+
)− L(x̂+ +Gw, θ̃+(w), Σ̃

+
) = |x̂+|2P + |c−KfAx̂+ −KfBc|2S

− |x̂+ +Gw|2P − |c+ Zw −KfA(x̂+ +Gw)−KfB(c+ Zw)|2S (39)

Note that the terms involving P and M̃+ in (35) do not change with w and therefore vanish in this

difference. By the definition of Σ+ and optimality, we have that

V 0
d (x̂

+)− Vd(x̂
+ +Gw, θ̃+(w)) ≤ L(x̂+, θ̃+(0), Σ̃

+
)− L(x̂+ +Gw, θ̃+(w), Σ̃

+
) (40)

We now define

Σ := arg max
Σ∈Bd

tr(G′PGΣ)

and choose Q ∈ Pd such that EQ[ww
′] = Σ. We therefore combine (39), (40), and take the expected

value with respect to Q to give

V 0
d (x̂

+)− EQ
[
Vd(x̂

+ +Gw, θ̃+(w))
]
= −tr(G′PGΣ)− EQ

[
|Zw −KfAGw −KfBZw|2S

]
≤ −δd



DISTRIBUTIONALLY ROBUST MODEL PREDICTIVE CONTROL 18

We combine this inequality with (38) to give

V 0
d (x̂

+) ≤ V 0
d (x)− ℓ(x, v(0)) ≤ V 0

d (x)− c3|x|2 (41)

in which c3 > 0 because Q ≻ 0. Note that the choice of x ∈ X was arbitrary and therefore this

inequality holds for all x ∈ X . Next, we define the Lyapunov function

H(x) := V 0
d (x)− max

Σ∈BN
d

tr(PΣ)

in which P := IN ⊗ (G′PG) from (37). Note that H : X → R≥0 is convex because V 0
d (x) is

convex (Danskin’s Theorem). From (41), (37), and Lemma 4.2, there exist c1, c2, c3 > 0 such that

c1|x|2 ≤ H(x) ≤ c2|x|2 and

H(x̂+) ≤ H(x)− c3|x|2

Since H(x) is a convex Lyapunov function, x+ = x̂+ +Gw, and X is compact with the origin in its

interior, we have from [11, Prop. 4.13] that (14) is ISS for any d ∈ D. □

4.4. Exact long-term performance

For the class of disturbances in Q, Munoz-Carpintero and Cannon [25] established that ISS

systems converge to the minimal RPI set for the system with probability one. By Assumption 3.3,

the terminal set must contain the minimal RPI set for the system. Thus, we have the following

result adapted from [25, Thm. 5].

Lemma 4.4 (Convergence to terminal set). If Assumptions 2.1, 2.2, 3.2 and 3.3 hold, then for all

P ∈ Q, d ∈ D, and x ∈ X , there exists p ∈ [0,∞) such that

∞∑
k=0

P
(
ϕd(k;x,w∞) /∈ Xf

)
≤ p

From Lemma 4.3 and the Borel-Cantelli lemma, Lemma 4.4 implies that for all x ∈ X , we have

P

(
lim
k→∞

ϕ(k;x,w∞) ∈ Xf

)
= 1

In other words, the state of the closed-loop system converges to the terminal set Xf with probability

one. Once in Xf , the closed-loop state remains in this terminal set by applying the fixed control

law Kfx for all subsequent time step (Lemma 4.3). The long-term performance of the closed-loop

system is therefore determined by the control law Kf and, by definition, the matrix P from the

DARE in (19). We now prove Theorem 3.5 by formalizing these arguments.

Proof of Theorem 3.5. Choose d ∈ D, x ∈ X , and P ∈ Q. Define x(i) = ϕd(i;x,w∞), u(i) =

κd(x(i)), Σ = EP [w(i)w(i)′], and

ζ(i) := |x(i+ 1)|2P − |x(i)|2P + ℓ(x(i), u(i))− |Gw(i)|2P

Recall that x(i) ∈ X for all i ≥ 0 because X is RPI. From Lemma 4.3, we have that if x(i) ∈ Xf ,

u(i) = Kfx(i) and therefore EP [ζ(i)] = 0. Therefore, we have

EP [ζ(i)] = EP [ζ(i) | x(i) /∈ Xf ]P (x(i) /∈ Xf )
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Since X , U, and W are bounded, there exists η ≥ 0 such that |ζ(i)| ≤ η. Thus,

−ηP (x(i) /∈ Xf ) ≤ EP [ζ(i)] ≤ ηP (x(i) /∈ Xf )

By definition

EP [ℓ(x(i), u(i))] = EP
[
|x(i)|2P − |x(i+ 1)|2P

]
+ EP [ζ(i)] + tr(G′PGΣ)

We sum both sides from i = 0 to k − 1, divide by k ≥ 1, and rearrange to give

Jk(x, d,P) =
|x(0)|2P − EP

[
|x(k)|2P

]
k

+
1

k

k−1∑
i=0

EP [ζ(i)] + tr(G′PGΣ) (42)

