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Abstract. This paper studies the problem of fault detection and estimation (FDE) for LTI systems

with a particular focus on frequency content information for the faults, possibly as a continuum range,

and under both disturbances and stochastic noise. Considering the worst-case fault sensitivity in the

frequency range and the effects of disturbances and noise, we introduce a mixed H2/H performance

index and develop an optimization framework to compute the optimal detection filter. We further

propose a thresholding rule that provides guarantees on both false alarm rate (FAR) and fault

detection rate (FDR). Next, shifting our attention to the estimation problem, we introduce the

restricted H∞ performance index and obtain an exact reformulation of the optimal filter design.

This problem is inherently non-convex, however, focusing on finite frequency samples and fixed

poles, we then establish a lower bound via a highly tractable quadratic programming (QP) problem.

This lower bound together with an alternating optimization approach to the original estimation

problem leads to a suboptimality gap for the overall filter design. The effectiveness of the proposed

approaches is validated through a synthetic non-minimum phase system and an application of the

multi-area power system.

1. Introduction

Fault diagnosis has been the focus of research in the past decades due to its critical importance

in ensuring the safety and reliability of various engineering systems, such as power networks, vehicle

dynamics, and aircraft systems [1,2]. Timely and accurate FDE of faults while a system is still op-

erating in a controllable condition, can help prevent further damage and reduce losses. However, the

FDE performance is inevitably affected in practice by model uncertainties, unknown disturbances,

and stochastic noise. These disturbing factors can result in false alarms, missing detection, and

incorrect fault estimates. Hence, it is essential to consider the disruptive signals when designing

FDE methods.

In recent years, there also has been a growing recognition of the need to address faults in the

frequency range. This stems from the fact that many practical faults (or cyber-attack signals [3])

have some frequency characteristics, e.g., incipient faults in low-frequency ranges and actuator stuck

faults with zero frequency [4]. Unfortunately, the existing FDE methods developed for the entire

frequency range can cause conservatism when dealing with these faults. Motivated by the above

issues, we study the FDE problem in the frequency range, taking into account both unknown

disturbances and stochastic noise.
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Fault detection: A number of model-based fault detection methods have been developed for

linear systems with disturbances and noise. The basic idea is to design a residual generator using

observer-based or parity-space approaches [2]. The output of the residual generator (called residual)

is used to indicate the occurrence of faults. Performance indices, such as H2 and H∞ norms [5],

are often adopted to measure the robustness against disturbances and noise. The residual generator

design is usually formulated as a multi-objective optimization problem in the framework of the

robust control theory, see [6, Chapter 7] for more details about the residual generator design with H2

and H∞ norms. Note that residual generators constructed by using observer-based and parity-space

approaches generally have the same order as the system.

However, reduced-order residual generators are more desirable for online implementation and

large-scale systems. Nyberg [7] proposes a parity-space-like design method in the framework of

differential-algebraic equations (DAE), which finds residual generators of the possibly lowest order.

Moreover, this method offers more design freedom due to its characterization of all possible residual

generators for systems represented by DAE. Based on the parity-space-like design method, several

fault detection methods that consider nonlinear terms [8] and modeling uncertainties [9] have been

developed.

Note that the methods mentioned above are all for the entire frequency range. Authors in [10]

introduce the H index, which is the minimum singular value of a transfer function matrix, to

represent the worst-case fault sensitivity. TheH index can then be augmented in a specific frequency

range by incorporating weighting functions. In contrast to the approximation through weighting

functions, the generalized Kalman-Yakubovich-Popov (GKYP) lemma proposed by Iwasaki [11]

provides a way to directly constrain the H index of the transfer function in a specific frequency

range. Based on the GKYP lemma, most fault detection results are focused on observer design with

mixed indices such as H∞/H or `∞/H [4, 12–14], where disturbances with deterministic bounds

are considered. The H∞ and `∞ indices are adopted to characterize the energy and peak value of

disturbances, respectively. However, the deterministic bounds can be difficult to obtain and may

cause conservative diagnosis results [15]. Besides, results that consider the effects of stochastic

noise and disturbances simultaneously when designing residual generators for fault detection in the

frequency range are quite limited. This is more demanding and challenging due to the multiple

constraints.

Fault estimation: Accurate fault estimation that provides the size and shape of faults is a

fundamental task in the fault diagnosis area and has been widely studied as well. Many model-based

methods based on various observers, such as sliding mode observers [16], adaptive observers [17],

and unknown input observers [18], are developed to address this problem. When applying these

observer-based fault estimation methods, one usually requires an assumption on the derivatives of

fault signals. For example, authors in [19] proposed a fault estimator for nonlinear systems with a

class of finite differentiable faults that can be represented by polynomials. To further achieve reliable

estimation results, optimization methods or high-gain design approaches are usually employed to

attenuate the effects of disturbances or noise [16–18].

In contrast to observer-based methods, the use of fault estimation filters, as another widely-used

approach, does not require estimates of system states and the assumption regarding the derivatives

of fault signals. A fault estimation filter is driven by measurement signals and control inputs,

whose output is an estimate of fault signals. There are two main ways to construct fault estimation

filters. The first approach involves utilizing the inverse of the fault subsystem, as described in [6,
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Theorem 14.2]. The second approach aims to minimize the difference between the transfer function

of the fault subsystem and the identity matrix in the H∞ optimization framework [20]. Recently,

authors in [21,22] construct system-inversion-based fault estimation filters with Markov parameters

identified from the input-output data and obtain the estimate of fault signals by solving a least-square

problem. However, the existence of a stable system-inversion-based fault estimation filter cannot

be ensured when there are unstable zeros (i.e., non-minimum-phase system) [23]. This also relates

to input observability conditions explored in [24]. Once again, it is worth emphasizing that the

aforementioned estimation methods are for the entire frequency range.

The available methods for fault estimation in a specific frequency range are primarily built on

observer-based methods and the GKYP lemma, see for example [25–27]. However, the design of

fault estimation filters in the frequency range receives much less attention. Even though this has

many advantages such as: (i) it does not require the assumption about the derivatives of fault

signals as observer-based methods; (ii) it provides more accurate estimation results for faults within

the frequency range; and (iii) it can circumvent unstable zeros by choosing the frequency range.

To our knowledge, only [6, Theorem 14.6] integrates weighting functions in the H∞ optimization

framework to design fault estimation filters in the frequency range. The selection of weighting

functions is critical to the estimation performance, but it is also a complex process. Moreover, the

design of fault estimation filters in the frequency range while considering both stochastic noise and

disturbances has not been reported in the literature.

Main contributions: In view of the existing methods mentioned above, we consider FDE

for linear discrete-time systems in the frequency range, taking into account both the presence of

stochastic noise and unknown disturbances. For the first time, we exploit the prior information about

the frequency range of fault signals when designing FDE filters in the DAE framework. The design

of FDE filters is formulated into a unified optimization framework that provides design freedom

and (possibly) low-order filters with residuals of arbitrary dimensions. The derived optimization

problems for filter design are inherently non-convex, for which we develop an efficient approach to

approximate a suboptimal solution along with explicit performance bounds. The contributions of

this paper are summarized as follows:

• Optimal detection with fault frequency content: Utilizing mixed H2/H indices, we

formulate the design of the fault detection filter in the DAE framework as a finite optimiza-

tion problem (Theorem 3.1) to address disturbances, stochastic noise, and improve fault

sensitivity in a specific frequency range.

• Thresholding with false alarm rate and fault detection rate guarantees: We de-

velop a thresholding rule that enjoys provable FAR and FDR (Theorem 3.6). This result

improves the current literature (e.g., [15,28]) by extending the setting to multivariate resid-

uals and guaranteeing FAR and FDR simultaneously.

• Optimal estimation with fault frequency content: Moving from detection to estima-

tion, we replace the H index with the ”restricted” H∞ norm in a given frequency range.

The fault estimation filter design is then reformulated in the DAE framework as a finite op-

timization problem (Theorem 4.1). In contrast to the existing estimation results that focus

on faults represented by either step signals [29] or polynomials [19], we consider frequency

content information of faults with a continuum range containing infinite frequencies.
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• Convex approximation with suboptimality gap: Relaxing the frequency range to

finitely many samples, we lower bound the estimation problem by a QP problem (Theo-

rem 4.2), whose solution can be approximated by a closed-form formula (Corollary 4.3).

Combining this with an alternating convex optimization approach to the original problem

yields a suboptimality gap for the overall design with given fixed filter poles (Proposition 4.4).

The rest of the paper is organized as follows. The problem formulation is introduced in Section 2.

In Section 3, we present the design methods for the fault detection filter and the thresholding rule.

In Section 4, we show the design methods for the fault estimation filter and the derivation of the

suboptimality gap. To improve the flow of the paper and its accessibility, we relegate some of the

technical proofs to Section 5. The proposed approaches are applied to a synthetic non-minimum

phase system and a multi-area power system in Section 6 to provide evidence of their effectiveness.

Finally, Section 7 concludes the paper with some remarks and future directions.

Notation. Sets R (R+), N, and Rn denote all (positive) reals, non-negative integers, and the space

of n dimensional real-valued vectors, respectively. The set of symmetric and Hermitian matrices are

denoted by S and H, respectively. The identity matrix with an appropriate dimension is denoted

by I. For a vector v = [v1, . . . , vn], the ∞-norm and 2-norm of v are ‖v‖∞ = maxi∈{1,...,n} |vi|

and ‖v‖2 =
√∑n

i=1 v
2
i , respectively. For a matrix A, the 2-norm (the maximum singular value)

and the Frobenius norm (sum of the singular values) are denoted by ‖A‖2 and ‖A‖F , respectively.

