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Abstract. Ground fault detection in inverter-based microgrid systems is challenging, particularly

in a real-time setting, as the fault current deviates slightly from the nominal value. This difficulty

is reinforced when natural disturbances exhibit similar output patterns as a faulty setting does.

The conventional solution of installing more relays to obtain additional measurements is costly and

also increases the complexity of the system. In this paper, we propose diagnosis schemes based on

optimization-based fault detection filters with the output current as the only measurement. Mod-

eling the microgrid dynamics and the diagnosis filter, we formulate the filter design as a linear

programming (LP) problem that accounts for decoupling a class of disturbances and ensuring fault

sensitivity simultaneously. Next, we robustify the filter to disturbances that cannot be fully decou-

pled. To this end, we leverage tools from the existing literature and extend the optimization program

to a quadratic programming (QP) problem in which the filter is trained for this class of disturbances.

To ease the computational effort, we also provide an approximate but analytical solution to this QP.

Additionally, we use classical statistical results to provide a thresholding mechanism that enjoys

probabilistic false-alarm guarantees. Finally, we verify the effectiveness of the proposed methods

through several numerical simulations.

1. Introduction

In the past decade, inverter-based microgrid systems have gained popularity as power systems

become increasingly complex and rely more on renewable energy sources [1]. These microgrid

systems help integrate renewable energy sources into power systems and regulate the amount of

power supplied to customers to provide high-quality power and reduce energy costs. They can also

operate independently and allow for local control of distributed generation, for example, when the

main grid is unavailable due to blackouts or storms [2]. This greatly increases the reliability of power

systems.

Although inverter-based microgrid systems offer many benefits, they are susceptible to faults that

can pose safety risks and damage equipment. Therefore, it is crucial to promptly and accurately

detect faults to ensure the safe operation of inverter-based microgrid systems. However, the conven-

tional protection strategy for power systems, such as overcurrent detection, is inefficient in detecting

faults in inverter-based microgrid systems [3]. This is because the fault current only slightly deviates

from the nominal value due to a current limiter embedded in the inverter controller [4]. According

to IEEE Std. 1547.2 [5], the inverter current when the microgrid systems work in the islanded mode

is restricted to 1-2 times the rated current during short-circuit faults. The fault detection problem
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is more difficult when considering disturbances that have similar effects on the output current as

faults. Therefore, developing an effective fault detection scheme for inverter-based microgrid sys-

tems in the presence of disturbances remains a challenge, particularly when the output current is

the only measurement. In this paper, we focus on the detection of ground faults as they are the

most common and problematic type of faults in inverter-based microgrid systems [6].

To address the fault detection problem for microgrid systems, researchers have developed several

differential methods that rely on communication infrastructures between relays. These methods

measure the difference in the current symmetrical components [7], the energy content of current [8],

the instantaneous current with comparative voltage [9], and the traveling wave polarities [10,11] to

detect faults. Though these methods have shown effectiveness, relying on communication devices can

reduce the reliability of systems as they are vulnerable to faults and cyber attacks. Moreover, most

differential methods require the installation of new equipment, such as relays and communication

infrastructure, which can be expensive and time-consuming to implement and maintain.

In addition to differential methods, active fault detection methods have emerged as another

popular solution to fault detection for microgrid systems in recent years. By introducing carefully

designed input signals into the system, active fault detection methods can enhance the detectability

of faults. In [12], the authors inject a small negative-sequence current (< 3%) into the microgrid

system and detect faults by using a signal processing technique to quantify the resulting negative-

sequence voltage. Most recently, the authors in [13] provide an optimal input design method ensuring

that the output sets of normal and faulty modes of an inverter-based microgrid system are separated

with a probabilistic guarantee. Then, it compares the output of the real-time process with the

output sets to generate diagnosis results. However, the injected input signals can degrade the

system performance to some extent. Additionally, to obtain optimal input sequences as described

in [13], an optimization problem must be solved each time, which can be computationally intensive

and is unsuitable for online monitoring.

In contrast to differential methods, fault detection methods based on residual generation can

be less dependent on the communication infrastructure and additional sensors, as these methods

make full use of modeling information of systems. Moreover, residual generation-based methods are

more suitable for online monitoring than active fault detection methods since they do not require

continuous updates and have no impact on system performance. Let us briefly review several

approaches to designing a residual generator. In the field of fault detection, the residual generator

is generally constructed using observer-based or parity-space methods [14]. To handle disturbances,

optimization techniques can be employed to determine the parameters of the residual generator,

ensuring that the residual is sensitive to faults while being robust against disturbances [15, 16].

Alternatively, decomposition techniques such as the unknown input observer (UIO) [17] can be

utilized to decouple disturbances from the residual. However, we found that the UIO approach

could fail to satisfy the detectability condition when applied to inverter-based microgrid systems

with a limited number of measurements, even when disturbances can be fully decoupled. In [18],

the authors propose a parity-space-like approach for designing residual generators in the framework

of the linear differential-algebraic equation (DAE). The derived residual generator can have lower

order than that of the system, which reduces computational complexity when dealing with large-scale

systems. Additionally, this framework provides design freedom. In specific, one is able to transform

the design of the residual generator into various optimization problems to obtain desired solutions

based on different requirements, such as disturbance decoupling [18], nonlinear suppression [19], and

model mismatch handling [20] in fault detection tasks, as well as multiple fault estimation [21].



3

Main contributions: In this work, we leverage the advantages of the DAE framework to design

fault detection filters for inverter-based microgrid systems. To the best of our knowledge, this is

the first attempt to design fault detection filters using the DAE framework that enables real-time

monitoring of ground faults in inverter-based microgrid systems. It is worth noting that disturbances

may not be completely decoupled in some scenarios because of the limited number of sensors in the

systems. The contributions of this paper are summarized as follows:

• Dynamic system modeling: We develop a unified state-space model for the inverter-based

microgrid system in both normal mode and the presence of ground faults (Sections 2.2, 2.3).

This model is further formulated in the DAE framework, which facilitates the design of

robust fault detection filters.

