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Abstract— We study the problem of identifying a linear
time-varying output map from measurements and linear time-
varying system states, which are perturbed with Gaussian ob-
servation noise and process uncertainty, respectively. Employing
a stochastic model as prior knowledge for the parameters of
the unknown output map, we reconstruct their estimates from
input/output pairs via a Bayesian approach to optimize the
posterior probability density of the output map parameters. The
resulting problem is a non-convex optimization, for which we
propose a tractable linear matrix inequalities approximation to
warme-start a first-order subsequent method. The efficacy of our
algorithm is shown experimentally against classical Expectation
Maximization and Dual Kalman Smoother approaches.

I. INTRODUCTION

Bayesian approaches for estimating characteristics of dy-
namical systems have been a subject of studies for decades
and have recently received extensive attention [1], [2]. In
systems theory, the significance of the Bayesian approach
is highlighted in state estimation frameworks for dynamical
systems [3], [4], e.g., through the celebrated Kalman filter
which is a recursive causal filter. Smoother counterparts,
as the Rauch-Tung-Striebel (RTS) [4], on the other hand,
are (offline) iterative non-causal algorithms incorporating
also future measurements into the current state estimation.
An alternative to Bayesian estimation, which requires a
prior distribution of the parameters of interest, are minimax
estimation approaches assuming instead knowledge of ambi-
guity sets. The least favorable uncertainty model from this
ambiguity set is then used for estimation [5]-[8]. Here, we
focus instead on designing a classical smoother for a different
problem: estimation of system parameters from input/output
measurements via Bayesian estimation. This problem arises
in, e.g., robot mapping in unknown environments, such as
Autonomous Underwater Vehicles (AUVs) operating in the
deep sea where global positioning is expensive due to low
visibility and lack of radio communications.

Given the parameters are unknown and the states are
random variables, applying a Bayesian framework leads to
severe non-convexities in the resulting estimation problem.
To overcome the non-convexity of these optimization prob-
lems, typically iterative schemes are employed. Assuming
the parameters also follow a statistical formulation, two
main types of smoother approaches: Dual Kalman Smoother
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(DKS) and Expectation Maximization (EM) are available
in the literature [9]. Dual Kalman Smoothers (and filters)
attempt to maximize the joint probability space of parameters
and state (conditioned on input and output observations),
iterating between estimating the system states using the last
parameters’ estimates followed by estimating the parameters
from the currently estimated states. While DKS is compu-
tationally efficient according to its recursive structure, its
estimation performance can be significantly suboptimal due
to bilinearity between the parameters and the states. The Ex-
pectation Maximization maximizes the posterior distribution
of the parameters from the observed data and their prior
density function when incomplete data or hidden variables
exist [10]-[12]. This method has been used to estimate
parameters of dynamical systems, considering the states as
hidden variables [13]-[15] by integrating all possible values
of the states in which the model could have generated
the observations. The distribution over hidden variables is
maximized in the E-Step using the parameters estimates from
the previous iteration. The M-Step maximizes a lower-bound
of the original cost by fixing the distribution to the one op-
timized in the E-Step. A closed-form solution of the M-Step
is provided in [14] for estimating the parameters of linear
time-invariant dynamical systems and in [9, Chapter 6] for
estimating the parameters of a Gaussian radial basis function
(RBF) approximator. Both solutions consider the maximum
likelihood case, where no prior exists for the parameters.
Finding a closed-form expression for the parameters update
in the M-Step of a MAP smoothing problem when the
parameters are time-varying and in the presence of a-priori
knowledge is non-trivial. This challenge leads to a slow
convergence of the EM algorithm utilizing computationally
demanding approaches to solve the optimization in M-step,
e.g., first-order methods. The slow convergence of EM is
shown experimentally in [16], and further analyses in [17],
[18] demonstrate the slow convergence rate of the gradient
variant of the EM algorithm for Gaussian Mixture Models.

Alternatives to these iterative schemes can be found in the
parameter estimation problem of an elliptically contoured
distribution [19, Page 107], employing recent Conic Geo-
metric Optimization methods [20]. However, they require
reformulating the MAP problem employing techniques, such
as those proposed in [21, Section 3], which result in losing
the output map’s original structure. We are interested in
retaining such a structure in order to leverage the available
a-priori knowledge.

In this work, we focus on systems with known linear
time-varying dynamics affected by process and measure-



ment Gaussian noise but with unknown time-varying output
maps. We propose a method to estimate the parameters of
the unknown output map having as a priori information
a linear stochastic system encoding the evolution of the
parameters. We derive an optimization problem applying
a fully Bayesian approach, maximizing the exact posterior
distribution of the parameters when unfolded over the whole
time horizon. A tractable conservative approximation to the
resulting optimization problem is derived via a linear matrix
inequalities (LMIs), providing a warm-start for a first-order
quasi-Newton algorithm that enjoys a locally superlinear
convergence rate. This combination allows us to enjoy both
the computational advantage of DKS and outperform the
statistical performance of EM. We illustrate the efficacy
and performance of our proposed method in comparison
with DKS and EM through a Monte Carlo experiment with
different signal-to-noise ratios (SNR) in Section V.