For a random variable χ, the probability law and its expectation are denoted by Pr[χ] and E[χ],

respectively. Given a discrete-time signal u = {u(k)}k∈N and a transfer function T, the notation T[u]

denotes the output in response to u. The `2-norm of u is ‖u‖2`2 =
∑∞

k=0 u
>(k)u(k). With a slight

abuse of notation, we use ∗ for the off-diagonal elements in symmetric matrices to avoid clutter,

and A∗ to denote the complex conjugate transpose of the matrix A. The transpose of A is denoted

by A>.

2. Model Description and Problem Statement

Consider the following linear discrete-time system{
x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bωω(k) +Bff(k)

y(k) = Cx(k) +Du(k) +Dωω(k) +Dff(k),
(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , d(k) ∈ Rnd , and y(k) ∈ Rny are the state, the control input, the

unknown disturbance, and the measurement output, respectively. The signal ω(k) ∈ Rnω denotes the

independent and identically distributed (i.i.d.) white noise with zero mean. The signal f(k) ∈ Rnf
denotes the fault. System matrices in (1) are all assumed to be known and with appropriate

dimensions. Throughout this study, we restrict our filter design to a subclass of fault signals with

the following frequency content information.

Assumption 2.1 (Fault frequency content). The fault signal frequency content, also called signal

spectrum, is the set Θ ⊂ [−π, π], that is, the fault can be described by f(t) =
∫

Θ F (ejθ) ejθt dθ

where F (ejθ) is the Discrete-Time Fourier Transform. We denote this class of fault signals by F(Θ).

Note that Assumption 2.1 reflects many practical scenarios where faults have known frequency

characteristics, such as incipient faults and stuck faults [4, 25].

The objective of this work is to design filters that can detect and estimate faults in the frequency

range Θ through the control input u and the measurement y. To this end, we consider filters in the
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DAE framework and introduce the time-shift operator q, i.e., x(k+ 1) = qx(k). Then, we transform

the state-space model (1) into the DAE format

H(q)

[
x

d

]
+ L

[
y

u

]
+W [ω] +G[f ] +

[
x0

0

]
= 0, (2)

where x(0) = x0 is the unknown initial condition, the polynomial matrices H(q), L, W and G are

given by

H(q) = H1q +H0 =

[
−qI +A Bd

C 0

]
, H0 =

[
A Bd
C 0

]
, H1 =

[
−I 0

0 0

]
,

L =

[
0 B

−I D

]
, W =

[
Bω
Dω

]
, and G =

[
Bf
Df

]
.

To design the filters, we further introduce a transfer function

F(q) =
N (q)

a(q)
, (3)

where the polynomial matrix N (q) =
∑dN

i=0Niq
i, Ni ∈ Rnr×(nx+ny), and dN denotes the degree

of N (q). The denominator a(q) =
∑da

i=0 aiq
i + qda+1, ai ∈ R, and da + 1 is the degree of a(q). We

set da ≥ dN to ensure that F(q) is strictly proper. We emphasize that the parameters Ni and ai are

the filter variables to be determined in an optimal way.

Multiplying the left-hand side of (2) by F(q), we can re-arrange the terms to obtain the residual r ∈
Rnr as follows

r = F(q)L

[
y

u

]
= −F(q)H(q)[X]− F(q)W [ω]− F(q)G[f ]− F(q)

[
x0

0

]
, (4)

where X = [x> d>]>. Note that F(q)L[y> u>]> is called the implementation form of the filter

because all the entities are known to us. The right-hand side of (4) indicates the input-output

relations from X, ω, and f to r, based on which we can design F(q) such that desired mapping

relations are satisfied for different diagnosis purposes. Subsequently, we denote mapping relations

from X to r, from ω to r, and from f to r by

TXr(q) = −F(q)H(q), Tωr(q) = −F(q)W, and Tfr(q) = −F(q)G.

Assumption 2.2 (Initial condition dependency). The contribution of the initial condition, i.e., the

last term in (4), vanishes exponentially fast under appropriate stability conditions.

Assumption 2.2 is commonly adopted in fault detection literature [22, 30]. Next, we present the

formulation of the two problems studied in this work: (i) fault detection (Section 2.1), and (ii) fault

estimation (Section 2.2).

2.1. Problem 1: Fault detection

In order to formally introduce the fault detection problem statement, we start by introducing

the H2 norm and H index of a transfer function, e.g., y = T(q)[u], T(q) = C(qI −A)−1B.

Definition 2.3 (H2 norm [5]). Assume A is stable. The H2 norm of T(q) is defined as

‖T(q)‖2H2
=

1

2π

∫ π

−π
Trace

(
T∗(ejθ)T(ejθ)

)
dθ,
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and corresponds to the asymptotic variance of the output when the system is driven by the white

noise with zero mean, i.e., lim
T→∞

1
T

∑T
k=0 E

[
y(k)>y(k)

]
.

Definition 2.4 (H index [10]). The H index of T(q) in a frequency range Θ is defined as

‖T(q)‖H (Θ) = inf
θ∈Θ,u6=0

∥∥T(ejθ)u
∥∥
`2

‖u‖`2
.

The definition can also be rewritten as ‖T(q)‖H (Θ) = inf
θ∈Θ

σ
(
T(ejθ)

)
, where σ( · ) denotes the mini-

mum singular value.

Let us look into the right-hand side of (4). We expect the residual r to be insensitive to d, robust

to ω, and sensitive to f in Θ. First, to decouple d from r, we need to guarantee that

TXr(q) = −F(q)H(q) = 0. (5a)

Second, we set an upper bound η1 ∈ R+ on the H2 norm of Tωr(q), to suppress the contribution

of ω to r, as

‖Tωr(q)‖2H2
= ‖ − F(q)W‖2H2

≤ η1. (5b)

Finally, we let the H index of Tfr(q) in Θ be larger than some positive value η2 ∈ R+ to guarantee

the worst-case fault sensitivity, which is

‖Tfr(q)‖2H (Θ) = ‖ − F(q)G‖2H (Θ) ≥ η2. (5c)

In view of the desired mapping conditions (5), the design of the fault detection filter is formulated

as the following optimization problem.

Problem 1a. (Fault detection filter design) Consider the system (1), the structure of F(q) in (3),

and the residual (4). Given a scalar α ∈ [0, 1], find F(q) via the minimization program:

min
η1,η2∈R+, F(q)

{αη1 − (1− α)η2 : (5a), (5b), (5c)}.

The following assumption is required for the feasibility of Problem 1a.

Assumption 2.5 (Feasibility condition). The pair (A,C) is observable. For q = ϕ ejθ with |ϕ| > 1

and θ ∈ Θ, the following rank condition holds

nx + ny ≥ Rank

([
−qI +A Bd Bf

C 0 Df

])
= nx + Rank

([
Bd
0

])
+ nf .

Denote the transfer functions from d to y and fa to y by Tdy(q) = C(qI −A)−1Bd and Tfy(q) =

C(qI −A)−1Bf +Df , respectively. It readily follows

ny ≥ Rank[Tdy(q) Tfy(q)] = Rank

([
Bd
0

])
+ nf ,

if Assumption 2.5 holds [6, Theorem 6.2]. Therefore, Assumption 2.5 ensures simultaneously the

followings: (i) the disturbance d can be decoupled, and (ii) the fault f satisfies input observability

condition in the frequency range Θ, which also indicates that there are no unstable invariant zeros

in Θ. The second term is necessary for a nonzero H index [10, Lemma 5]. Moreover, we incorporate
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the frequency range into the analysis, which is different from the classical result on the input

observability condition in [24, Theorem 3] and [6, Corollary 14.1].

Additionally, notice that a solution to Problem 1a ensures that the residual r can be written as

r = Tωr(q)[ω] +Tfr(q)[f ],

where no dependency on X is present, i.e., it is decoupled. In practice, the residual r will oscillate

around zero as a response to the noise ω in the absence of f . In contrast, the residual will ideally

be away from zero when a fault happens. Subsequently, let us take the average 2-norm of r over a

time interval T ∈ N as the evaluation function, i.e.,

J(r) =
1

T

k1+T∑
k=k1

‖r(k)‖2, k1 ∈ N. (6)

Given a threshold Jth ∈ R+, we can consider the following fault detection logic:{
J(r) ≤ Jth ⇒ no fault alarm,

J(r) > Jth ⇒ fault alarm.

Note that false alarms and missing detection of faults are inevitable due to the random nature of

noise. In order to mitigate these issues, we consider determining a threshold Jth that can provide

guarantees on FAR and FDR in the following problem.

Problem 1b. (Thresholding with guarantees on FAR and FDR) Given F(q) constructed from

Problem 1a, an acceptable false alarm rate ε1 ∈ (0, 1], and a set of fault signals of interest Ωf :=

{f : ‖f(k)‖2 ≥ f, f ∈ R+, f ∈ F(Θ)}, determine the threshold Jth such that:

FAR: Pr
{
J(r) > Jth

∣∣f = 0
}
≤ ε1, (7a)

FDR: Pr
{
J(r) > Jth

∣∣f ∈ Ωf

}
≥ ε2, (7b)

where ε2 is the lower bound on FDR to be computed.

Remark 2.6 (Difficulty in FDR computation). There are fewer results in the literature on FDR

computation because different elements of multivariate fault signals may cancel out each other’s

contributions to the residual [3]. As a result, there is no guarantee that FDR even exists. By

assuming that a set of faults is detectable, authors in [6, Section 12.1] propose a computation method

of FDR in the norm-based framework. In this work, we incorporate the H index into the design

of the fault detection filter to ensure fault sensitivity, which paves the path for FDR computation.

Then, we propose the computation method of FDR in the stochastic framework.