• Linear programming design for perfect setting: We formulate the design of fault

detection filters into a LP problem (Proposition 3.1), which achieves disturbance decoupling

and ensures fault sensitivity simultaneously.

• Data-assisted disturbance rejection: To deal with non-decoupled disturbances, we bor-

row ideas from [19, Approach (II)] to extend the design to a QP problem, wherein the average

effects of available disturbance patterns on the residual are minimized (Theorem 3.3). In-

spiring from [22, Corollary 1], we also obtain an approximate analytical solution to this

QP problem with arbitrary accuracy (Corollary 3.4), allowing for online updates of filter

parameters.

• Probabilistic false alarm certificate: Leveraging the classical Markov inequality, we

further propose a threshold determination method along with probabilistic false-alarm guar-

antees (Proposition 3.8).

The rest of the paper is organized as follows. The modeling of an inverter-based microgrid system

and the problem formulation are presented in Section 2. In Section 3, we provide design methods

for the fault detection filters. In Section 4, we evaluate the effectiveness of the proposed approaches

with numerical simulations. Finally, Section 5 concludes the paper with some remarks and future

directions.

Notation: Sets R(R+) and N denote all (positive) reals and non-negative integers, respectively.

The space of n dimensional real-valued vectors is denoted by Rn. For a vector v = [v1, . . . , vn], the

infinity-norm of v is ∥v∥∞ = maxi∈{1,...,n} |vi|. The operator diag(v) constructs a diagonal matrix

from the vector v. For two discrete-time signals σ1 and σ2 taking values in Rn with length T , the L2

inner product is represented as ⟨σ1, σ2⟩ :=
∑T

k=1 σ
⊤
1 (k)σ2(k), and the corresponding norm ∥σ1∥L2 :=√

⟨σ1, σ1⟩. The notation 0m×n denotes a zero matrix with m rows and n columns. The identity

matrix with an appropriate dimension is denoted by I. For a random variable χ, Pr[χ] and E[χ]

are the probability law and the expectation of χ.

2. Modeling and Problem Statement

In this section, we present the state-space model of an inverter-based microgrid system and

consider three-phase symmetrical ground faults. Then, we formulate the two problems addressed in

this work.
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Figure 1. Architecture of an inverter-based microgrid system with the diagnosis

component.

2.1. System description

An inverter-based microgrid generally consists of four components: the power supplier, the LCL

filter, the controller, and the load, as shown in Figure 1. Let us elaborate on the functions of each

component.

(1) Power supplier: The power supply part provides power to the microgrid by following a

reference voltage v∗i from the current controller. It contains a distributed generator (DG)

source and an inverter. In this work, we make two assumptions: (1) an ideal DG source is

available, and (2) the inverter switching process can be neglected due to its high switching

frequency. Therefore, instead of modeling the generator and inverter, we can set the output

voltage of the inverter directly to vi = v∗i . The real-time output current of the inverter

is denoted by il. As the single DG source supplies all power to the load, droop control

is unnecessary, and the microgrid frequency ω is constant. This differs from [23], where

multiple DG sources operate simultaneously.

(2) LCL filter: The LCL filter is used to filter the harmonics produced by the inverter. It

consists of two resistors Rf and Rc, two inductors Lf and Lc, and a capacitor Cf . The

signals vo and io denote the grid-side voltage and the output current, respectively.

(3) Controller: The control part keeps the grid-side voltage at some reference voltage v∗o(t).

This can be achieved through an inner current controller and an outer voltage controller,

which are all PI controllers [24]. The outer voltage controller sets reference i∗l (t) for the

inner current controller. The fault current limiter (FCL) is a saturation block that protects

the microgrid from large fault currents.

(4) Load: We assume the load denoted by RL is purely resistive. Note that the unknown part

of the load is the main source of disturbances.

The mentioned voltage and current are based on a three-phase system. We introduce the direct-

quadrature (dq) transform to simplify the analysis. Specifically, for a three-phase system with

current i = [ia ib ic]
⊤ and voltage v = [va vb vc]

⊤ in the abc framework, the dq transform projects i(t)
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and v(t) onto dq-axis, i.e., idq = Pi, vdq = Pv, where idq = [id iq]
⊤ , vdq = [vd vq]

⊤. The projection

matrix P is given by

P =
2

3

[
cos(θ) cos

(
θ − 2π

3

)
cos
(
θ + 2π

3

)
sin(θ) sin

(
θ − 2π

3

)
sin
(
θ + 2π

3

)] ,
in which θ is the constantly changing angle between the d-axis and the a-axis. We refer interested

readers to [25] for more details about the dq transformation. For simplicity of expression, we add

subscripts to indicate the variables after dq transformation throughout the paper, e.g., v
dq−→ vdq,

i
dq−→ idq, and so forth.

2.2. State-space model of the fault-free microgrid system

To obtain the state-space model of the fault-free microgrid system, we first model individual

components of the microgrid including the voltage controller, the current controller, and the LCL

filter in this subsection.

We start with the voltage controller in the control component. Let us transform vo, v
∗
o , io and i∗l

into the dq framework, which are vodq, v
∗
odq, iodq and i∗ldq, respectively. We further define the

cumulative error between vodq and v∗odq by ϕdq := [ϕd ϕq]
⊤, which can be written as

dϕd(t)

dt
= v∗od(t)− vod(t),

dϕq(t)

dt
= v∗oq(t)− voq(t). (1)

Considering that the voltage controller is a PI controller, based on Kirchhoff’s laws, we obtain{
i∗ld(t) = Fiod(t)− ωCfvoq(t) +Kv

P (v∗od(t)− vod(t)) +Kv
I ϕd(t),

i∗lq(t) = Fioq(t) + ωCfvod(t) +Kv
P

(
v∗oq(t)− voq(t)

)
+Kv

I ϕq(t),
(2)

where F is the feedforward coefficient, Kv
P and Kv

I denote the proportional and integral gains of the

voltage controller, respectively. From (1) and (2), we obtain the state-space model of the voltage

controller {
ϕ̇dq(t) = Bv1v

∗
odq(t) +Bv2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

i∗ldq(t) = Cvϕdq(t) +Dv1v
∗
odq(t) +Dv2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

(3)

where the matrices are

Bv1 =

[
1 0

0 1

]
, Bv2 =

[
0 0 −1 0 0 0

0 0 0 −1 0 0

]
, Cv =

[
Kv

I 0

0 Kv
I

]
,

Dv1 =

[
Kv

P 0

0 Kv
P

]
, Dv2 =

[
0 0 −Kv

P −ωCf F 0

0 0 ωCf −Kv
P 0 F

]
.