We apply the upper bound on EP [ζ(i)] in (42) and note that |x(k)|2P ≥ 0 to give

Jk(x, d,P) ≤
|x(0)|2P

k
+

η

k

k−1∑
i=0

P (x(i) /∈ Xf ) + tr(G′PGΣ)

From Lemma 4.4, there exists p ∈ [0,∞) such that

Jk(x, d,P) ≤
|x(0)|2P + ηp

k
+ tr(G′PGΣ)

Therefore,

lim sup
k→∞

Jk(x, d,P) ≤ tr(G′PGΣ) (43)

We apply the lower bound for EP [ζ(i)] in (42) and note that |x(0)|2P ≥ 0 to give

Jk(x, d,P) ≥
−EP

[
|x(k)|2P

]
k

− η

k

k−1∑
i=0

P (x(i) /∈ Xf ) + tr(G′PGΣ)

From Lemma 4.4, there exists p ∈ [0,∞) such that

Jk(x, d,P) ≥
−EP

[
|x(k)|2P

]
− ηp

k
+ tr(G′PGΣ)

Note that EP
[
|x(k)|2P

]
is bounded from Corollary 3.3 and therefore

lim inf
k→∞

Jk(x, d,P) ≥ tr(G′PGΣ) (44)

We combine (43) and (44) to give

lim
k→∞

Jk(x, d,P) = tr(G′PGΣ)

Since the choice of d ∈ D, P ∈ Q, and x ∈ X was arbitrary, this equality holds for all d ∈ D, P ∈ Q,
and x ∈ X . □

5. Scalable algorithms

We assume for the subsequent discussion that ε > 0 and θ is in a vectorized form, i.e., M is

converted to a vector. We first present an exact reformulation of the DRO problem in (13). We

then introduce the Frank-Wolfe algorithm and subsequently the proposed Newton-type saddle point

algorithm.
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5.1. Exact reformulation

Using existing results in [26, Prop. 2.8] and [15, Thm. 16], we provide an exact reformulation

of (13) via linear matrix inequalities (LMIs) to serve as a baseline for the subsequently proposed

Frank-Wolfe and Newton-type algorithms.

Proposition 5.1 (Exact LMI reformulation). Let Assumptions 2.1 and 2.2 hold and x ∈ X . For

any ε > 0 and Σ̂ ⪰ 0, the min-max problem in (13) is equivalent to the optimization problem

inf
M,v,Z,Y,γ

|Hxx+Huv|2 +
N−1∑
k=0

(cγk + tr(Yk)) (45)

s.t. γkI ⪰ Zk ∀ k ∈ {0, . . . , N − 1}[
Yk γkΣ̂

1/2

γkΣ̂
1/2 γkI − Zk

]
⪰ 0 ∀ k ∈ {0, . . . , N − 1}[

Z (HuM+Hw)
′

(HuM+Hw) I

]
⪰ 0

(M,v) ∈ Π(x)

in which c = ε2 − tr(Σ̂) and Zk ∈ Rq×q is the kth block diagonal of Z.

Proof of Proposition 5.1. Define Z̃(θ) = (HuM+Hw)
′(HuM+Hw) ⪰ 0. We have that

Vd(x, θ) = max
Σ∈BN

d

tr
(
Z̃(θ)Σ

)
= min

Z⪰Z̃(θ)
max
Σ∈BN

d

tr
(
ZΣ

)
From the structure of Σ ∈ BN

d , we have

max
Σ∈BN

d

tr
(
ZΣ

)
=

N−1∑
k=0

max
Σk∈Bd

tr
(
ZkΣk

)
(46)

in which Zk ∈ Rq×q is the k-th block diagonal of Z. From [15, Thm. 16] and [26, Prop. 2.8], we can

write the dual of maxΣk∈Bd
tr(ZkΣk) via an LMI. Substituting this dual formulation into (46) and

reformulating Z ⪰ (HuM+Hw)
′(HuM+Hw) via Schur complement gives (45). □

If Z, Xf , and W are polytopes, then this reformulation can be solved as an LMI optimization

problem with standard software such as MOSEK [2]. While this LMI optimization problem can

be solved quickly and reliably for small problems, larger problems are unfortunately not practically

scalable compared to the usual QPs encountered in linear MPC formulations.

Remark 5.1 (Saddle point). Another interesting fact is that the min-max problem (13) enjoys a

non-empty and compact saddle point (θ∗,Σ∗) for any x ∈ X and d ∈ D. This fact is a classical

result for the convex-concave function L(x, · ) ensured by the convexity and compactness of Π(x)

(Lemma 2.1) and BN
d [27, Lemma A.6], see for instance [3, Prop. 5.5.7].
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5.2. Frank-Wolfe

Frank-Wolfe algorithms that exploit the structure of the min-max program in (13) have shown

promising results for similar DRO problems (e.g., [27, 32]). Thus, we propose such an algorithm

here based on these previous algorithms. We subsequently assume that Σ̂ ≻ 0. For fixed x ∈ X and

d ∈ D, we define the objective function

f(θ) := max
Σ∈BN

d

Lx(θ,Σ) (47)

in which Lx( · ) = L(x, · ). Note that the inner maximization problem in (47) is linear in Σ.