2.2. Problem 2: Fault estimation

In certain scenarios, it becomes essential not just to identify the presence of faults, but also to

estimate them precisely. For instance, incorporating fault estimates into fault-tolerant controllers is

a common practice to counteract the effects of faults [31]. Recall the design form in (4) and notice

that to make the residual follow the faults within the frequency range Θ, we find a stable F(q) such

that

‖Tfr(q)f − f‖2`2
‖f‖2`2

≤ η3, ∀ f 6= 0 and f ∈ F(Θ), (8)

where η3 ∈ R+ is an upper bound. Note that the estimation condition (8) is consistent with the

format of the restricted H∞ norm in a given frequency range, whose definition is as follows.
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Definition 2.7 (Restricted H∞ norm [32]). The restricted H∞ norm of a transfer function T(q)

in a frequency range Θ is defined as

‖T(q)‖H∞(Θ) = sup
θ∈Θ,u6=0

∥∥T(ejθ)u
∥∥
`2

‖u‖`2
.

The definition can also be rewritten as ‖T(q)‖H∞(Θ) = sup
θ∈Θ

σ
(
T(ejθ)

)
, where σ( · ) denotes the

maximum singular value.

Therefore, based on Definition 2.7, we can equivalently write the condition (8) as

‖Tfr(q)− I‖2H∞(Θ) ≤ η3. (9)

As shown in (9), we let the transfer function Tfr(q) approximate the identity matrix I over Θ. Thus,

the generated residual r can be viewed as an estimate of f if Tfr(q) is sufficiently close to I. This

is different from the system-inversion-based estimation approaches [21, 22] which find a stable F(q)

such that Tfr(e
jθ) = −F(ejθ)G ≡ I (known as the perfect fault estimation condition). We would

like to point out that the perfect fault estimation condition is demanding and generally impossible

to achieve because it contains infinite equality constraints, especially when there are disturbances,

noise, and unstable zeros.

We maintain conditions (5a) and (5b) to suppress the effects of d and ω on the residual r. As a

result, our second problem is to design the fault estimation filter through the following optimization

problem.

Problem 2. (Fault estimation filter design) Consider the system (1), the structure of F(q) in (3),

and the residual (4). Given a scalar β ∈ [0, 1], find F(q) via the minimization program:

min
η1,η3∈R+, F(q)

{βη1 + (1− β)η3 : (5a), (5b), (9)}.

Remark 2.8 (Differences between Problem 1a and 2). The condition (9) for fault estimation is

more stringent compared to the condition (5c) used for fault detection. In particular, it suffices to

have the minimum singular value of Tfr(q) be positive for fault detection, whereas Tfr(q) needs to be

as close to I as possible to obtain a decent estimation performance. Additionally, filters that satisfy

condition (9) with a sufficiently small restricted H∞ norm can provide a positive H index over Θ,

but the opposite is not true.

3. Fault Detection: Optimal Design and Thresholding

In this section, we present design methods for the fault detection filter and the thresholding rule

that provides guarantees on FAR and FDR. To improve the clarity of presentation, some proofs are

relegated to Section 5.

3.1. Fault detection filter design

Let us start by considering the transfer function F(q) to be designed in (3). First, notice that

the degrees dN , da, the residual dimension nr, and coefficients of N (q) and a(q) (i.e., Ni and ai) are

all design parameters. For simplicity, we fix nr, dN , and set dN = da in what follows. To compute

the H2 norm and H index, we convert Tωr(q) = −F(q)W and Tfr(q) = −F(q)G into the observable

canonical forms denoted by (Ar,Bωr, Cr) and (Ar,Bfr, Cr), respectively. Let Ni,j denote the j-th
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row of Ni for i ∈ {0, 1, . . . , dN} and j ∈ {1, . . . , nr}. Then, the matrices Ar, Bωr, Bfr, and Cr are

given by

Ar = diag(Ar, . . . , Ar︸ ︷︷ ︸
nr

), Cr = diag(Cr, . . . , Cr︸ ︷︷ ︸
nr

),

Bωr = [B>ωr,1, . . . , B
>
ωr,nr ]

>, Bfr = [B>fr,1, . . . , B
>
fr,nr

]>,

(10a)

where the subblock matrices are defined as

Ar =


0 . . . 0 −a0

1 . . . 0 −a1
...

. . .
...

...

0 . . . 1 −adN

 , Bωr,j =


N0,j

N1,j
...

NdN ,j

W, Bfr,j =


N0,j

N1,j
...

NdN ,j

G, Cr =
[
0 . . . 0 1

]
.

We also introduce the following shorthand notations:

N̄ = [N0 N1 . . . NdN ] and H̄ =

H0 H1 . . . 0
...

. . .
. . .

...

0 . . . H0 H1

 . (10b)

The dimension of the filter states is nxr = nr(dN + 1). Note that the parameters ai and Ni to be

determined are reformulated into Ar, Bωr, Bfr, and N̄ . An advantage of such a transformation is

that all the design parameters are decoupled from each other. This allows us to exactly formulate

the design of the fault detection filter into a bilinear optimization problem as stated in the following

theorem.

Theorem 3.1 (Optimal detection: exact finite reformulation). Consider the system (1), the struc-

ture of F(q) in (3), and the state-space realizations (Ar,Bωr, Cr) and (Ar,Bfr, Cr). Given the de-

gree dN , da = dN , the dimension of the residual nr, a scalar α ∈ [0, 1], a sufficiently small ϑ ∈ R+,

and the frequency range Θ, the minimization program in Problem 1a can be equivalently stated as

follows

min αη1 − (1− α)η2

s.t. η1, η2 ∈ R+, ai ∈ R, Ni ∈ Rnr×(nx+ny), i ∈ {0, 1, . . . , dN},

P1 ∈ Snxr , Q1 ∈ Snr , P2 ∈ Hnxr , Q2 ∈ Hnxr , V ∈ Rnxr×(2nxr+nf ),

Ar, Bωr, Bfr, N̄ in (10),

N̄ H̄ = 0, (11a)P1 ArP1 Bωr
∗ P1 0

∗ ∗ I

 � ϑI, [Q1 CrP1

∗ P1

]
� ϑI, Trace(Q1) ≤ η1 − ϑ, (11b)

−P2 δQ2 0

∗ Ξ 0

∗ ∗ η2I

+

−IA>r
B>fr

V + V >
[
−I Ar Bfr

]
� −ϑI, Q2 � ϑI, (11c)

where the following conditions hold for different frequency ranges:

(i) δ = 1, Ξ = P2 − 2 cos(θl)Q2 − C>r Cr, for the low frequency range Θ = {θf : 0 ≤ θf ≤ θl};
(ii) δ = ejθc, Ξ = P2 − 2 cos(θd)Q2 − C>r Cr, for the middle frequency range Θ = {θf : θ1 ≤ θf ≤ θ2}

with θc = (θ1 + θ2)/2, θd = (θ2 − θ1)/2;

(iii) δ = −1, Ξ = P2 + 2 cos(θh)Q2 − C>r Cr, for the high frequency range Θ = {θf : θf ≥ θh}.
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Proof. The proof is relegated to Section 5.1. �

Note that the optimization problem (11) is nonlinear because of the bilinear terms ArP1 in (11b),

and A>r V and B>frV in (11c). To tackle the optimization problem (11), we employ the alternating

optimization (AO) method, which divides the decision variables in the bilinear terms into two sets

and optimizes over the two sets of variables alternatively. One way of division is

Gk1 := {ηk1 , ηk2 , Nk
0 , . . . , N

k
dN
, ak0, . . . , a

k
dN
} and Gk2 := {P k1 , P k2 , Qk1, Qk2, ηk1 , ηk2 , V k}, (12)

where k ∈ N serves as the iteration indicator.

The initial values for the optimization process are obtained as follows. First, we select a stable

denominator, denoted by a0(q) with coefficients a0
i . The coefficients of N 0(q), i.e., N0

i , are then

determined by solving equation (11a) subject to the constraint ‖N̄ ‖∞ ≥ 1 to avoid the trivial

solution. The initial values of η0
1 and η0

2 are found via equations (11b) and (11c), respectively. The

AO process can then be initiated. The procedure is summarized in Algorithm 1. Additionally, we

highlight that the stability of the filter is guaranteed as (11b) is satisfied [33, Lemma 1].

Algorithm 1 Solution to the optimization problem (11)

Step 1. Initialization of Filter Parameters

(a) Set dN , nr, the frequency range Θ, the iteration indicator k = 0, and select a stable denom-

inator a0(q)

(b) Compute the numerator N 0(q) via (11a) with ‖N̄ ‖∞ ≥ 1

(c) Compute η0
1 and η0

2 via (11b) and (11c), respectively

Step 2. Optimization of Filter Parameters

(a) Select α ∈ [0, 1], a sufficiently small ϑ > 0

(b) While |(αηk+1
1 − (1− α)ηk+1

2 )− (αηk1 − (1− α)ηk2 )| > ϑ, do

With ak(q) and N k(q), compute P k1 and V k by solving (11) over Gk2
With P k1 and V k, compute ak+1(q) and N k+1(q) by solving (11) over Gk1
Set k = k + 1

(c) Return a?(q) and N ?(q)

Remark 3.2 (The auxiliary matrix V ). The proposed approach in (11) introduces an auxiliary

matrix V in (11c) when dealing with the H index of Tfr(q). Different from the existing results [4,

13, 14], where V is given, we treat V as a decision variable. The reason is that the number of

parameters to be determined in V will be large for large-scale or high-dimensional systems. If the

parameters are not chosen properly, it can lead to a poor H index or even an infeasible constraint.

By optimizing over V , with the AO method, we can obtain better fault sensitivity. Moreover, we

find that using relaxation techniques, e.g., [34, Lemma 1], to transform (11c) into linear matrix

inequality easily makes the problem infeasible. This is because other constraints restrict the set of

feasible solutions.