Similarly, one can obtain the state-space model of the current controller. Let us transform il, i
∗
l

and v∗i into the dp framework, which are ildq, i
∗
ldq and v∗idq, respectively. The cumulative error

between ildq and i∗ldq is denoted by γdq := [γd γq]
⊤, i.e.,

dγd(t)

dt
= i∗ld(t)− ild(t),

dγq(t)

dt
= i∗lq(t)− ilq(t). (4)

Then, the dynamics of the current controller follows{
v∗id(t) = −ωLf ilq(t) +Kc

P (i∗ld(t)− ild(t)) +Kc
Iγd(t),

v∗iq(t) = ωLf ild(t) +Kc
P (i

∗
lq(t)− ilq(t)) +Kc

Iγq(t),
(5)
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where Kc
P and Kc

I denote the proportional and integral gains of the current controller, respectively.

Based on (4) and (5), the state-space model of the current controller is given by{
γ̇dq(t) = Bc1i

∗
ldq(t) +Bc2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

v∗idq(t) = Ccγdq(t) +Dc1i
∗
ldq(t) +Dc2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

(6)

where

Bc1 =

[
1 0

0 1

]
, Bc2 =

[
−1 0 01×4

0 −1 01×4

]
, Cc =

[
Kc

I 0

0 Kc
I

]
,

Dc1 =

[
Kc

P 0

0 Kc
P

]
, Dc2 =

[
−Kc

P −ωLf 01×4

ωLf −Kc
P 01×4

]
.

For the LCL filter modeling, we transform the output voltage of the inverter vi and the bus

voltage vb into the dq framework, i.e., vidq and vbdq, respectively. By applying Kirchhoff’s laws, we

get the dynamics of the LCL filter as follows

i̇ld(t) =
−Rf

Lf
ild(t) + ωilq(t) +

1
Lf
vid(t)− 1

Lf
vod(t),

i̇lq(t) =
−Rf

Lf
ilq(t)− ωild(t) +

1
Lf
viq(t)− 1

Lf
voq(t),

v̇od(t) = ωvoq(t) +
1
Cf
ild(t)− 1

Cf
iod(t),

v̇oq(t) = −ωvod(t) + 1
Cf
ilq(t)− 1

Cf
ioq(t),

i̇od(t) =
−Rc
Lc

iod(t) + ωioq(t) +
1
Lc
vod(t)− 1

Lc
vbd(t),

i̇oq(t) =
−Rc
Lc

ioq(t)− ωiod(t) +
1
Lc
voq(t)− 1

Lc
vbq(t).

The state-space model of the LCL filter is i̇ldq(t)

v̇odq(t)

i̇odq(t)

 = Al

 ildq(t)

vodq(t)

iodq(t)

+
[
Bl1 Bl2

] [ vidq(t)

vbdq(t)

]
, (7)

where the bus voltage vbdq(t) =

[
RL 0

0 RL

]
iodq(t), and the matrices are

Al =



−Rf

Lf
ω − 1

Lf
0 0 0

−ω −Rf

Lf
0 − 1

Lf
0 0

1
Cf

0 0 ω − 1
Cf

0

0 1
Cf

−ω 0 0 − 1
Cf

0 0 1
Lc

0 −Rc

Lc
ω

0 0 0 1
Lc

−ω −Rc

Lc


, Bl1 =

[
1
Lf

0 01×4

0 1
Lf

01×4

]⊤
, Bl2 =

[
01×4 − 1

Lc
0

01×4 0 − 1
Lc

]⊤
.

Recall that vi = v∗i , and thus vidq = v∗idq. By combining the derived models (3), (6), and (7), we

obtain the complete state-space model of the inverter-based microgrid system in the fault-free case{
ẋ(t) = Ahx(t) +Bhv

∗
odq(t) +Bdd(t),

iodq(t) = Cx(t),
(8)

where x(t) =
[
ϕ⊤dq(t) γ⊤dq(t) i⊤ldq(t) v⊤odq(t) i⊤odq(t)

]⊤
is the augmented state of the microgrid

system and d(t) denotes the disturbance. The system matrices Ah, Bh, and C are given by

Ah =

 02×2 02×2 Bv2

Bc1Cv 02×2 Bc1Dv2 +Bc2

Bl1Dc1Cv Bl1Cc Ah33

 , Bh =

 Bv1

Bc1Dv1

Bl1Dc1Dv1

 , C =
[
02×8 I

]
,
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where Ah33 = Al +Bl1 (Dc1Dv2 +Dc2) +Bl2

[
RL 0

0 RL

] [
02×4 I

]
. We would like to highlight that

the number of states is 10, while we only have 2 measurements. Referring to [23, 26], we consider

that changes in the load component can result in deviations from the nominal value of the output

current iodq. Furthermore, the following assumption on the matrix Bd is introduced to describe the

impact of d on the system.

Assumption 2.1 (Disturbance description). The disturbance d directly influences the output cur-

rent iodq, which is characterized through the matrix Bd. In this work, we consider both one-

dimensional and two-dimensional disturbances. The structure of Bd is: (1) Bd =
[
01×8 [ξ1 ξ2]

]⊤
for d(t) ∈ R, and (2) Bd =

[
02×8 diag([ξ1 ξ2])

]⊤
for d(t) ∈ R2, where ξ1, ξ2 ∈ R represent the level

of disturbance in the corresponding channel.