Notation: Throughout this paper Z, R, and R"*™
denote the set of positive integers, real numbers, and n by
m real matrices, respectively. Given matrices A1, ..., Ak, we
denote by diag(Aj,...,A) as the block diagonal matrix
with diagonal entries Aj,...,A. The symbol I denotes
the identity matrix, and tr is the trace operator. Given
A € R™*™, a matrix with columns ag,...,a, € R™, we
define vec(A) as the vector [a],...,al]T € R™". For a
positive symmetric matrix A € R™*", A(A) := (\(A)).,
denotes the vector of eigenvalues of A in a descending order,
ie., A;(A) is the ¢* largest eigenvalue of A. A multivariate
normal (Gaussian) distribution with mean p and covariance
matrix ¥ is denoted by N (u, ), and the symbol ~ stands
for “distributed according to”.

II. PROBLEM DEFINITION

Consider a discrete-time linear time-varying dynamical
system described by the process model:

Xp4+1 = Apxp + Brug + wi, keZ,, (N

where k£ denotes the time index, x; € R™* is the vector of
state variables, Ay € R™*"x ig the state transition matrix,
ug € R™ is the vector of inputs, By, € R™*™ g the input
matrix, and w, € R"* is an independent realization at time &
of the process noise with Gaussian distribution N (0, Xy, ).
The initial state of system (1), denoted by xq, is also assumed
to be drawn from a Gaussian distribution N (fix,, X, ). For
k € Z, the state of the system is observed at time instant
k through a perturbed linear time-varying map:

vk = Cpxp + Vi, keZy, 2

where y, € R™ denotes the output measurements, Cj €
R™ *™x ig an unknown time-varying observation matrix, and
vi € R™ is the vector of measurement noise signals with
Gaussian distribution A/(0, Xy, ). Let 0 be the vector of all
parameters at each time index k:

0 := vec(C}), 3

which implies that C; and 6y uniquely characterize each
other. We introduce the following assumption, providing

a form of a priori information. This plays a role akin
to that of a regularizer in non-Bayesian techniques, such
as in Supervised Learning, where algorithms without such
regularizers are prone to overfitting.

Assumption 1 (Output map dynamics). The dynamics of the
output map are governed by the difference equation

Op+1 = Ok + i, keZy, €]

where k denotes the time index, 0, € R™" is the vector of
parameters driven by the vector of process noise ny, € R™"x
with Gaussian distribution N (ju,, , 3y, ). Further, assume
that the initial parameter of system (4), denoted by 0, is
drawn from the normal distribution N (g, , Zo, )-

Assumption 1 imposes a Gaussian random walk dynamics
on the evolution of the parameters, which is the minimal
structure and assumption on the variations of the parameters
because of the maximum entropy feature of the Gaussian
distributions. This allows us to employ a stochastic belief
of a deterministic reality in the Bayesian viewpoint. Let
the inputs and outputs of system (1)-(2) be measured for
k =0,...,nr, where (ny + 1) € Z; denotes the length
of the measurement data. More precisely, the input-output
trajectory data is given by D = {(ux,yx) |k =0,...,n7}.
Additionally, we assume:

Assumption 2 (Noise). The process, measurement, and
output map noise realizations, wy, Vi, and ny respectively,
forall k € {0,...,n;}, are independent. Furthermore, the
means [Ly,, ey, [y, and covariance matrices Yy, Y,
2y, Xo,, and X, , for k € {0,...,n;}, are known.

Remark 1 (A priori knowledge). While we assume g, fiy, ,
Yg,, and X, to be readily known, in practical applications,
these parameters can be obtained through various means
depending on the context, e.g.: employing prior knowledge of
the nominal model, empirically from previous experiments’
data, or if one may assume that u,, = pug, and X, =
Yg,, for k € Z, by employing a suitable hyperparameter
estimation method.

Ultimately, the question is whether the observation model
(2) could be estimated. More precisely, we would like to
address the following problem:

Problem 1. Given the process and observation models
(1) and (2), input-output measurement data D, and under
Assumptions 1 and 2, estimate the unknown time-varying
observation matrices Cy, in an efficient and tractable way.

To address problem 1, we develop a Maximum A Poste-
riori approach in the next section, followed by a tractable
reformulation via LMIs in Section IV.

III. MAXIMUM A POSTERIORI ESTIMATION

In this section, we propose a Bayesian method for esti-
mating the unknown observation matrices Co, ..., Cy,,. The
three main elements in Bayesian estimation methods are
a prior density function, an observation model, and a loss



function, which we briefly explain for solving our problem
with the Maximum a Posteriori (MAP) approach.