Remark 3.3 (Residuals with arbitrary dimensions). The proposed design approach enables the fault

detection filter to have residuals of arbitrary dimension nr. Compared to the results in [3,8,9], where

only one-dimensional residuals are generated, our approach improves two deficiencies:

(i) Consider a two-dimensional residual depicted in Figure 1 as an example. The filters in [3, 8, 9]

cannot detect the faults that lie on the same hyperplane as the disturbance d, i.e., d 7→ r =
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Figure 1. Geometric illustration of the multi-dimensional residual.

0. By considering the two-dimensional residual, faults that can bypass detection exists at the

intersection of two hyperplanes. This means that our approach greatly reduces the size of the set

containing undetectable faults;

(ii) As indicated in [3], different elements of fault signals may cancel out each other’s contributions

to the one-dimensional residual. In our method, we guarantee the fault sensitivity by letting

the H index be positive in Θ.

3.2. Thresholding rule

With the transfer function F(q) constructed by solving the optimization problem (11) and the

residual evaluation function J(r) in (6), we can determine the threshold Jth which provides proba-

bilistic guarantees on FAR and FDR as outlined in Problem 1b. To proceed with this, let us first

introduce the following lemma and assumption to be used hereafter.

Lemma 3.4 (Sub-Gaussian concentration [35, Proposition 2.5.2]). Let a random vector ω ∈ Rnω be

subject to a sub-Gaussian distribution with mean E[ω] and parameter λω ∈ R+, i.e.,

E
[
eφν
>(ω−E[ω])

]
≤ eλ

2
ωφ

2/2, ∀φ ∈ R and ν ∈ Rnω ,

where ‖ν‖2 = 1. Then, the following inequality holds

Pr[‖ω −E[ω]‖∞ ≤ ε] ≥ 1− 2nω e
− ε2

2λ2ω , ∀ε ∈ R+. (13)

Assumption 3.5 (Sub-Gaussian noise). The measurement noise ω follows i.i.d. sub-Gaussian

distribution with zero mean and a time-invariant parameter λω ∈ R+.

The class of sub-Gaussian distributions is board, containing Gaussian, Bernoulli, and all bounded

distributions. Also, the tails of sub-Gaussian distributions decrease exponentially fast from (13),

which is expected in many applications. Given an acceptable FAR, the following theorem provides

the determination method of the threshold Jth and a lower bound on FDR.

Theorem 3.6 (Thresholding with probabilistic performance certificates). Suppose Assumption 3.5

holds. Consider the system (1), the evaluation function J(r) in (6), the filter F(q) obtained by

solving (11) with the corresponding optimal values η?1 and η?2, and faults of interest f ∈ Ωf . Given

an acceptable FAR ε1 ∈ (0, 1], the probabilistic performance (7a) in Problem 1b is achieved if the

threshold Jth is set as

Jth = λω

√
2nrη?1 ln (2T nr/ε1), (14)
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and FDR in (7b) satisfies

Pr
{
J(r) > Jth

∣∣f ∈ Ωf

}
≥ max

0, 1− 2T nr e
−(f
√
η?2/nr−Jth)

2

2η?1λ
2
ω

 , when f > Jth

√
nr/η?2. (15)

Proof. The proof is relegated to Section 5.1. �

From the concentration property of sub-Gaussian distributions, the derived threshold Jth in (14)

depends logarithmically on FAR, i.e.,
√

ln(1/ε1). This improves the state-of-the-art results (e.g., [15]

and [6, Section 10.2.1]), which rely on Chebyshev’s inequality and result in thresholds that scale

polynomially with
√

1/ε1. The threshold (14) also extends our previous work [28, Theorem 3.8]

where the one-dimensional residual is considered. In addition, a lower bound for f is derived in (15)

to ensure that FDR can be achieved.

4. Fault Estimation: Optimal Design and Suboptimality Gap

In this section, we show the design methods for the fault estimation filter and the derivation

process of a suboptimality gap for the original estimation problem. To improve the clarity of

presentation, some proofs are relegated to Section 5.

4.1. Fault estimation filter design

When designing the fault estimation filter, we choose F(q) of the same form as (3). Then,

considering the desired mapping relations presented in Problem 2, we formulate the design of the

fault estimation filter into a bilinear optimization problem in the following theorem.

Theorem 4.1 (Optimal estimation: exact finite reformulation). Consider the system (1), the struc-

ture of F(q) in (3), and the state-space realizations (Ar,Bωr, Cr) and (Ar,Bfr, Cr). Given the filter

order dN , da = dN , the dimension of residual nr = nf , a scalar β ∈ [0, 1], a sufficiently small ϑ ∈ R+,

and the frequency range Θ, the minimization program in Problem 2 can be equivalently stated as fol-

lows

min βη1 + (1− β)η3

s.t. η1, η3 ∈ R+, ai ∈ R, Ni ∈ Rnr×(nx+ny), i ∈ {0, 1, . . . , dN},

P1 ∈ Snxr , Q1 ∈ Snr , P2 ∈ Hnxr , Q2 ∈ Hnxr , V ∈ Rnxr×(2nxr+nf ),

Ar, Bωr, Bfr, N̄ in (10),

(11a), (11b),−P2 δQ2 0

∗ Ξ −C>r
∗ ∗ I − η3I

+

−IA>r
B>fr

V + V >
[
−I Ar Bfr

]
� −ϑI, Q2 � ϑI, (16)

where the following conditions hold for different frequency ranges:

(i) δ = 1, Ξ = P2 − 2 cos(θl)Q2 + C>r Cr, for the low frequency range Θ = {θf : θf ≤ θl};
(ii) δ = ejθc, Ξ = P2 − 2 cos(θd)Q2 + C>r Cr, for the middle frequency range Θ = {θf : θ1 ≤ θf ≤ θ2}

with θc = (θ1 + θ2)/2, θd = (θ2 − θ1)/2;

(iii) δ = −1, Ξ = P2 + 2 cos(θh)Q2 + C>r Cr, for the high frequency range Θ = {θf : θf ≥ θh}.
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Proof. It is proved in Theorem 3.1 that (11a) and (11b) are equivalent to conditions (5a) and (5b),

respectively. To demonstrate that (16) is equivalent to the condition (9), we derive the state-space

realization of Tfr(q)− I through (Ar,Bfr, Cr,−I). Then, by setting the matrix Π = diag(I,−η3I)

and using the state-space realization (Ar,Bfr, Cr,−I) in Lemma 5.1, we obtain the equivalence

between (16) and (9). The proof procedure of the equivalence is similar to that of (11c) in the proof

of Theorem 3.1. This completes the proof. �

The optimization problem in Theorem 4.1 can be solved by Algorithm 1 as well. However, the key

to achieving satisfactory estimation results is to ensure that ‖Tfr(q)− I‖H∞(Θ) is sufficiently small.

This usually requires several iteration steps by Algorithm 1 and results in heavy computational

loads when dealing with large-scale systems.

4.2. Convex approximation with suboptimality gap

To reduce the computational complexity, we relax the estimation condition (9) by letting Tfr(q)

approximate the identity matrix at κ ∈ N selected frequency points θi ∈ Θ instead of the whole

frequency range Θ, i.e.,∥∥∥Real
(
Tfr(e

jθi)
)
− I
∥∥∥2

2
≤ η̄2i, and

∥∥∥Imag
(
Tfr(e

jθi)
)∥∥∥2

2
≤ η̄3i, i ∈ {1, . . . , κ}, (17)

where η̄2i, η̄3i ∈ R+, Real( · ) and Imag( · ) denote the real and imaginary parts of the transfer

function, respectively. By replacing (9) in Problem 2 with the relaxed condition (17), we obtain the

following relaxed version of Problem 2.

Problem 2r. (Fault estimation with finite frequency content) Consider the system (1), the struc-

ture of F(q) in (3), and the residual (4). Given a scalar β ∈ [0, 1], find F(q) via the minimization

program:

min
η1,η̄2i,η̄3i∈R+,F(q)

{
βη1 +

1− β
κ

κ∑
i=1

(η̄2i + η̄3i) : (5a), (5b), (17)

}
.

Before presenting the solution to Problem 2r, let us make some clarifications on F(q). To simplify

the design, we fix the poles of the filter as follows: select roots of a(q) inside the unit disk and

set da = dN so that the fault estimation filter is stable and strictly proper. Subsequently, the

coefficient matrices Ni for i ∈ {0, 1, . . . , dN} are the only parameters to be designed.

Recall the mapping relations presented in (4). For the sake of clarity, we further write the transfer

functions Tfr(q) and Tωr(q) into

Tfr(q) = −N (q)G

a(q)
= N̄ΨG(q) and Tωr(q) = −N (q)W

a(q)
= N̄ΨW (q), (18)

where

ΨG(q) = −a−1(q)diag(G, . . . , G)[I, qI, . . . , qdN I]>, and

ΨW (q) = −a−1(q)diag(W, . . . ,W )[I, qI, . . . , qdN I]>.

By utilizing the multiplication rule of polynomial matrices [8, Lemma 4.2] in (18), we obtain the

polynomial matrices ΨG(q) and ΨW (q) that contain all known elements in Tfr(q) and Tωr(q),

respectively. Now, we can present the design method of F(q) depicted in Problem 2r in the following

theorem.