Remark 2.2 (Disturbance decoupling condition). Let Tdiodq denote the transfer function from the

disturbance d to the measurement iodq, and Rank(Tdiodq) denotes the rank of Tdiodq . According

to [27, Chapter 6], d can be decoupled from iodq if the number of unknown inputs is smaller than the

number of sensors, i.e., Rank(Tdiodq) < 2. Therefore, d can be decoupled from iodq(t) when d(t) is a

one-dimensional signal but not for a two-dimensional (and higher-dimensional) disturbance.

2.3. State-space model of the microgrid system with ground faults

We consider three-phase symmetrical ground faults which can cause a short circuit and a sharp

increase in the output current iodq. Therefore, we know that after ground faults occur: (1) the load

RL = 0 because of the short circuit, leading to a zero bus voltage vbdq = 0; and (2) the output of

the voltage controller i∗ldq saturates to a constant value τdq immediately, i.e., i∗ldq(t) = τdq for t ≥ tf ,

where tf denotes the time instant when the faults occur.

The state-space model of the current controller (6) in the fault scenario becomes{
γ̇dq(t) = Bc1τdq +Bc2

[
ildq(t) vodq(t) iodq(t)

]⊤
,

v∗idq(t) = Ccγdq(t) +Dc1τdq +Dc2

[
ildq(t) vodq(t) iodq(t)

]⊤
.

(9)

Based on (3), (7), and (9), the state-space model of the inverter-based microgrid system with ground

faults can be written as {
ẋ(t) = Auhx(t) +Buh1v

∗
odq(t) +Buh2τdq,

iodq(t) = Cx(t),
(10)

where the matrices Af , Buh1, and Buh2 are

Auh =

02×2 02×2 Bv2

02×2 02×2 Bc2

06×2 Bl1Cc Al +Bl1Dc2

 , Buh1 =

Bv1

02×2

06×2

 , Buh2 =

 02×2

Bc1

Bl1Dc1

 .
Note that the disturbance d(t) has no effect on the system in the fault scenario because of the short

circuit.

To write the normal and faulty models (8) and (10) into a more compact form, we introduce a

signal f(t) to indicate the occurrence of ground faults, i.e.,{
f(t) = 0, no faults,

f(t) = 1, faults happen.
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With f(t), we can express the normal and faulty models in the following unified form{
ẋ(t) = A(f(t))x(t) + Bu(f(t))u(t) + Bd(f(t))d(t),

y(t) = Cx(t),
(11)

where u(t) = [v∗odq(t) τdq]
⊤ consists of the known input signals, y(t) = iodq(t) is the output. The

dimensions of x(t), u(t), d(t) and y(t) are denoted by nx, nu, nd, and ny, respectively. The system

matrices are

A(f(t)) = Ah + f(t)(Auh −Ah), Bu(f(t)) = [Bh + f(t)(Buh1 −Bh) f(t)Buh2],

Bd(f(t)) = (1− f(t))Bd.

Remark 2.3 (Discretization). Considering that the discrete-time samplings of data are used in the

realistic framework, we discretize the continuous-time state-space model (11) when designing the

fault diagnosis scheme. In what follows, all signals are presented in the discrete-time form. For

convenience, we use the same notation for system matrices in both the continuous and discrete

representations.

2.4. Problem statement

The objective of this work is to detect the occurrence of ground faults in the presence of the

disturbance d using the input u and the measurement y. Our proposed diagnosis scheme is to

design a residual generator denoted by a linear transfer function F, whose output is a scalar-valued

signal r := F[y⊤ u⊤]⊤ (called the residual). The structure is illustrated in the diagnosis component

of Fig. 1. The residual r should be sensitive to the fault mode and exhibit robustness to the

disturbance. Ideally, in the absence of ground faults, the residual should remain close to zero.

However, the residual can exhibit a significant increase to facilitate detection when ground faults

occur. Then, two questions arise naturally. How can we design F to achieve the following goals:

(1) Suppress the contribution of the disturbance to the residual in the normal mode;

(2) Enhance the fault sensitivity of the residual in the faulty mode.

In this work, we provide a design method of the filter F in the DAE framework to satisfy the above

two design requirements. To this end, let us introduce the shift operator q, i.e., qx(k) = x(k + 1),

and transform the discrete-time version of the unified state-space model (11) into

H(q, f)[X] + L(q, f)[Y ] = 0, (12)

where X = [x⊤ d⊤]⊤, Y = [y⊤ u⊤]⊤. The matrices H(q, f) and L(q, f) are polynomial functions in

the operator q, depending on the indicator signal f ∈ {0, 1}, which are

H(q, f) = qH1 +H0(f) =

[
−qI +A(f) Bd(f)

C 0

]
, H1 =

[
−I 0

0 0

]
, H0(f) =

[
A(f) Bd(f)

C 0

]
,

L(q, f) =

[
0 Bu(f)

−I 0

]
.

Since L(q, f) is independent of q, we define L(q, 0) = L0 and L(q, 1) = L1.

The fault detection filter F is in the form of

F(q) =
1

a(q)
N(q)L0, (13)
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where the numerator N(q) is a polynomial row vector N(q) =
∑dN

i=0Niq
i, Ni ∈ R1×(nx+ny), dN is

the degree of N(q). The denominator a(q) is a polynomial with a degree larger than dN and all roots

inside the unit circle so that the derived filter is strictly proper and stable. For simplicity of design,

we fix dN and a(q) and only design the coefficients of N(q). It is worth pointing out that a(q) can

be chosen up to the user and specific requirements, e.g., noise sensitivity and dynamic performance,

which will be our future research.

By setting f = 0 and multiplying from the left-hand side of (12) by a−1(q)N(q), we obtain the

residual r in the normal mode, which is

r =
1

a(q)
N(q)L0[Y ] = − 1

a(q)
N(q)H(q, 0)[X]. (14)

When ground faults happen, i.e., f = 1, DAEmodel (12) becomesH(q, 1)[X]+L1[Y ] = 0. Thus, Y =

−L†
1H(q, 1)[X], where L†

1 is the left inverse of L1. The residual r in the fault mode becomes

r =
1

a(q)
N(q)L0[Y ] = − 1

a(q)
N(q)L0L

†
1H(q, 1)[X]. (15)

Note that all the entities in a−1(q)N(q)L0[Y ] are known and thus can be used to generate the

residual. The right-hand side of (14) and (15) characterize the mapping relations between the

unknown signal X and r in the normal and faulty modes, respectively, based on which we can

design F(q) for different diagnosis purposes.