Furthermore, the structure of BN
d allows us to rewrite (47) as

Lx(θ,0) +
N−1∑
k=0

max
Σk∈Bd

tr
(
Zk(θ)Σk

)
(48)

in which Zk(θ) ∈ Rq×q is the kth block diagonal of (HuM+Hw)
′(HuM+Hw). Each maximization

in (48) can be solved in finite time using a bisection algorithm detailed in Nguyen et al. [27, Alg. 2,

Thm. 6.4]. With this bisection algorithm, we can also compute the optimal solution

Σ∗
k(θ) := arg max

Σk∈Bd

tr
(
Zk(θ)Σk

)
(49)

and construct the matrix

Σ∗(θ) =


Σ∗
0(θ) . . . 0
...

. . .
...

0 . . . Σ∗
N−1(θ)


Thus, we subsequently treat f( · ) as the function of interest and consider only the outer mini-

mization problem, i.e., the DRO problem in (13) is now

f∗ := min
θ∈Π

f(θ) (50)

in which Π = Π(x) is convex. Since the solution to (49) is unique for Σ̂ ≻ 0 [27, Prop. A.2], we

have from Danskin’s theorem that f(θ) is convex and

∇f(θ) = ∇θLx(θ,Σ
0(θ))

i.e., the gradient of f( · ) at θ is given by the gradient of Lx( · ) with respect to θ, evaluated at

(θ,Σ0(θ)). Thus, we can define the gradient of f( · ) as a quasi-analytic expression and the first-

order oracle as

F1(θ) := argmin
ϑ∈Π
∇f(θ)′ϑ (51)

If the set Π is a polytope, the oracle is evaluated by solving a linear program (LP). The solution to

this minimization problem provides the search direction for the Frank-Wolfe algorithm and leads to

the following iterative update rule.

θt+1 = θt + ηt (F1(θt)− θt) (52)
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in which ηt ∈ (0, 1] is the step-size, chosen according to some (adaptive) rule that is subsequently

introduced. The adaptive Frank-Wolfe algorithm uses the stepsize

ηt(β) = min

{
1,

(θt − F1(θt))
′∇f(θt)

β|θt − F1(θt)|2

}
(53)

in which β is the global smoothness parameter for f( · ), i.e., β > 0 satisfies

|∇f(θ1)−∇f(θ2)| ≤ β|θ1 − θ2| ∀ θ1, θ2 ∈ Π

Note that we do not verify that f(θ) defined in (47) is in fact β-smooth. To improve the convergence

of the Frank-Wolfe algorithm, one can also replace the global smoothness parameter β in (53) with

an adaptive smoothness parameter βt [29]. We require this βt to satisfy the inequality

f
(
θt + ηt(βt)

(
F1(θt)− θt

))
≤ f(θt) + ηt(βt)

(
F1(θt)− θt

)′∇f(θt) + 1

2
βtηt(βt)

2|F1(θt)− θt|2 (54)

in which ηt(βt) is the adaptive stepsize calculation in (53). The value of βt at each iteration is

chosen according to a backtracking line search algorithm. Specifically, βt is chosen as the smallest

element of the discrete search space (βt−1/ζ) · {1, τ, τ2, τ3, . . . } that satisfies (54), in which ζ, τ > 1

are prescribed line search parameters.

Unfortunately, Frank-Wolfe algorithms for MPC optimization problems are often limited to sub-

linear convergence rates because the constraint set Π is not strongly convex (e.g., polytope) and

the solution to the optimization problem is frequently on the boundary of Π. We observe this same

limitation for DRMPC as demonstrated in Figure 1.

5.3. Newton-type saddle point algorithm

We now introduce an algorithm based on a new search direction (i.e., oracle) that solves the

following optimization problem over the outer variable for a fixed Σ:

F2(θ) := argmin
ϑ∈Π

Lx(ϑ,Σ
0(θ)) (55)

Recall that our objective function Lx defined in (11) is a quadratic function in the first argument.

Hence, when Π is a polytope, the oracle (55) is a QP whereas the Frank-Wolfe oracle (51) is LP.

We also note that the QP solved in F2(θ) is equivalent to solving an SMPC problem for the same

system with a fixed value of Σ. Using the new QP oracle (55), we follow the Frank-Wolfe update

rule (52), i.e.,

θt+1 = θt + ηt (F2(θ)− θt) (56)

where the stepsize ηt is chosen according to the same step-size rules introduced for the Frank-Wolfe

algorithm.