14 JINGWEI DONG, KAIKAI PAN, SERGIO PEQUITO AND PEYMAN MOHAJERIN ESFAHANI

Theorem 4.2 (Optimal estimation: finite relaxation QP). Consider the system (1), the structure

of F(q) in (3), and the reformulations of Tfr(q) and Tωr(q) in (18). Given the order dN , the

dimension nr = nf , the stable denominator a(q) with da = dN , κ frequency points θi ∈ Θ, and the

weight β ∈ [0, 1], the optimization problem in Problem 2r can be stated as the following QP problem:

min βη1 +
1− β
κ

κ∑
i=1

(η̄2i + η̄3i)

s.t. N̄ ∈ Rnr×(dN+1)(nx+ny), η1, η̄2i, η̄3i ∈ R+, i ∈ {1, . . . , κ},
N̄ H̄ = 0, (19a)

Trace
[
N̄ΦN̄>

]
≤ η1, (19b)∥∥N̄Ri − I∥∥2

2
≤ η̄2i, ∀i ∈ {1, . . . , κ}, (19c)∥∥N̄ Ii∥∥2

2
≤ η̄3i, ∀i ∈ {1, . . . , κ}, (19d)

where Ri = Real
(
ΨG(ejθi)

)
, Ii = Imag

(
ΨG(ejθi)

)
, and Φ = 1

2π

∫ π
−π ΨW (ejθ)Ψ∗W (ejθ)dθ.

Proof. The proof is relegated to Section 5.2. �

Compared to (16), the design of the fault estimation filter presented in Problem 2r stands out

for its integration of more lenient conditions, as expounded in reference (19). Notably, this design

exhibits computational tractability, owing to its formulation as a QP problem. Leveraging the

approximation idea from [36], the solution to (19) can be approximated as follows.

Corollary 4.3 (Approximate analytical solution). Consider the convex QP problem in (19) with

the 2 norm replaced by the Frobenius norm. An approximate analytical solution to (19) is given by:

N̄ ?
App(γ) =

1− β
γκ

κ∑
i=1

R>i

[
γ−1

(
βΦ +

1− β
κ

κ∑
i=1

(RiR>i + IiI>i )

)
+ H̄H̄>

]†
, (20)

where ( · )† denotes the pseudo-inverse and γ ≥ 0 is the Lagrange multiplier. In particular, the

approximate solution converges to the optimal solution to (19) as γ tends to ∞.

Proof. We first obtain the dual program of (19) by penalizing the equality constraint (19a), which

is

g(γ) = inf
N̄
L(N̄ , γ) = inf

N̄
βTrace

[
N̄ΦN̄>

]
+

1− β
κ

κ∑
i=1

(∥∥N̄Ri − I∥∥2

F
+
∥∥N̄ Ii∥∥2

F

)
+ γ‖N̄ H̄‖2F ,

where L(N̄ , γ) is the Lagrange function of (19). It holds that supγ≥0 g(γ) = limγ→∞ g(γ).

By taking the partial derivative of the above Lagrange function, we have

∂L(N̄ , γ)

∂N̄
= 2βN̄Φ +

2(1− β)

κ

κ∑
i=1

(
N̄RiR>i −R>i + N̄ IiI>i

)
+ 2γN̄ H̄H̄>.

Setting the partial derivative to zero, we obtain (20), which concludes the proof. �

It is worth mentioning that, for a filter with given poles (fixed denominator a(q)), we can obtain a

suboptimality gap for the original estimation problem stated in Problem 2 by solving the optimiza-

tion problems presented in Theorem 4.1 and Theorem 4.2. We present this result in Proposition 4.4.
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To enhance readability, let us recall the structure of F(q) in (3), and a given stable denomina-

tor a(q), we can define the optimal value of the objective function in Problem 2 as

J ? = min
N (q)

{
β‖Tωr(q)‖2H2

+ (1− β)‖Tfr(q)− I‖2H∞(Θ) : TXr(q) = 0
}
.

Furthermore, we use η?1,AO and η?3,AO to represent the values obtained by solving the optimization

problem (16) using the AO approach, and use η?1,RR, η̄?2i,RR, and η̄?3i,RR to denote the optimal values

obtained by solving the optimization problem (19). The suboptimality gap for Problem 2 can be

obtained as presented in the next proposition.

Proposition 4.4 (Suboptimality gap with fixed poles). Given a stable denominator a(q), the opti-

mal value of the objective function in Problem 2 is bounded by

βη?1,RR +
(1− β)

κ

κ∑
i=1

(η̄?2i,RR + η̄?3i,RR) ≤ J ? ≤ βη?1,AO + (1− β)η?3,AO. (21)

Proof. The proof is relegated to Section 5.2. �

In contrast to the immediate acquisition of the lower bound from the optimization problem’s

resolution in reference (19), the upper bound derived through the AO approach generally demands

multiple iterative phases. This iterative nature can lead to substantial computational burdens unless

the initial value is judiciously selected. Fortunately, a remedy lies in employing the solution from the

more lenient design problem described in Theorem 4.2 as the starting point. This initial solution

provides a solid foundation for refining the upper bound outlined in reference (16) through the

utilization of the AO approach in solving the optimization problem. The entire process is succinctly

encapsulated in Algorithm 2.

Algorithm 2 Computing the suboptimality gap in (21)

Setp 1. Initialization

(a) Select dN , nr = nf , and a stable denominator a(q)

(b) Select κ frequency points uniformly from the frequency range Θ and the weight β

Step 2. Derivation of the lower bound

(a) Compute the matrix Ri, Ii, and Φ for i ∈ {1, . . . , κ}
(b) Find the numerator N ?

RR(q) and the bounds η?1,RR, η̄?2i,RR, and η̄?3i,RR by solving (19)

(c) Output the lower bound: βη?1,RR + (1−β)
κ

∑κ
i=1(η̄?2i,RR + η̄?3i,RR)

Step 3. Derivation of the upper bound

(a) Set N ?
RR(q) as the initial condition and fix a(q) for (16)

(b) Optimize the numerator by solving (16) with the AO approach, and obtain η?1,AO and η?3,AO
(c) Output the upper bound: βη?1,AO + (1− β)η?3,AO

We close this section with the following remarks on the proposed design approaches to fault

estimation filters.

Remark 4.5 (Trade-off analysis). There is a trade-off between decoupling the unknown signals X

(consisting of the unknown state x and disturbance d), suppressing the noise ω, and estimating the

fault f in (16) and (19). First, the feasible solutions to (16) and (19) lie in the left null space of H̄,

which restricts the choice of N̄ . Second, increasing β improves the noise suppression capability of the

filter. However, it reduces the estimation performance and vice versa. The trade-offs can, therefore,

be used as a guide for selecting appropriate weights.
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Remark 4.6 (Selection of decision variable sets). When using the AO approach to solve the bilinear

optimization problems stated in Theorem 3.1 and Theorem 4.1, it is essential to partition the decision

variables in the bilinear terms into two sets, namely Gk1 and Gk2 . We observe that, for different

optimization problems, the choice of decision variable sets greatly influences the convergence speed

of the AO approach. In particular, when solving the optimization problem (16), if we select the

decision variable sets without overlap, i.e., {Nk
0 , . . . , N

k
dN
, ak0, . . . , a

k
dN
} and {P k1 , P k2 , Qk1, Qk2, V k}, it

leads to a more efficient solution compared to the selection approach in (12).

Remark 4.7 (Fault estimation for non-minimal phase systems). For a non-minimal phase system,

it is reported in the literature [6, Theorem 14.5] that the optimal distance between Tfr and I in

the H∞ framework is 1, i.e., minN̄ ‖Tfr(q) − I‖H∞ = 1, which indicates that a satisfactory fault

estimation over the whole frequency range is not achievable. Our methods proposed in Theorem 4.1

and Theorem 4.2 can improve the estimation performance by limiting the frequency range inter-

ested for the fault estimation purpose. We will substantiate this assertion by presenting supporting

evidence from simulation results.

Remark 4.8 (Conservatism analysis). The conservatism of the fault estimation filter design method

is summarized as follows:

(i) In order to reduce computational complexity, we adopt a selective approach for the design of fault

estimation filters in (19). Specifically, we only impose constraints on a subset of frequency points

in Θ, instead of all the frequency points. As a result, the estimation performance at the other

frequency points in Θ may not be guaranteed. However, as demonstrated by simulation results,

the degradation of estimation performance at those points is minor.

(ii) For simplicity, the denominator of the transfer function a(q) is fixed in the optimization prob-

lem (19), which restricts the design freedom. However, including the simultaneous design of

both a(q) and N (q) would result in a much more complex optimization problem, which might not

be computationally tractable.

5. Technical Proofs of Main Results

5.1. Proofs of results in fault detection

The following two lemmas are required for the proof of Theorem 3.1.

Lemma 5.1. (GKYP lemma [11]) Consider a transfer function defined by T(q) = C(qI−A)−1B+D.

Given a symmetric matrix Π and a frequency range Θ, the following statements are equivalent:

(i) The inequality holds in the frequency range θ ∈ Θ[
T(ejθ)

I

]∗
Π

[
T(ejθ)

I

]
≺ 0.

(ii) There exists Hermitian matrices P and Q with appropriate dimensions and Q � 0 such that[
A B
I 0

]>
Λ

[
A B
I 0

]
+

[
C D
0 I

]>
Π

[
C D
0 I

]
≺ 0,

where the following holds:

a. For the low frequency range Θ = {θ : 0 ≤ θ ≤ θl}, Λ =

[
−P Q
Q P − 2 cos(θl)Q

]
;
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b. For the middle frequency range Θ = {θ : θ1 ≤ θ ≤ θ2}, Λ =

[
−P ejθc Q

e−jθc Q P − 2 cos(θd)Q

]
,

where θc = (θ1 + θ2)/2, θd = (θ2 − θ1)/2;

c. For the high frequency range Θ = {θ : θ ≥ θh}, Λ =

[
−P −Q
−Q P + 2 cos(θh)Q

]
.