First, we consider the one-dimensional disturbance that can be fully decoupled. To ensure that

the residual is zero in the normal mode and sensitive to the faulty mode, i.e., r = 0 when f = 0

and r ̸= 0 when f = 1, we introduce the following conditions:

N(q)H(q, 0) = 0, (16a)

N(q)L0L
†
1H(q, 1) ̸= 0. (16b)

In view of the desired mapping relations (16a) and (16b), we proceed with the first problem.

Problem 1. (Fault detection filter design for perfect setting) Consider the state-space model of the

inverter-based microgrid system (11) with three-phase symmetrical ground faults and Assumption 2.1

with nd = 1. Design a fault detection filter F in the form of (13) that satisfies (16a) and (16b).

Remark 2.4 (Existence of L†
1). Note that the matrix Bu(1) = [Buh1 Buh2] is of full column rank

according to their structures in (10). Thus, L1 is a full-column matrix and its left inverse exists.

Second, when the disturbance d is a two-dimensional signal that cannot be fully decoupled, the

condition (16a) can no longer be satisfied. A common solution is to constrain the H∞ norm of the

transfer function from d to r to suppress the effect of d. Here, inspired by the approach in [19], we

tackle the problem from a data-driven perspective. Specifically, we use the historical data of the

disturbance to train the filter so that it is robust to the disturbance. To this end, let us split H(q, 0)

into two parts, i.e., H(q, 0) = [E1(q, 0) E2], and matrices E1(q, 0), E2 are given by

E1(q, 0) = qE11 + E10 =

[
−qI +A(0)

C

]
, E11 =

[
−I
0

]
, E10 =

[
A(0)

C

]
, E2 =

[
Bd(0)

0

]
,

where E1(q, 0) corresponds to the unknown internal state x that can be decoupled and E2 corre-

sponds to the non-decoupled disturbance d. We obtain

r =
1

a(q)
N(q)L0[Y ] = − 1

a(q)
N(q)H(q, 0)[X] = − 1

a(q)
N(q)E1(q, 0)[x]−

1

a(q)
N(q)E2[d]. (17)
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To make the residual as small as possible in the normal mode, we opt to decouple x from r, i.e.,

N(q)E1(q, 0) = 0. (18a)

We further suppose that the disturbance d comes from a prescribed probability space, and we have

access to m independent identically distributed (i.i.d.) disturbance patterns di for i ∈ {1, . . . ,m}.
For each di, we define its contribution to the residual as

rdi = − 1

a(q)
N(q)E2[di].

Therefore, we can mitigate the effects of the disturbance by constraining the L2 norm of rdi for

all i ∈ {1, . . . ,m} in the normal mode, i.e.,

1

m

m∑
i=1

∥rdi∥
2
L2

=
1

m

m∑
i=1

∥∥∥∥ 1

a(q)
N(q)E2[di]

∥∥∥∥2
L2

≤ β, (18b)

where β ∈ R+. We show later the approach to constructing ∥rdi∥L2 with a combination of the

system model and the data di. The condition (16b) is adopted again to ensure the sensitivity of the

residual to the faulty mode. Based on the above discussion, we formulate the second problem.

Problem 2. (Data-assisted robust fault detection filter design) Consider the state-space model of

the inverter-based microgrid system (11) with three-phase symmetrical ground faults and Assump-

tion 2.1 with nd = 2. Given multiple instances of the disturbance di for i ∈ {1, . . . ,m}, find a fault

detection filter F in the form of (13) that satisfies the conditions (18a), (18b), and (16b).

3. Main Results

In this section, we present two design methods of fault detection filters in two scenarios: one

where the disturbance can be fully decoupled, and the other where it cannot be fully decoupled.

3.1. Filter design: perfect setting

We first consider the one-dimensional disturbance that can be fully decoupled. In order to find a

feasible N(q) satisfying the conditions in Problem 1, we formulate the design of the fault detection

filter as a LP problem in the following proposition.

Proposition 3.1 (Filter design: LP). Suppose that Assumption 2.1 holds and the dimension of

the disturbance nd = 1. Consider the unified state-space model of the inverter-based microgrid

system (11), and the structure of the fault detection filter in (13). Given the degree dN , a stable a(q),

and a scalar γ ∈ R+, the detection conditions (16a) and (16b) in Problem 1 are satisfied if

N̄H̄(0) = 0, (18a)

∥N̄L̄H̄(1)∥∞ ≥ γ, (18b)

where N̄ = [N0, N1, . . . , NdN ], L̄ = diag [L0L
†
1, . . . , L0L

†
1]︸ ︷︷ ︸

dN+1

,

H̄(f) =


H0(f) H1 0 . . . 0

0 H0(f) H1 0
...

... 0
. . .

. . . 0

0 . . . 0 H0(f) H1

 , and f ∈ {0, 1}.
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Proof. According to the multiplication rule of polynomial matrices [19, Lemma 4.2], (16) can be

written as

N(q)H(q, 0) = N̄H̄(0)[I, qI, . . . , qdN+1I]⊤, (19a)

N(q)L0L
†
1H(q, 1) = N̄L̄H̄(1)[I, qI, . . . , qdN+1I]⊤. (19b)

First, one can see from (19a) that N̄H̄(0) = 0 is equivalent to condition (16a), i.e., N(q)H(q, 0) = 0.

Therefore, the residual in the normal mode r = N(q)H(q, 0)[X] = 0 and (16a) is satisfied. Second,

we let the coefficients of N(q)L0L
†
1H(q, 1) be nonzero through (18b). Thus, (16b) is satisfied, which

ensures the fault sensitivity. This completes the proof. □

Note that N̄L̄H̄(1) is a row vector with (dN + 2)(nx + nd) columns. For a positive scalar γ,

∥N̄L̄H̄(1)∥∞ ≥ γ holds if and only if N̄L̄H̄(1)vi ≥ γ or N̄L̄H̄(1)vi ≤ −γ, where vi is a (dN +

2)(nx + nd)-dimensional column vector with only the i-th element be 1 and the rest are zero,

i.e., vi = [0, . . . , 1, . . . , 0]⊤. Moreover, it is easy to check that if N̄∗ is a solution to (18), so is −N̄∗.