Remark 5.2 (Newton-type saddle point computation). The following provides further details on

our view regarding the proposed algorithm:

• Newton update rule: The proposed second-order oracle (55) coincides with the Newton step

for the function f defined in (47) provided that the Hessian ∇2f(θ) = ∇2
θθLx(θ,Σ

0(θ)) exists.

Namely, the oracle (55) optimizes the quadratic function

Lx(ϑ,Σ
0(θ)) = f(θ) +∇f(θ)′(ϑ− θ) + (ϑ− θ)′∇2f(θ)(ϑ− θ)
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which locally approximates (47) at a given θ.

• Saddle-point computation: While θt converges to the outer minimization function (47), the

condition Σ̂ ≻ 0 ensures that the inner maximizer Σ0(θt) is indeed unique [27, Prop. A.2]. It

is a classical result in the saddle point literature that this property ensures that Σt = Σ0(θt)

also converges to the optimizer of the dual problem [3, Sec. 5.5.2].

Algorithm 1: Newton-type saddle point algorithm

Input : Initial θ0 ∈ Π, smoothness parameter β−1 > 0, line search parameters ζ, τ > 1

set t← 0

while stopping criterion not met do

solve θ̃t = F2(θt)

set dt ← θ̃t − θt and gt ← −d′t∇f(θt)
set βt ← βt−1/ζ and ηt ← min{1, gt/(βt|dt|2)}
while f(θt + ηdt) > f(θt)− ηtgt + (η2t βt/2)|dt|2 do

set βt ← τβt and ηt ← min{1, gt/(βt|dt|2)}
set θt+1 ← θt + ηtdt

set t← t+ 1
Output: θt

We summarize the description of the proposed algorithm in pseudocode Algorithm 1. We close this

section by noting three practical advantages of the proposed algorithm compared to solving the LMI

reformulation (45):

(i) Per-iteration complexity and existing QP solvers: When Π is a polytope, each iteration of (56)

involves only a QP. Therefore, no additional software is required to implement this algorithm

relative to other versions of linear MPC, which already require the solution to a QP. There are

also many state-of-the-art open-source solvers available for QPs, such as OSQP [33].

(ii) Anytime algorithm: Each iteration of (56) is guaranteed to be a feasible solution of the opti-

mization problem, i.e., θt ∈ Π for all t ≥ 0. Thus, (56) is the so-called “anytime algorithm” in

the sense that it can be terminated anytime after the first iteration.

(iii) Speedup by warm-start: The algorithm can benefit from a “warm-start”, i.e., an initial value

of θ that is feasible (θ ∈ Π) and potentially near the optimal solution. For MPC applications

in particular, a natural warm-start is the solution to the optimization problem at the previous

time by applying the terminal control law in Assumption 3.1, e.g., θ̃+ in (23).

6. Numerical Examples

We present two examples. The first is a small-scale (2 state) example that is used to demonstrate

the closed-loop performance guarantees presented in Section 3 and investigate the computational

performance of the proposed Newton-type algorithm. The second is a large-scale (20 state) example,

based on the Shell oil fractionator case study in Maciejowski [18, s. 9.1], that is used to demonstrate
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the scalability of the proposed Newton-type algorithm. All optimization problems (LP, QP, or LMI)

are solved with MOSEK with default paramter settings [2].

6.1. Small-scale example

We consider a two-state, two-input system in which

A =

[
0.9 0

0.2 0.8

]
B = G =

[
1 0

0 1

]
We define the input constraints U := {u ∈ R2 | |u|∞ ≤ 1, u2 ≥ 0} and note that the origin is on

the boundary of U. We consider the disturbance set W := {w ∈ R2 | |w|∞ ≤ 1} with the nominal

covariance Σ̂ := 0.01I2 and ambiguity an radius ε = 0.1. For this system, we consider the cost

matrices

Q =

[
0.1 0

0 10

]
R =

[
10 0

0 0.1

]
and define P ≻ 0 as the solution to the the Lyapunov equation for this system with u = 0, i.e.,

P ≻ 0 that satisfies A′PA−P = −Q. This DRMPC problem formulation satisfies Assumptions 2.1,

2.2, 3.1 and 3.2, but not Assumption 3.3.

Computational performance

We solve the DRMPC problem for this formulation using three different methods: 1) the LMI

optimization problem in (45) with MOSEK, 2) the Frank-Wolfe (FW) algorithm in (52), and 3) the

proposed Newton-type (NT) saddle point algorithm in Algorithm 1. To compare these algorithms,

we use a fixed initial condition of x0 =
[
1 1

]′
and horizon length N = 5. We plot the convergence

rate in terms of suboptimality gap (f(θt) − f∗) for the FW and NT algorithms in Figure 1. For

this suboptimality gap, we determine f∗ via the LMI optimization problem in (45). Therefore,

convergence in the suboptimality gap implies that the Frank-Wolfe/Newton-type algorithm converge

to the same optimal cost as the exact LMI reformulation. For both algorithms, we consider the

adaptive and fully adaptive step-size rules. We terminate when the duality gap is less than 10−6 or

we exceed 103 iterations.