Lemma 5.2. (Finsler’s lemma [37]) For matrices V and Y with appropriate dimensions, the fol-

lowing statements are equivalent:

(i) Y⊥V
(
Y⊥
)> ≺ 0, where Y⊥ denote the matrix satisfying Y⊥Y = 0;

(ii) There exists a matrix U such that V + YU + U>Y> ≺ 0.

Proof of Theorem 3.1. First, the constraint (11a) implies N (q)H(q) = 0 according to the multi-

plication rule of polynomial matrices [8, Lemma 4.2], which means that X is completely decoupled

from the residual r. Thus, the condition (5a) is satisfied.

Second, according to (4), the transfer function from ω to r is −a−1(q)N (q)W when (11a) is

satisfied, and its state-space realization is denoted by (Ar,Bωr, Cr). According to the classical result

on H2 norm [33, Lemma 1], we can directly obtain the equivalence between (11b) and (5b).

In the last part of the proof, we demonstrate that the constraints (11c) are equivalent to the

mapping requirement on the H performance (5c). We only present the result for the low-frequency

scenario, as the proofs for the mid-frequency and high-frequency cases follow similar logic. According

to Lemma 5.2, the first matrix inequality in (11c) is equivalent to[[
A>r
B>fr

]
I

] −P2 δQ2 0

∗ Ξ 0

∗ ∗ η2I

[[Ar Bfr]
I

]
� −ϑI, (22)

where δ = 1 and Ξ = P2 − 2 cos(θl)Q2 − C>r Cr for the low-frequency case. Expanding (22) leads to[
Ξ 0

∗ η2I

]
−

[
A>r
B>fr

]
P2

[
Ar Bfr

]
+

[
A>r
B>fr

] [
Q2 0

]
+

[
Q>2
0

] [
Ar Bfr

]
=

[
Ξ−A>r P2Ar +A>r Q2 +Q>2 Ar −A>r P2Bfr +Q>2 Bfr

∗ −B>frP2Bfr + η2I

]

=

[
Ar Bfr
I 0

]> [−P2 Q2

∗ P2 − (2 cos(θl))Q2

] [
Ar Bfr
I 0

]
+

[
Cr 0

0 I

]> [−I 0

0 η2I

] [
Cr 0

0 I

]
� −ϑI.

(23)

Recall that the transfer function from f to r, denoted by Tfr(q), has a state-space realization given

by (Ar,Bfr, Cr). From Lemma 5.1, the last line of (23) is equivalent to[
Tfr(e

jθ)

I

]∗ [−I 0

0 η2I

] [
Tfr(e

jθ)

I

]
= −T∗fr(ejθ)Tfr(ejθ) + η2I � −ϑI.

Thus, it holds that ‖Tfr(ejθ)‖2H (Θ) ≥ η2 for θ ∈ Θ. This completes the proof. �

To prove Theorem 3.6, we first introduce the following lemma.

Lemma 5.3. (Linear transformation of sub-Gaussian signals [28, Lemma 4.3] ) Let Tωr be the

transfer function from ω to r. If ω follows the i.i.d. sub-Gaussian distribution with zero mean

and parameter λω, the signal r is sub-Gaussian with zero mean and respective parameter λr =

‖Tωr‖H2λω.
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Proof of Theorem 3.6. We first show that the given FAR, i.e., ε1, is guaranteed if Jth is deter-

mined by (14) in the absence of faults. From (4), the residual r = Tωr(q)[ω] since X is decoupled

and f = 0. According to Lemma 5.3, r is sub-Gaussian and its parameter λr satisfies

λr = ‖Tωr(q)‖H2λω ≤
√
η?1λω, (24)

where the inequality holds by invoking Theorem 3.1. Then, we have

Pr[J(r) > Jth|f = 0] = Pr

 1

T

k1+T∑
k=k1

‖r(k)‖2 > Jth

∣∣∣∣f = 0


(a)

≤ Pr

k1+T∑
k=k1

√
nr‖r(k)‖∞ > T Jth

∣∣∣∣f = 0


(b)

≤
k1+T∑
k=k1

Pr

[
‖r(k)‖∞ >

Jth√
nr

∣∣∣∣f = 0

]
(c)

≤ 2T nr e
− (Jth/

√
nr)

2

2λ2r

(d)

≤ 2T nr e
− J2th

2nrη
?
1λ

2
ω . (25)

The inequality (a) holds as a result of the equivalence of vector norms, i.e., ‖r(k)‖2 ≤
√
nr‖r(k)‖∞.

The inequality (b) holds due to the fact that Pr[v1 + v2 > v3] ≤ Pr[v1 > v3/2] + Pr[v2 > v3/2]

where v1, v2, v3 ∈ R+. The inequality (c) is derived from the concentration inequality in Lemma 3.4.

And the inequality (d) is established according to (24). By substituting (14) into the last inequality,

we arrive at Pr[J(r) > Jth|f = 0] ≤ ε1. This completes the first part of the proof.

Second, we demonstrate that (15) holds when faults f ∈ Ωf happen. To do so, we start by
considering the residual r, which is given by r = Tfr[f ] + Tωr[ω] and has an expectation of E[r] =

Tfr[f ]. Note that r − E[r] = Tωr[ω] is sub-Gaussian with the parameter
√
η?1λω as stated before.

Thus, for a positive scalar ε ∈ R+, we have

Pr

{
k1+T∑
k=k1

‖r(k)−E[r(k)]‖∞ > T ε
∣∣∣∣f ∈ Ωf

}
≤ 2T nr e

− ε2

2η?1λ
2
ω ,

which is equivalent to

Pr

{
k1+T∑
k=k1

‖r(k)−E[r(k)]‖∞ ≤ T ε
∣∣∣∣f ∈ Ωf

}
≥ 1− 2T nr e

− ε2

2η?1λ
2
ω .

Since it holds that
∑k1+T

k=k1
(‖E[r(k)]‖∞ − ‖r(k)‖∞) ≤

∑k1+T
k=k1

‖r(k)−E[r(k)]‖∞, we have

Pr


k1+T∑
k=k1

(‖E[r(k)]‖∞ − ‖r(k)‖∞) ≤ T ε
∣∣∣∣f ∈ Ωf

 ≥ 1− 2T nr e
− ε2

2η?1λ
2
ω .

Let T ε =
∑k1+T

k=k1
‖E[r(k)]‖∞ − T Jth > 0. The above inequality becomes

Pr


k1+T∑
k=k1

‖r(k)‖∞ ≥ T Jth
∣∣∣∣f ∈ Ωf

 ≥ 1− 2T nr e
− ε2

2η?1λ
2
ω . (26)

Besides, we have the following inequalities

k1+T∑
k=k1

‖E[r(k)]‖∞ ≥
1
√
nr

k1+T∑
k=k1

‖E[r(k)]‖2 =
1
√
nr

k1+T∑
k=k1

‖Tfr[f(k)]‖2 ≥
√
η?2√
nr
T f,
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where the first inequality holds because of the equivalence of vector norms and the second inequality

follows from the result in Theorem 3.1, i.e., ‖Tfr‖2H (Θ) ≥ η
?
2, and ‖f(k)‖2 ≥ f for f ∈ Ωf . To make

sure that ε is positive, we let ε = 1
T
∑k1+T

k=k1
‖E[r(k)]‖∞−Jth >

√
η?2/nrf −Jth > 0. Thus, the lower

bounds of f satisfies f > Jth
√
nr/η?2.

From the inequalities (26), we obtain

Pr
{
J(r) > Jth

∣∣f ∈ Ωf

}
= Pr

{
1

T

k1+T∑
k=k1

‖r(k)‖2 > Jth

∣∣∣∣f ∈ Ωf

}

≥ Pr

{
1

T

k1+T∑
k=k1

‖r(k)‖∞ > Jth
∣∣f ∈ Ωf

}

≥ 1− 2T nr e
− ε2

2η?1λ
2
ω ≥ 1− 2T nr e

−
(f
√
η?2/nr−Jth)

2

2η?1λ
2
ω .

This completes the proof. �

5.2. Proofs of results in fault estimation

To prove Theorem 4.2, we compute the covariance matrix of the output when the LTI system is

driven by the white noise signal through the following lemma.

Lemma 5.4. (Covariance of the residual) Consider the expression of the residual in (4) with the

unknown signal X decoupled. The noise ω is assumed to be an i.i.d. white noise and the fault f is

considered to be deterministic. The covariance matrix of r is given by

E [(r(k)−E[r(k)])(r(k)−E[r(k)])∗] =
1

2π

∫ π

−π
Tωr(e

jθ)E [ω(k)ω∗(k)]T∗ωr(e
jθ)dθ.