Therefore, one can replace the constraint (18b) with N̄L̄H̄(1)vi (or −N̄L̄H̄(1)vi) and view (18) as

a set of (dN + 2)(nx + nd) LP problems.

Remark 3.2 (Feasibility analysis). According to the well-known rank plus nullity theorem, we

have (dN + 1)(nx + ny) = Rank(H̄(0)) + Null(H̄(0)), where Rank(H̄(0)) and Null(H̄(0)) denote

the rank and the left null space dimension of H̄(0), respectively. Thus, the constraint (18) is feasible

when Null(H̄(0)) ̸= 0, i.e., (dN+1)(nx+ny) > Rank(H̄(0)). For the constraint ∥N̄L̄H̄(1)∥∞ ≥ γ, it

is required that L̄H̄(1) does not belong to the column range space of H̄(0), i.e., Rank([H̄(0) L̄H̄(1)]) >

Rank(L̄H̄(1)). Otherwise, a feasible N̄ to (18a) leads to N̄L̄H̄(1) = 0.

3.2. Filter design: non-decoupled disturbance

In this subsection, we consider the disturbance d that cannot be fully decoupled. Recall that

the residual r in the normal mode depends on the internal state x and the disturbance d from

the right-hand side of (17). For one instance of disturbances di = [di(1), . . . , di(T )] with a time

horizon T ∈ N, recall that its contribution to the residual is rdi = −a−1(q)N(q)E2[di]. Then, the

response of the j-th element of di, i.e., di(j), can be computed by[
rdi(j)(1), rdi(j)(2), . . . , rdi(j)(T )

]
= −N(q)E2di(j)ℓj ,

where ℓj = [

j−1︷ ︸︸ ︷
0, . . . , 0, ℓ̄(1), ℓ̄(2), . . . , ℓ̄(T − j + 1)] and ℓ̄(k) for k ∈ N is the value of the discrete-

time unit impulse response of a−1(q) at time instance k. By summing up the response of di(j)

for j ∈ {1, . . . , T − dN − 1}, we obtain

[rdi(1), rdi(2), . . . , rdi(T )] = −N(q)E2

T−dN−1∑
j=1

di(j)ℓj

= −N̄Ē2


I

qI
...

qdN+1

 [di(1), . . . , di(T − dN − 1)]

 ℓ1
...

ℓT−dN−1

 , (20)
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where Ē2 = diag(E2, . . . , E2) according to the multiplication rule of polynomial matrices. Recall

that q is a time shift operator, i.e., qdi(k) = di(k + 1). Thus, the equation (20) can be written as

[rdi(1), rdi(2), . . . , rdi(T )] = −N̄Ē2


di(1) . . . di(T − dN − 1)

di(2) . . . di(T − dN )
...

. . .
...

di(dN + 2) . . . di(T )


 ℓ1

...

ℓT−dN−1


= −N̄Ē2DiΓ. (21)

To ensure the existence of Di, we assume that the length of data T is greatly larger than dN + 1,

i.e., T ≫ dN + 1. With (21), the L2 norm of rdi as considered in Problem 2 is formulated into the

quadratic form

∥rdi∥
2
L2

= N̄ΦiN̄
⊤, Φi = Ē2DiΓ(Ē2DiΓ)

⊤. (22)

It is worth emphasizing that Φi is positive semi-definite since ∥rdi∥2L2
= N̄ΦiN̄

⊤ ≥ 0 for all non-

zero N̄ .

Now, we can present the design method of the fault detection filter in the presence of the non-

decoupled disturbance in the following theorem.

Theorem 3.3 (Filter design: QP). Consider the unified state-space model of the inverter-based

microgrid system (11), Assumption 2.1 with the two-dimensional disturbance, and the structure

of the fault detection filter in (13). Given the degree dN , a stable a(q) and multiple instances of

disturbance di = [di(1), . . . , di(T )] for i ∈ {1, . . . ,m} with T ≫ dN , conditions (18a), (18b), (16b)

in Problem 2 are satisfied by solving the following optimization problem

min
N̄

N̄ Φ̄N̄⊤ − ∥N̄L̄H̄(1)∥∞ s.t. N̄Ē1 = 0, (23)

where Φ̄ = 1
m

∑m
i=1Φi,

Ē1 =


E10 E11 0 . . . 0

0 E10 E11 0
...

... 0
. . .

. . . 0

0 . . . 0 E10 E11

 .

Proof. The first term in the objective function, i.e., N̄ Φ̄N̄⊤, relates to the condition (18b), which

ensures that the effects of different instances of disturbances on the residual are bounded. We

show the derivation process of the quadratic form of ∥rdi∥2L2
in (20)-(22). The second term in

the objective function, i.e., −∥N̄L̄H̄(1)∥∞, relates to the condition (16b), which is introduced to

ensure the sensitivity of the residual to the faulty mode. The constraint N̄Ē1 = 0 related to the

condition (18a) is used to decouple the internal state x from the residual. One can show through

the multiplication rule of polynomial matrices that N(q)E1(q, 0) = 0 ⇔ N̄Ē1 = 0. This completes

the proof. □

Note that the optimization problem (23) can be viewed as a set of (dN +2)(nx+nd) QP problems

by replacing ∥N̄L̄H̄(1)∥∞ with N̄L̄H̄(1)vi (or −N̄L̄H̄(1)vi) as analyzed before. Recall that vi =

[0, . . . , 1, . . . , 0]⊤. In addition, the matrix Φi is positive semi-definite, and thus the derived QP

problems are convex and tractable. We further propose an approximate analytical solution to (23)

in the following corollary.
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Corollary 3.4 (Approximate analytical solution). Consider the optimization problem (23). There

exists an approximate analytical solution given by the following form:

N̄∗(δ) =
1

2δ

(
L̄H̄(1)v∗i

)⊤ (
δ−1Φ̄ + Ē1Ē

⊤
1

)−1
, (24)

where v∗i = arg maxi∈{1,...,(dN+2)(nx+nd)} |N̄
∗(δ)L̄H̄(1)vi| and δ ∈ R+ is the Lagrange multiplier. The

solution N̄∗(δ) provides an approximate solution to (23) and will converge to the optimal solution

as δ tends to ∞.