First, we discuss the per-iteration convergence rate shown in the top of Figure 1. For the FW

algorithm, the convergence rate is sublinear for both step-size rules.2 Moreover, the suboptimality

gaps of the FW algorithms remains significantly larger than the specified tolerance of 10−6 after

103 iterations. By contrast, the NT algorithm appears to obtain a superlinear (perhaps quadratic)

convergence rate near the optimal solution. This behavior is also observed for all other values of the

initial condition and horizon length investigated. In fact, the fully adaptive NT algorithm typically

converges in fewer than 5 iterations. The significant improvement in per-iteration convergence

rate ensures that the NT algorithm is also significantly faster than the FW algorithm in terms of

computation time, as shown in the right side of Figure 1.

In Figure 2, we compare the computation times required to solve the small scale DRMPC problem

for difference horizon lengths N via 1) the LMI optimization problem in (45) with MOSEK and 2)

2Even for RMPC, i.e., d = (0, 0), we observe only sublinear convergence for the FW algorithm.



DISTRIBUTIONALLY ROBUST MODEL PREDICTIVE CONTROL 25

0 10 20 30 40 50

iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

101

f
(θ
t
)
−
f
∗

FW Adaptive

FW Fully Adaptive

NT Adaptive

NT Fully Adaptive

0 1 2 3 4

computation time (s)

f
(θ
t
)
−
f
∗

Figure 1. Convergence of Frank-Wolfe (FW) and Newton-type (NT) algorithm for

the DRMPC problem (N = 10) in terms of suboptimality gap as a function of

iteration (top) and computation time (bottom).
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Figure 2. Comparison of computation times for the fully adaptive Newton-type

(NT) algorithm and LMI formulation solved by MOSEK for the horizon N .

the NT algorithm. For N ≤ 5, and therefore fewer variables and constraints, solving the DRMPC

problem as an LMI optimization problem is faster. For N > 5, however, solving the DRMPC

problem as an LMI optimization problem becomes notably slower than using the NT algorithm. For

N ≥ 15, the computation time to solve the DRMPC problem as an LMI optimization problem is

typically more than twice the computation time required for the Newton-type algorithm.

Closed-loop Performance

We initialize the state at x(0) =
[
1 1

]′
and consider a fixed horizon of N = 10. In the following

discussion, we consider three different controllers: DRMPC with d = (ε, Σ̂), SMPC with d = (0, Σ̂),

and RMPC with d = (0, 0).
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Figure 3. Closed-loop trajectories with zero disturbance, i.e., x(k) = ϕd(k;x,0),

for the first element of the state, denoted x1(k).

To demonstrate the differences between the control laws for DRMPC, SMPC, and RMPC, we

plot the first element of closed-loop state trajectory assuming the disturbance is zero, i.e., w = 0,

in Figure 3. RMPC drives the closed-loop state to the origin. SMPC, however, does not drive

the closed-loop state to the origin even though the disturbance is zero. Since u2 ≥ 0, the SMPC

controller keeps x1 slightly below the origin to mitigate the effect of positive values for w2. The

amount of offset is determined by the covariance of the disturbance. Since DRMPC considers a

worst-case covariance for the disturbances, the offset is larger.

Thus, for ||w∞|| = 0, the closed-loop state for DRMPC (SMPC) does not converge to the origin.

The origin is therefore not ISS for DRMPC (SMPC), despite satisfying Assumptions 2.1, 2.2, 3.1

and 3.2. By contrast, these assumptions are sufficient to render the origin ISS for the closed-loop

system generated by RMPC [12, Thm. 23]. To summarize: SMPC and DRMPC are hedging against

uncertainty and thereby giving up the deterministic properties of RMPC, such as ISS, in the pursuit

of improved performance in terms of the expected value of the stage cost, i.e., Jk( · ).

We now investigate the performance of DRMPC relative to SMPC/RMPC for a distribution

P ∈ P∞
d . Specifically, we consider w(k) to be i.i.d. in time and sampled from a zero-mean uniform

distribution with a covariance of

Σ =

[
0.01 0.01

0.01 0.035

]
We simulate S = 100 different realizations of the disturbance trajectory for each controller. For

each simulation s ∈ {1, . . . , S}, we define the closed-loop state and input trajectory xs(k) and us(k),

as well as the time-average stage cost

J s
k :=

1

k

k−1∑
i=0

ℓ(xs(k), us(k))

In accordance with the results in Theorem 3.1 and Corollary 3.3, we consider the sample average

approximations of EP [|ϕ(k;x,w∞)|] and Jk(x, d,P) defined as

ẼP
[
|x(k)|2

]
:=

1

S

S∑
s=1

|xs(k)|2 J̃k :=
1

S

S∑
s=1

J s
k
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Figure 4. Sample averages of EP
[
|ϕ(k;x,w∞)|2

]
and Jk(x, d,P), denoted

ẼP
[
|x(k)|2

]
and J̃k, for S = 100 realizations of the closed-loop trajectory.