Proof. Let hωr(k) be the impulse response of Tωr(q). The covariance function of r(k) denoted

by Vr(τ) for τ ∈ N can be written as

Vr(τ) = E [(r(k + τ)−E[r(k + τ)])(r(k)−E[r(k)])∗]

= E

[( ∞∑
m=0

hωr(m)ω(k + τ −m)

)( ∞∑
l=0

hωr(l)ω(k − l)

)∗]

=
∞∑
m=0

∞∑
l=0

hωr(m)E [ω(k + τ −m)ω∗(k − l)]h∗ωr(l)

=

∞∑
m=0

∞∑
l=0

hωr(m)Vω(τ −m+ l)h∗ωr(l),

where Vω(τ −m+ l) is the covariance function of ω. Now, we proceed to derive the spectrum of r(k)

denoted by Γr(q) via applying the Z-transform on Vr(τ), which is

Γr(q) =

∞∑
k=−∞

Vr(k)q−k =

∞∑
k=−∞

∞∑
m=0

∞∑
l=0

hωr(m)Vω(k −m+ l)h∗ωr(l)q
−(k−m+l)q−mql

=

∞∑
m=0

hωr(m)q−m
∞∑

k=−∞
Vω(k −m+ l)q−(k−m+l)

∞∑
l=0

h∗ωr(l)q
l

= Tωr(q)Γω(q)T∗ωr(q
−∗),
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where Γω(q) is the spectrum of ω. When τ = 0, since ω is an uncorrelated sequence, we have

Vr(0) = E [(r(k)−E[r(k)])(r(k)−E[r(k)])∗]

=
∞∑
m=0

∞∑
l=0

hωr(m)E [ω(k −m)ω∗(k − l)]h∗ωr(l) =
∞∑
m=0

hωr(m)E [ω(k)ω∗(k)]h∗ωr(m)

=
1

2πj

∫ π

−π
Γr(q)q−1dq =

1

2πj

∫ π

−π
Tωr(q)E [ω(k)ω∗(k)]T∗ωr(q)q−1dq,

where the inverse Z-transform and the fact that q−∗ = q on the unit circle are used in the last two

equations. Also, due to the derivative dq/dθ = j ejθ, we arrive at

E [(r(k)−E[r(k)])(r(k)−E[r(k)])∗] =
1

2π

∫ π

−π
Tωr(e

jθ)E [ω(k)ω∗(k)]T∗ωr(e
jθ)dθ.

This completes the proof. �

Proof of Theorem 4.2. First, Theorem 3.1 demonstrates that (19a) is equivalent to conditions (5a).

Second, we establish that (19b) implies the satisfaction of (5b). Recall that r = Tfr(q)[f ]+Tωr(q)[ω]

where Tωr(q) = N̄ΨW (q) and the fault signal is assumed to be deterministic. According to

Lemma 5.4, the covariance of r satisfies

E [(r(k)−E[r(k)])(r(k)−E[r(k)])∗] =
1

2π

∫ π

−π
Tωr(e

jθ)E[ω(k)ω∗(k)]T∗ωr(e
jθ)dθ

� λ2
ω

2π

∫ π

−π
Tωr(e

jθ)T∗ωr(e
jθ)dθ

= N̄ λ2
ω

2π

∫ π

−π
ΨW (ejθ)Ψ∗W (ejθ)dθN̄> = N̄ΦN̄>λ2

ω, (27)

where the aforementioned inequality holds due to its demonstration through Taylor series expansion

and comparison of terms of the same power for φ (defined in Lemma 3.4). It can be shown that

for sub-Gaussian random variables, E[ω(k)ω∗(k)] � λ2
ωI. As a result, the condition (5b) which is

introduced to suppress the effect of the noise on r can be achieved by bounding the trace of N̄ΦN̄>.

This also coincides with the definition of the H2 norm.

In the last part of the proof, we show that (19c) and (19d) enforce the relaxed estimation condi-

tion (17). Note that the transfer function Tfr(q) = N̄ΨG(q) according to (18). Substituting N̄ΨG(q)

into (17) directly leads to (19a) and (19b), respectively. This completes the proof. �

Proof of Proposition 4.4. We first show that the upper bound holds. Since the optimization

problem (16) is an exact reformulation of Problem 2, applying the AO approach to solve (16) leads

to the convergence of the objective function value to the optimal value J ? of Problem 2. Thus, the

derived objective function value, i.e., η?1,AO + (1− β)η?3,AO, is an upper bound on J ?.
In the second part of the proof, we demonstrate the satisfaction of the lower bound by contradic-

tion. Suppose that

min
N (q)

1

κ

κ∑
i=1

‖Tfr(ejθi)− I‖22 ≥ min
N (q)
‖Tfr(ejθ)− I‖2H∞(Θ).

Let N ?(q) and N ?
RR(q) denote the optimal solutions to

min
N (q)
‖Tfr(ejθ)− I‖2H∞(Θ) and min

N (q)

1

κ

κ∑
i=1

‖Tfr(ejθi)− I‖22,
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respectively. Recall the definition of the restricted H∞ norm and the following inequalities hold

1

κ

κ∑
i=1

‖Tfr(ejθi ,N ?
RR(q))− I‖22 ≥ sup

θ∈Θ
‖Tfr(ejθ,N ?(q))− I‖22

≥ 1

κ

κ∑
i=1

‖Tfr(ejθi ,N ?(q))− I‖22,

where Tfr(e
jθi ,N ?

RR(q)) indicates the usage of N ?
RR(q) in Tfr, and the rest are similar. The above

inequality contradicts the fact that N ?
RR(q) is the optimal solution to minN (q)

1
κ

∑κ
i=1 ‖Tfr(ejθi) −

I‖22. Thus, we have minN (q)
1
κ

∑κ
i=1 ‖Tfr(ejθi)− I‖22 ≤ minN (q) ‖Tfr(ejθ)− I‖2H∞(Θ). Additionally,

the constraints (5a) and (5b) on noise suppression and disturbance decoupling are identical in both

Problems 2 and 2r. As a result, the optimal objective value of Problem 2r, obtained by solving (19),

serves as a lower bound for J ?. This completes the proof. �

6. Simulation results

In this section, we validate the effectiveness of the proposed fault detection and estimation meth-

ods on a synthetic non-minimum phase system and a multi-area power system.

6.1. Non-minimum phase systems

Consider a synthetic non-minimum phase system T(s) = (s−2)(s+0.1)
(s+0.1)(s+0.5)(s+0.8) whose state-space

realization is

A =

−1.4 −0.53 −0.04

1 0 0

0 1 0

 , Bf =

1

0

0

 , and C =
[
1 −1.9 −0.2

]
.

We discretize the model with the sampling period 0.1s. Note that the inverse system of a non-

minimum phase system is unstable because of the zeros located at the right-half complex plane

(or outside of the unit disk for discrete-time cases). This makes the fault estimation problem of

non-minimum phase systems quite challenging [38]. In this part, we use the methods developed

in Theorem 4.1 (ER, exact reformulation) and Theorem 4.2 (RR, relaxed requirement) to estimate

the fault signal that occurs in the above non-minimum phase system without considering distur-

bances and noise. We also compare the two methods with the UIO (unknown input observer)

method [31], the LS (least square) method [22], and the IUIE (inversion-based unknown input es-

timation) method [39]. Both the UIO, LS, and IUIE methods are proven to be asymptotically

unbiased estimation methods under certain conditions.

The frequency range of interest is Θ = [0, 0.3] and the fault signal is f(k) = 0.05 sin(0.18k) +

0.06 sin(0.25k). We first design a fault estimation filter with the RR method in Theorem 4.2, where

the parameters are set as dN = 4, β = 0. We choose a stable denominator a(q) = (q− 0.1)5 and 7

frequency points {0, 0.05, 0.1, . . . , 0.3}. By solving the optimization problem (19), we obtain the

numerator N ?
RR(q) and the optimal values

∑κ
i=1 η̄

?
2i,RR = 1.42 and

∑κ
i=1 η̄

?
3i,RR = 0.06. Then, we

fix the denominator a(q) and take N ?
RR(q) as the initial condition when using the ER method in

Theorem 4.1 and Algorithm 1 to design the fault estimation filter. We have η?3,AO = 0.29 after 50

iteration steps. According to (21), the suboptimality gap is 0.21 ≤ J ? ≤ 0.29.

The fault signal and its estimates obtained by different methods are presented in Figure 2, while

errors of fault estimates are shown in Figure 3. As seen in Figure 2, the IUIE method performs
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well initially but experiences divergence at around k = 230. This is because the inversion-based

estimation filter is unstable. Both the LS and UIO methods produce high estimation errors as

shown in Figure 3. In comparison with the above methods, the proposed ER and RR methods offer

better estimation performance. In Figure 4, we further demonstrate that increasing the degree of

the RR filter leads to a reduction in the estimation error.
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Figure 2. Fault estimates.
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Figure 3. Errors of fault estimates.
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Figure 4. Errors of fault estimates with different degrees.

6.2. Multi-area power systems

6.2.1. System description. Consider a multi-area power system described in [3]. Suppose each area of

the power system can be represented by a model with equivalent governors, turbines, and generators.

Then, in area i for i ∈ {1, 2, 3}, the dynamics of frequency ∆wi can be written as

∆ẇi = w0
2hiSBi

(∆pmi −∆ptiei −∆pdi − 1
Dli

∆wi),

∆pmi =
∑Geni

g=1 ∆pmig , ∆ptiei =
∑

j∈Nbri ∆ptieij ,

∆ṗmig = − 1
Tchig

(∆pmig + 1
Si

∆wi − ρig∆pagci),
∆ṗtieij = 2πPTij (∆wi −∆wj),

ACEi = ζi∆wi + ∆ptiei ,

∆ṗagci = −KIiACEi,

(28)

where hi represents the equivalent inertia constant, f0 denotes the nominal frequency, SBi is the

power base, ∆pmi denotes the total generated power, ∆ptie,i denotes the total tie-line power ex-

changes from area i, ∆pdi denotes the deviation caused by the load, and 1/Dli∆wi is the deviation

caused by the frequency dependency of the load. Let Geni and Nbri be the number of generators and

the set of areas that connect to area i, respectively. The term ∆pmig denotes the power generated
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by the gth generator, ∆ptieij is the power exchanges between area i and j, and PTij is the maximum

transfer power on the line, which is assumed to be constant. It holds that ∆ptieij = −∆ptieji . For

the dynamics of ∆pmig , Tchig is the governor-turbine’s time constant, and Si is the drop coefficient.

The term ∆pagci is the Automatic Generation Control (AGC) signal and ρig is the participating

factor, i.e.,
∑Geni

g=1 ρig = 1. The area control error signal is denoted by ACEi and ζi is the frequency

bias factor. The AGC signal ∆pagci in the last line of (28) is in integration of ACEi with the integral

gain KIi .