Proof. The proof is similar to that of [22, Corollary 3.4] and thus is omitted here. □

Remark 3.5 (Average objective function). To ensure that the derived fault detection filter is robust

to the disturbance, we consider m different disturbance patterns di for i ∈ {1, . . . ,m} and take the

average effects of all di on the residual as the objective function in (23). An alternative way is to

consider the worst-case scenario as the objective function, i.e., maxi∈{1,...,m} N̄ΦiN̄
⊤. The average

objective function is, however, of interest if one requires to train the filter with a large number of

disturbance patterns. This is due to the fact that the computational complexity of the derived QP

problem is independent of the number of disturbance patterns m with the average objective function.

Remark 3.6 (Online updating of coefficients). In [19], the authors construct the objective function

using the nonlinearity signature to ensure that the derived filter is robust to the nonlinear terms.

Compared to [19], we further derive an approximate analytical solution to the optimization prob-

lem (23). With the analytical solution, one can update the coefficients of the filter online with new

data without the need to re-solve (23). This is a significant improvement over [19].

Remark 3.7 (Approximate analytical solution with δ). The Lagrange multiplier δ is introduced

in (23) to penalize the equality constraint N̄Ē1 = 0, and in the ideal case, δ tends to infinity as

stated in Corollary 3.4. However, for a bounded δ, the equality constraint cannot be strictly satisfied,

which is why we refer to the solution (24) as an approximate analytical solution. Additionally, to

ensure that N̄Ē1 is sufficiently close to zero, δ should be large enough while remaining numerically

bounded for practical considerations.

To detect the fault, we introduce the power of the residual r(k) as the evaluation function,

i.e., J(r) = r(k)2 for k ∈ N. Let Jth be the detection threshold. Then, we can consider the following

detection logic: {
J(r) ≤ Jth ⇒ no faults,

J(r) > Jth ⇒ faults.

It is worth emphasizing that false alarms are inevitable due to the random nature of the residual. We

show the computation method of the threshold and the false alarm rate in the following proposition.

Proposition 3.8 (Probabilistic false alarm certificate). Assume that the disturbance patterns follow

the i.i.d. distribution. Consider the system (11), the filter F(q) obtained by using (23) with the

corresponding solution N̄∗, and the evaluation function J(r) = r(k)2 for k ∈ N. Given a scalar λ ≥
1, if we set the threshold Jth as

Jth =
λ

T
N̄∗Φ̄N̄∗⊤, (25)
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the false alarm rate in the steady state satisfies

lim
k→∞

Pr{J(r(k)) > Jth|f = 0} = lim
T,k,m→∞

Pr

{
r(k)2 >

λ

T
N̄∗

(
1

m

m∑
i=1

Φi

)
N̄∗⊤

∣∣∣f = 0

}
≤ 1

λ
. (26)

Proof. Since the disturbance d comes from a prescribed probability space and each disturbance

pattern follows i.i.d. distribution, the residual in the health mode, i.e., r = −a−1(q)N(q)E2[d], can

be viewed as a random variable on the same probability space as d. It is proven in [19, Theorem

4.11] that the empirical average error

em =
1

m

m∑
i=1

∥rdi∥
2
L2

−E
[
∥r∥2L2

]
,

satisfies the strong law of large numbers, i.e., limm→∞ em = 0 almost surely. Therefore, it holds that

lim
T,m→∞

λ

T
N̄∗

(
1

m

m∑
i=1

Φi

)
N̄∗⊤ = lim

T,m→∞

λ

T

1

m

m∑
i=1

∥rdi∥
2
L2

= lim
T→∞

λ

T
E
[
∥r∥2L2

]
= λ lim

k→∞
E[r(k)2].

According to Markov inequality, the false alarm rate in the steady state satisfies

lim
k→∞

Pr{r(k)2 > λE[r(k)2]|f = 0} ≤ 1

λ
.

This completes the proof. □

4. Simulation results

In this section, we validate the performance of the fault detection filters through numerical sim-

ulations. The optimization problems are solved through the YALMIP toolbox [28]. Consider the

inverter-based microgrid system depicted in Figure 1. We refer to the parameters and initial con-

ditions in [23], which are presented in Table 1 and Table 2, respectively. The reference voltage

(operating point) of the microgrid is v∗odq = [381, 0]⊤ and the FCL parameter is τdq = [35, 0.7]⊤,

which are assumed to be constant during the experiment. The sampling period is 0.1 ms and the

simulation time is 500 ms.

Table 1. Microgrid parameters.

Parameter Value Parameter Value

f 50 Hz RLOAD 12 Ω

Lf 0.1 mH Kc
P 28

Rf 0.1 Ω Kc
I 5

Cf 30µ F Kv
P 0.1

Lc 1 mH Kv
I 170

Rc 0.03 Ω F 0.75

ω 314.1

Table 2. Initial conditions.

Parameter Value Parameter Value

vod 380.8 ild 11.4

voq 0 ilq −5.5× 103

iod 11.4 vbd 379.5

ioq 0.4 vbq -6

ϕd 0.13 γd 0.0115

ϕq 0 γq 0

4.1. Scenario 1: Perfect setting

We first consider the perfect setting with one-dimensional disturbances that can be fully decou-

pled, as described in Remark 2.2. We set the matrix Bd =
[
01×8 [1 1]

]⊤
. The disturbance is

zero for k ≤ 1000, and subsequently follows a signal given by d(k) = α0 +
∑η

i=1 αi sin(ωik + ψi)

for k > 1000. Specifically, the constant α0 ∈ R represents an abrupt change, while the sinusoidal

terms capture the short-term load fluctuations with amplitudes αi, angular frequencies ωi ∈ R+,
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and phases ψi ∈ R [19]. It is worth emphasizing that we deliberately select the parameters of Bd

and magnitude of d to make the output currents similar in the faulty mode and under the effect of

the disturbance, which increases the difficulty of fault detection.