In Figure 4, we plot ẼP
[
|x(k)|2

]
and J̃k. For each algorithm, we observe an initial, exponential

decay in the mean-squared distance ẼP
[
|x(k)|2

]
towards a constant, but nonzero, value. These

results for DRMPC are consistent with Corollary 3.3. We note, however, that DRMPC produces

the largest value of Ẽ[|x(k)|2], i.e., the mean-squared distance between the closed-loop state and

the setpoint is larger for DRMPC than for SMPC or RMPC. While this result may initially seem

counter-intuitive, the objective prescribed to the DRMPC problem is to minimize the expected value

of the stage cost, not the expected distance to the origin. In terms of the expected value of the stage

cost, i.e., J̃k, the performance of DRMPC is better than SMPC, which is better than RMPC. This

difference becomes more pronounced as k →∞.

We note that Σ ∈ Bd in this example is intentionally chosen to exacerbate the effect of the

disturbance on x2 and thereby increase the cost of the closed-loop trajectory, i.e., a worst-case

distribution. Therefore, DRMPC produces a superior control law relative to SMPC. If the ambiguity

set, however, becomes too large relative to this value of Σ, the additional conservatism of DRMPC

can produce worse performance than SMPC in terms of J̃k for a fixed value of Σ. To demonstrate

this tradeoff, we consider the same closed-loop simulation and plot the value of J̃T at T = 500 for

various values of ε and fixed Σ̂. In Figure 5, we observe that ε ≈ 0.11 achieves the minimum value

of JT , with an approximately 13% decrease in the value of J̃T compared to ε = 0.01. For values of

ε > 0.11, the value of J̃T increases significantly until leveling off around ε = 1. For large values of

ε, DRMPC is too conservative because Σ is now well within the interior of Bd.

Another interesting feature in Figure 5 is that the range of values for J s
T for each s ∈ {1, . . . , 30},

shown by the shaded region, decreases as ε increases. This behavior might also be explained by the

increased conservatism of DRMPC as ε increases. As the value of ε increase, DRMPC generates a

closed-loop system that is distributionally robust to a range of possible covariances. In this case,

we might expect DRMPC to drive the closed-loop system to an operating region that attenuates

the effect of all disturbances on the closed-loop cost at the expense of nominal performance. Thus,

the closed-loop system becomes less sensitive to disturbances and thereby decreases the variability
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Figure 5. Sample average of the performance metric JT (x, d,P), denoted J̃T , for
T = 500 as a function of the ambiguity radius ε for S = 30 realizations of the

disturbance trajectory. The shaded blue region indicates the range of values of J̃ s
T

for s ∈ {1, . . . , 30}.

in performance at the expense of an increase in average performance. In summary, we are left with

the classic trade-off in robust controller design; If we choose ε too large, the excessively conservative

DRMPC may perform worse than SMPC (ε = 0). Thus, the design goal for DRMPC is to select a

value of ε that balances these two extremes.

6.2. Large scale example: Shell oil fractionator

To demonstrate the applicability of the Newton-type algorithm to control problems of an indus-

trially relevant size, we now consider the Shell oil fractionator example in Maciejowski [18, s. 9.1]

with n = 20 states, m = 3 inputs, and p = 3 outputs. We include two disturbances (q = 2): the

intermediate reflux duty and the upper reflux duty. We assume these disturbances are i.i.d. and

zero mean. We also note that A in this problem is Schur stable.

We consider the input constraints U :=
{
u ∈ R3 | |u|∞ ≤ 1, u3 ≥ 0

}
in which the origin is again

on the boundary of the input constraint U. The disturbance set is W := {w ∈ R2 | |w|∞ ≤ 1} with
the nominal covariance Σ̂ = 0.01I2 and ambiguity an radius of ε = 0.1. The outputs y satisfy y = Cx

and we define cost matrices as Q = C ′QyC and R = 0.1I3 in which Qy = diag([20, 10, 1]). We then

define the terminal cost matrix P ≻ 0 as the solution to the Lyapunov equation A′PA− P = −Q.

This DRMPC problem formulation satisfies Assumptions 2.1, 2.2 and 3.1 and (A,Q1/2) is detectable

(See Remark 3.1).

We initialize the state at x(0) = 0 and use N = 10. We consider the performance of the closed-

loop system in which w(k) is sampled from a zero-mean uniform distribution with a covariance of

Σ = diag([0.04, 0.01]). Note that Σ ∈ Bd. We simulate T = 500 time steps for S = 30 realizations of

the disturbance trajectory. We plot J̃k in Figure 6 for DRMPC, SMPC, and RMPC. At T = 500, we

observe an almost negligible 0.2% decrease in J̃T for DRMPC relative to SMPC. Longer horizons
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Figure 6. Sample average of Jk(x, d,P), denoted Ĵk, for S = 30 realizations of the

closed-loop trajectory.

may increase this difference, but we expect the overall benefit of DRMPC to remain small and

therefore not worth the extra computational demand.