Note that different faults may happen due to the vulnerabilities of multi-area systems. Here, we

consider the following fault scenarios:

(i) faults on the tie line between areas that cause deviation in frequency, i.e., ∆ṗtieij = 2πPTij (∆wi−
∆wj + ftieij );

(ii) faults on the AGC part of area i, i.e., ∆ṗagci = −KIi(ACEi + fagci);

(iii) faults on the sensors of area i, i.e., yi(t) = Cixi(t) +Df,ifyi , where yi, Ci and xi are the output,

the output matrix, and states of area i, respectively. The matrix Df,i characterizes the sensors

that are vulnerable.

Based on the dynamics (28) and descriptions of the faults, we get the following state-space model

of area i in the presence of faults{
ẋi(t) = Aiixi(t) +Bd,i∆pdi(t) +Bω,iωi(t) +

∑
j∈Nbri

Aijxj(t) +Bf,ifi(t)

yi(t) = Cixi(t) +Dω,iωi(t) +Df,ifyi(t),

where the state xi =
[
∆ptiei ∆wi {∆pmig}1:Geni ∆pagci

]>
, fi = [{ftieij}j∈Nbri fagci ]

> is the process

fault signal. We introduce a noise signal ω in the system. The matrices Aii, Bd,i, Aij , Bf,i, Df,i can

be derived based on the dynamics (28) and the vulnerable parts of area i. The output matrix Ci is

a tall or square matrix with the full column rank, i.g., Ci = I. The matrices Bω,i and Dω,i indicate

which signal is affected by the noise. By stacking the state of each area, i.e., x = [x>1 , x
>
2 , x

>
3 ]> and

discretizing the system with sampling period 0.1s, we obtain the discrete-time state-space model for

the whole three-area power system in the form of (1). The system matrices are given by

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 , Bd = diag(Bd,1, Bd,2, Bd,3), Bf = diag(Bf,1, Bf,2, Bf,3), B = D = 0,

Bω = diag(Bω,1, Bω,2, Bω,3), Dω = diag(Dω,1, Dω,2, Dω,3), and Df = diag(Df,1, Df,2, Df,3).

The parameters of the system are given as follows: (1) The nominal frequency (Hz), w0 = 60; (2)

The inertia time constant (MW/MVA), h1 = 4.41, h2 = 4.15, h3 = 3.46; (3) The power base (MVA),

SB1 = 1500, SB2 = 2100, SB3 = 1700; (4) The damping coefficient (Hz/MW), Dl1 = 0.0064, Dl2 =

0.0045, Dl3 = 0.0056; (5) The number of generators, Gen1 = 2, Gen2 = 3, Gen3 = 2; (6) The time

constant of governor-turbine: Tchig = 1.4950 for all i ∈ {1, 2, 3} and g ∈ {1, . . . , Geni}; (7) The

drop control coefficient (MW/Hz), S1 = 0.002, S2 = 0.0014, S3 = 0.0018; (8) The participation

factor, ρ11 = ρ12 = ρ31 = ρ32 = 1/2, ρ21 = ρ22 = ρ23 = 1/3; (9) The maximum transfer power

(MW), PT12 = PT13 = PT23 = 2100; (10) The frequency bias factor (Hz/MW), ζ1 = 500.0064, ζ2 =

700.0045, ζ3 = 566.6723; (11) The AGC integral gain, KI1 = KI2 = KI3 = 0.65.

We consider faults in the tie-line of area 1, AGC part of area 2, and the measurement of area 1.

The frequency range Θ = [0, 0.3]. The faulty matrices are Bf,1 = [2πPT12 0 0 0 0]>, Bf,2 =
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[0 0 0 0 0 −KI2 ]>, Df,1 = [0 1 0 0 0]>, and Bf,3 = Df,2 = Df,3 = 0. The fault signals are

ftie12(k) = 0.05 sin(0.2k) + 0.06 sin(0.3k), fagc2(k) = 0.08 sin(0.15k) + 0.03 sin(0.25k), fy1(k) = 0.1.

The unknown loads are ∆pd1(k) = ∆pd2(k) = ∆pd3(k) = 1 + v(k) with uncertain value v(k). The

signal ω is a white noise with zero mean and variance 0.01. The matrices Bω = 0 and Dω = 1,

where 1 represents a column vector with all elements 1. With the above settings, we now present

the simulation results in the following parts.

6.2.2. Fault detection results. For the design of the fault detection filter, we set the dimension of the

residual nr = 3, the degree dN = 2, and the weight α = 0.5 by using Theorem 3.1 and Algorithm 1.

Note that the dimension of the filter is nr(dN+1) = 9, which is smaller than that of the power system

nx = 16. The obtained H2-norm value ‖Tωr‖H2 = 0.0053 and the H index ‖Tfr‖H (Θ) = 0.0254

after 15 iteration steps by Algorithm 1. We determine the threshold Jth = 0.0122 according to

Theorem 3.6 with the acceptable FAR ε1 = 0.001 and time interval T = 10. Then, we compute

FDR ε2 = 0.9909 for f > 0.17.

Figure 5 presents the changes in the value of the evaluation function. One can see that the

value of J(r(k)) remains below the threshold Jth for k ≤ 50 and exceeds Jth immediately after

faults happen at k = 50, thus indicating the detection of faults. Moreover, the threshold derived

using (14) is found to be less conservative than the threshold derived using Chebyshev’s inequality,

i.e., λω
√
T nrη?1/ε1 = 0.1603. Finally, let us consider a more stringent situation, e.g., Dω = 0.1I.

We show in Figure 6 that increasing the dimension of the residual can lead to better H indices.
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Figure 5. The evaluation function’s value.
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Figure 6. The H index.

6.2.3. Fault estimation results. When using the proposed ER and RR methods to design fault es-

timation filters, we choose the degree of the numerator dN = 4 and the dimension of the resid-

ual nr = nf . For the RR method, we select a stable denominator a(q) and some frequency points

between [0, 0.3], which are {0, 0.1, 0.2, 0.3}. To validate the performance of ER and RR methods,

we compare them with the UIO, LS, and IUIE methods in the two cases of no noise and considering

noise. Note that we revised the LS method in [22] by decoupling the disturbance, which is not

considered in the original work. When using the IUIE method, we simultaneously estimate the

disturbance and fault signals.

In the noise-free situation, we choose the weight β = 0 in the optimization problems (16) and (19).

We first design a fault estimation filter with the ER method. By solving (16) with AO approach, we

obtain η?3,AO = 0.0172 after 50 iteration steps. When utilizing the RR method to design the filter, we

have
∑κ

i=1 η̄
?
2i,RR = 2.1×10−4 and

∑κ
i=1 η̄

?
3i,RR = 1.1×10−4. The estimation results are presented in
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Figures 7-10. Figures 7-9 show the estimates of the tie-line fault ftie12 , the AGC fault fagc2 , and the

sensor fault fy1 by different methods. Since the UIO, LS, and IUIE methods both obtain unbiased

estimation results with a one-step delay, estimation errors of the three methods are the same as

shown in Figure 10. Incorporating the frequency information of faults can reduce the conservatism

of designing fault estimation filters in the entire frequency range. Thus, one can see from Figure 10

that the proposed ER and RR methods lead to smaller errors than the other three methods.
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Figure 7. Estimates of ftie12 without ω.
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Figure 8. Estimates of fagc2 without ω.
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Figure 9. Estimates of fy1
without ω.
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Figure 10. Estimation errors without ω.

In the case of considering noise, we set the weight β = 0.1. We design a fault estimation filter

with the ER method. It takes 50 iteration steps to achieve η?1,AO = 6.6× 10−5 and η?3,AO = 0.0217

by using Algorithm 1. For the RR method, we have η?1,RR = 1 × 10−7,
∑κ

i=0 η̄
?
2i,RR = 4.2 × 10−6,

and
∑κ

i=0 η̄
?
3i,RR = 3.2 × 10−4 by solving (19). Since we ignore the effects of noises in the design

of the UIO, LS, and IUIE methods, we consider a much smaller noise whose variance is 2.5× 10−5

for these three methods. Figures 11-13 depict the estimates of the fault signals in the presence of

noise by different methods. One can see from Figure 12 that the estimates of the AGC fault signal

obtained by the UIO, LS, and IUIE methods are corrupted by noise seriously, which is the main

source of the estimation error. In contrast, thanks to the noise suppression and design in the specific

frequency range, the ER and RR methods achieve smaller estimation errors than the other three

methods under the effects of noise as illustrated in Figure 14.

7. Conclusions

In this paper, we proposed the design methods of FDE filters in the frequency range for LTI

systems with disturbances and stochastic noise. Based on an integration of residual generation

and norm approaches, the optimal design of fault detection filters that simultaneously decouple

the disturbance, suppress noise, and enhance fault sensitivity is formulated into an optimization
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Figure 11. Estimates of ftie12 with ω.
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Figure 12. Estimates of fagc2 with ω.
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Figure 13. Estimates of fy1
with ω.
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Figure 14. Estimation errors with ω.

problem. Considering the random nature of the residual, we design detection thresholds that provide

probabilistic guarantees on FAR and FDR simultaneously. We further propose the design method

of fault estimation filters in the same optimization framework as the fault detection filter design.

To reduce computational complexity, we relax the fault estimation conditions and obtain a QP

problem to solve the desired fault estimation filters. In future work, the first research direction is

to develop fault-tolerant control schemes by using estimation to compensate for the effect of faults.

Since nonlinearity exists widely in practical systems, our second research direction would be focused

on extending the derived optimization framework to nonlinear systems.
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