To design the fault detection filter in the form of (13), we fix the degree of N(q) to be dN = 10,

set γ = 0.5, and choose a stable denominator a(q) with a degree larger than dN . We then apply

Proposition 3.1 to construct the fault detection filter for inverter-based microgrid systems with the

disturbance that can be fully decoupled. The detection threshold is set to Jth = 1 × 10−5. The

simulation results are presented in Figure 2.
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Figure 2. Diagnosis results by using (18) with decoupled disturbances.

Figure 2a presents the diagnosis results when a decoupled disturbance has small load fluctuations,

i.e., d(k) = 0.8 + 0.02 sin(k/30) + 0.01 sin(k/40) + 0.01 sin(k/60). As shown in Figure 2a (i), the

disturbance d and the ground fault f occur at k = 1001 and k = 3001, respectively. However, d and

f have similar effects on the output currents iod and ioq from Figure 2a (ii) and (iii), which only

exhibit minor variations. This makes it challenging to detect the occurrence of the ground fault and

distinguish it from the disturbance only through the output currents. In contrast, Figure 2a (iv)

illustrates that the residual is insensitive to the disturbance and stays below the threshold until the

fault happens. The power value of the residual r2(k) exceeds the threshold at k = 3002, resulting in

the detection of the fault within 0.1 ms. We further consider a decoupled disturbance with larger

load fluctuations, i.e., d(k) = 0.8 + 0.2 sin(k/30) + 0.3 sin(k/40) + 0.2 sin(k/60). Figure 2b displays

the diagnosis results and the analysis process is analogous to the previous one.

4.2. Scenario 2: Non-decoupled disturbance

In this subsection, we consider two-dimensional disturbances that cannot be fully decoupled. The

matrix Bd =
[
02×8 diag([0.5 0.5])

]⊤
here. To capture the disturbance, we denote the space of

disturbance patterns by

d(k) =

[
αd,0 +

∑η
i=1 αd,i sin(ωd,ik + ψd,i)

αq,0 +
∑η

i=1 αq,i sin(ωq,ik + ψq,i)

]
,
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where the parameters (αd,i)
η
i=0, (αq,i)

η
i=0, (ωd,i)

η
i=1, (ωq,i)

η
i=1, (ψd,i)

η
i=1, (ψq,i)

η
i=1, and η are random

variables and follow uniform distributions in certain bounds. We generate 30 disturbance patterns

(i.e., m = 30 in (18b)) and choose the time horizon T = 50. Again, we fix dN = 10 and choose a

stable denominator a(q). With the above settings, we can generate the matrix Φ̄ in the objective

function of the optimization problem (23). We construct robust fault detection filters by using

Theorem 3.3 to deal with the fault detection problem for inverter-based microgrid systems with

non-decoupled disturbances. The simulation results are presented in Figure 3.
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Figure 3. Diagnosis results by using (18) with decoupled disturbances.

Figure 3a provides the diagnosis result by using (23) in the presence of a non-decoupled dis-

turbance with small load fluctuations. Let U(l1, l2) denote a uniform distribution taking values

between l1 and l2. Then, for disturbances with small load fluctuations, the parameters of the dis-

turbance d are αd,0, αq,0 ∼ U [1, 2], αd,i, αq,i ∼ U [0, 0.05], ωd,i, ωq,i ∼ U [1/80, 1/40], and ψd,i, ψq,i ∼
U [0, 100]. We compute the threshold Jth = 0.0018 based on (25) with λ = 3. As shown in Figure 3a

(i), the disturbance d and the ground fault f happen at k = 1001 and k = 3001, respectively. How-

ever, it is difficult to distinguish d and f through the output currents from Figure 3a (ii) and (iii).

The power value of the residual r2(k) is shown in Figure 3a (iv), one can see that r2(k) remains

below the threshold in the presence of non-decoupled disturbances until the occurrence of the fault

at k = 3001. This suggests that the proposed filter effectively suppresses the effects of disturbances

on the residual. Although there is a spike in the residual caused by the transient response of the step

signal in disturbances, it disappears quickly. However, after the fault happens, the value of r2(k)

immediately exceeds the threshold and remains significantly higher than zero. This indicates that

the fault is successfully detected and is distinguishable from the disturbance through the residual.

To further verify the robustness of the fault detection filter to disturbances, we opted for a non-

decoupled disturbance with larger fluctuations, where αd,0, αq,0 ∼ U [0.5, 1], αd,i, αq,i ∼ U [0, 0.5],

ωd,i.ωq,i ∼ U [1/60, 1/30], and ψd,i, ψq,i ∼ U [0, 100]. Since the disturbance patterns vary, it is nec-

essary to regenerate the matrix Φ̄ and design the filter using (23). We calculated the threshold
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Jth = 0.0091 based on (25) with λ = 10. The diagnosis results in the presence of large load fluctua-

tions are presented in Figure 3b. The analysis process is similar to the previous one and, therefore,

omitted here.

5. Conclusions

In this paper, we propose diagnosis strategies for the detection of ground faults in inverter-based

microgrid systems with decoupled and non-decoupled disturbances, respectively. Our strategies

involve developing fault detection filters to deal with disturbances and ensure fault sensitivity. To

achieve this, we reformulate the filter design problem into tractable optimization problems, which

enable us to efficiently optimize the filter parameters and meet the desired performance criteria.

Simulation results on an inverter-based microgrid system that works in the islanded mode show

the effectiveness of the proposed approaches. In future work, we first will consider designing the

denominator of the filter for better dynamic performance. The second direction will be focused on

extending the proposed approaches to more complex and realistic settings, such as considering the

presence of multiple converters that introduce nonlinearity into the model.
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