Appendix A. Additional technical proofs and results

Proof of Lemma 2.1. From Goulart [11, Thm. 3.5] we have that Π(x) is closed and convex for all

x ∈ X and X is closed and convex. We now establish that Π(x) is bounded. If (M,v) ∈ Π(x),

then Mw + v ∈ UN for all w ∈ WN . Since 0 ∈ W, we have that for any (M,v) ∈ Π(x), v must

satisfy v ∈ UN Moreover, since the origin is in the interior of W, there exists δ > 0 such that

Bδ := {w ∈ RNq | |w| ≤ δ} ⊆ W. Since U is bounded, there exists b ≥ 0, such that |u| ≤ b for all

u ∈ UN . For any (M,v) ∈ Π(x), we have

|Mw| ≤ 2b ∀ w ∈ Bδ (57)

because v ∈ UN . We have that (57) is equivalent to

∥M∥2 := sup {|Mw| | |w| ≤ 1} ≤ 2b/δ

and we can construct a bounded set for M as follows:

M ∈M :=
{
M ∈ RNm×Nq

∣∣ ||M||2 ≤ 2b/δ
}

for all (M,v) ∈ Π(x). Therefore, (M,v) ∈ Π(x) ⊆ M × UN for all x ∈ X . Since U and M are

bounded, Π(x) is bounded as well, uniformly for all x ∈ X . □

Lemma A.1. If W is bounded, then D is bounded.

Proof. Define the set S := {Σ = EP [ww′] | P ∈ M(W)} and note that S is bounded because W is

bounded. By definition, Bd ⊆ S for all d ∈ D. Since Σ̂ ∈ Bd for all d = (ε, Σ̂), then Σ̂ ∈ S for all

d ∈ D and therefore D ⊆ R≥0 × S.
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Define ρ := supΣ∈S tr(Σ)
1/2 <∞. Therefore, S = B(ρ,0). Choose any Σ̂ ∈ S. If Σ ∈ B(ρ,0), then

tr

(
Σ̂ + Σ− 2

(
Σ̂1/2ΣΣ̂1/2

)1/2
)
≤ tr

(
Σ̂
)
+ tr (Σ) ≤ 2ρ

and therefore Σ ∈ B(2ρ,Σ̂). Thus, S ⊆ B(ρ,0) ⊆ B(2ρ,Σ̂). For all (ε, Σ̂) ∈ D, we have B
(ε,Σ̂)

⊆ S ⊆
B(2ρ,Σ̂) and therefore ε ≤ 2ρ. Hence, D ⊆ [0, 2ρ]× S and D is bounded. □

Appendix B. Optimal terminal cost

Since the term tr(G′PGΣ) appears on the right-hand side of all bounds in Theorems 3.1 and 3.2

and Corollary 3.3, a straightforward design strategy for DRMPC is to select the value of P that

minimizes this term subject to the constraints in Assumption 3.1. In the following lemma, we show

that the value of P that achieves this goal is given by (19) in Assumption 3.3.

Lemma B.1 (Optimal terminal cost). For any Q,R ≻ 0, a solution to

inf
P≻0,Kf

tr(G′PGΣ)

s.t. P −Q−K ′
fRKf ⪰ (A+BKf )

′P (A+BKf )

is given by the solution to the DARE (19) and the associated controller Kf := −(R+B′PB)B′PA

for all G ∈ Rm×q and Σ ⪰ 0.

Lemma B.1 suggests that, if possible, one should always select P according to Assumption 3.3

to minimize the value of tr(G′PGΣ) for all Σ ⪰ 0. Therefore, Assumption 3.3, in addition to being

a convenient and common method to select P , also produces the best theoretical bound for the

performance of the closed-loop system.

Proof of Lemma B.1. Consider the unique solution P ∗ ≻ 0 that satisfies (19) and choose any G ∈
Rm×q and Σ ⪰ 0. We denote D := GΣG′ and note that D ⪰ 0. We consider the equivalent

optimization problem

inf
Kf ,S

tr((P ∗ − S)D) (58a)

s.t. P ∗ − S −Q−K ′
fRKf ⪰ (A+BKf )

′(P ∗ − S)(A+BKf ) (58b)

P ∗ − S ≻ 0, S ⪰ 0 (58c)

If the solution to this optimization problem is S = 0 for all D ⪰ 0, then P ∗ must be a solution to

the original optimization problem.

We now prove that S = 0. Assume Kf ∈ Rm×n and S ⪰ 0 exist such that (58b) and (58c) hold.

Note that this inequality implies that A + BKf is Schur stable. Since P ∗ defines the optimal cost

of the infinite horizon unconstrained LQR problem, any Kf ∈ Rm×n must satisfy

(A+BKf )
′(P ∗)(A+BKf ) ⪰ P ∗ −Q−K ′

fRKf (59)

By combining (58b) and (59), we have that Kf and S ⪰ 0 must satisfy

(A+BKf )
′S(A+BKf ) ⪰ S (60)
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However, if there exists S ̸= 0 satisfying (60) with S ⪰ 0, then A+BKf is not Schur stable. Since

A + BKf is Schur stable, the only value of S ⪰ 0 that satisfies (60) is S = 0. Therefore, S = 0

is the only solution to the modified optimization problem and P ∗ is the solution to the original

optimization problem. Note that since the choices of G ∈ Rm×q and Σ ⪰ 0 were arbitrary, this

solution holds for any G ∈ Rm×q and Σ ⪰ 0. □

Appendix C. Fundamental mathematical properties of DRMPC formulation

We now establish some fundamental mathmatical properties of (13) to ensure that subsequently

defined quantities are indeed well-defined.

We first introduce some notation and definitions. A function f : X → R is lower semincontinuous

if lim infx→x0 f(x) ≥ f(x0) for all x0 ∈ X. Let B(Ω) denote the Borel field of some set Ω, i.e., the

subsets of Ω generated through relative complements and countable unions of all open subsets of

Ω. For the metric spaces X and Y , a function f : X → Y is Borel measurable if for each open

set O ⊆ Y , we have f−1(O) := {x ∈ X | f(x) ∈ O} ∈ B(X). For the metric spaces X and

Y , a set-valued mapping F : X ⇒ Y is Borel measurable if for every open set O ⊆ Y , we have

F−1(O) := {x ∈ X | F (x) ∩O ̸= ∅} ∈ B(X) [31, Def. 14.1].

Proposition C.1 (Existence and measurability). If Assumptions 2.1 and 2.2 hold, then for all d ∈
D, Vd : X ×Θ→ R≥0 is convex and continuous, V 0

d : X → R≥0 is convex and lower semicontinuous,

θ0 : X ⇒ Θ is Borel measurable, and θ0d(x) ̸= ∅ for all x ∈ X .

Proof. We have that L( · ) is continuous and BN
d is compact [27, Lemma A.6]. Therefore, Vd(x, θ)

is continuous for all (x, θ) ∈ Rn × Θ [30, Thm. C.28]. We also have that L(x, θ,Σ) is convex in

(x, θ) ∈ Rn × Θ for all Σ ∈ BN
d . From Danskin’s theorem, we have that Vd(x, θ) is also convex.

Since Vd(x, θ) is continuous and Π(x) is compact for each x ∈ X , we have that θ0d(x) ̸= ∅, i.e., the
minimum is attained, for all x ∈ X . Since Z and Xf are closed, we have that

Z :=
⋂

w∈WN

(x,M,v) ∈ Rn ×Θ

∣∣∣∣∣∣∣∣∣
x = Ax+Bv + (BM+G)w

u = Mw + v

(x(k), u(k)) ∈ Z ∀ k ∈ I0:N−1

x(N) ∈ Xf


is also closed. From the Proof of Lemma 2.1, we have that Z ⊆ Rn × (M × U) in which U and M
are compact. Therefore,

V 0
d (x) = min

θ
{Vd(x, θ) | (x, θ) ∈ Z} and θ0d(x) = argmin

θ
{Vd(x, θ) | (x, θ) ∈ Z}

From Bertsekas and Shreve [4, Prop. 7.33], we have that V 0
d : X → R≥0 is lower semicontinuous

and θ0 : X ⇒ Θ is Borel measurable. □

Since θ0d(x) is Borel measurable and U is compact, we have from Proposition C.1 and [4, Lemma

7.18] that there exists a selection rule such that κd : X → U is also Borel measurable. Thus,

the closed-loop system ϕ(k;x,w∞) is measurable with respect to w∞ for all k ≥ 0. Moreover, all

probabilities and expected values for the closed-loop system ϕ( · ) are well defined.

We also have the following corollary to Proposition C.1 if Z, Xf , and W are polytopes.
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Corollary C.1 (Continuity of optimal value function). If Assumptions 2.1 and 2.2 hold and

Z,Xf ,W are polyhedral, then for all d ∈ D, V 0
d : X → R≥0 is continuous.

Proof. Since Z,Xf ,W are polyhedral, we have from Goulart [11, Cor. 3.8] X is polyhedral. From

the Proof of Lemma 2.1, we have that Z ⊆ Rn × (M × U) in which U and M are bounded. Recall

from the Proof of Proposition C.1 that Vd : Rn ×Θ→ Rn is continuous. Therefore,

V 0
d (x) = min

θ
{Vd(x, θ) | (x, θ) ∈ Z} and θ0d(x) = argmin

θ
{Vd(x, θ) | (x, θ) ∈ Z}

From Rawlings et al. [30, Thm. C.34], we have that V 0
d : X → R is continuous and θ0d : X ⇒ Θ is

outer semicontinuous. □
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