A. Lifted Process and Observation Model

First, let us represent the process model (1) in the follow-
ing lifted matrix form:

x = A(u+ wy), (5)

where x = [x{,...,x] ]T

;Xp, | includes the system states
over the entire horizon up to time ny, while the in-
put vector is modified to include the initial state u =
[ Bouo)", ..., (Bry—1up,—1)" ]T , and the noise vector
consists of the uncertainty of the initial state and process
noises wy = [wl w(,... ,Wl,r_l]T with wy, ~ N(0,Xy,).
Given that the process noise and initial state uncertainty are
assumed to be uncorrelated, we can specify wy in terms
of a multivariate normal distribution A'(0, 3, ) in which

Yw, = diag(Bxy, Zwey - -« 2 ). The lifted transition

) HWhr 1

matrix A has the lower triangular form:
I
Ap I
A= AlAQ A1 I
AnT—l . AQ Arm——l . Al A’Vl’]'—l I

Similarly, the observation model (2) for the entire trajectory
can be expressed as:

y=Cx+v, (6)

where y = [y(, ... ,yILT]T is the vector of all measurements,
v ~ N(0,%,) is the vector of all measurement noise
realizations with X, = diag(3y,, Ev,,..., %y, ), and Cis
the lifted observation matrix:

C = diag(Cyo, C1,...,Cy,).

Finally, we describe the dynamics of the output map param-
eters 6 for the entire trajectory as:

0 = g + we, )

-
where 6 = [07,...,0] ] ., and g results from the summa-
tion of the biases of the initial parameter and the noise pg =

ny—1

<
[ugo, [y B - s By + Dito /Jh] . Similarly, the noise
signal wy results from the integration over the entire horizon
of 7y including the uncertainty of the initial Tparameter as

wg = Drn, where n = [nj,ng,....m, 1] and 19, ~
N(0, g, ), with
T
T 1
D= .
T 1 1

Since the parameters are assumed to be independent, we
have wg ~ N(0,Zw,), Zw, = DX,DT, with &, =
diag(Zg,, Xpgs - - -, By, ). Ultimately, the model (7) is
used to specify the prior density function. In what follows,

we represent C as C(6) to emphasize the dependence of C
on 6 according to (3). Finally, substituting x in (6) with the
expression from (5) results in the observation model, with
unknown C(6), describing the measurements y as a function
of the applied inputs u:

y = C(0)Au+ wy(0), (8)
where wy (0) = C(0)Awy + v. Also, from Assumption 2:
wy (0)|0 ~ N (0, Zw, (),

where X, (/) = C(0)AX, ATC(6)" + X,. This model
is used later to specify the conditional probability density
function of the measurements. Note that w,(#)|¢ remains
Gaussian with the derived covariance since both noise
sources, wy and v, are Gaussian and independent.

B. MAP Loss Function

In maximum a posteriori estimation one aims to find
an estimate 6 for the parameters by minimizing the cost
function [22]: E[1— Ly j0—g)| <.(0)], where 6 is the vector
of random variables, 1(.) is an indicator function, and
€ a small scalar. It is further shown in [23, Chapter 4]
that minimizing this loss function implies maximizing the
conditional probability density function of 6 given the vector
of observations and inputs, i.e.

6 = argmax p(f|y,u), )
0

where 6 is the estimate of the true parameter 6. The following
lemma formalizes this step and serves as the first step to
compute the proposed estimator (9).

Lemma 1 (MAP Optimization Problem). Let us define the
function J : Ry=x(n7+h) 4 R gg

J(0) := logdet(Xy, (0))

10
+ |y - C(9)AUHQE;V;(9) +lo - “9“;;; 1Y

The estimation problem (9) is equivalent to

0 = argmin 7 (6). (11)
0

Proof. Using Bayes’ rule we can reformulate the optimiza-
tion problem (9) as

p(y16, w)p(flu)
max p(f|y,u) = max —————————=.
ax p(fly, u) = me p )

We first note that the denominator of (12) does not depend
on 6, and hence can be neglected without changing the
optimizer. Moreover, we note that the dynamics of 6 in (4)
(or equivalently in the lifted form in (7)) does not depend on
the input sequence of u (i.e., p(6|u) = p(#)). Next, using a
straightforward computation, one can derive the probability
density functions p(6) and p(y|f,u). Specifically, from (7)
we know that the variable 6 is Gaussian with the probability
density function

(12)

exp(=4(0 — o) S} (0~ o))

p(0) =
\/@m)errDnns det(5,,)




Similarly, from (8) we know that given 6 and the input
sequence u, the output sequence y is also Gaussian with
the conditional probability density function

p(y|0,u) =

V@) det(Sy, (0))

Finally, applying the monotonically increasing function log,
and observing that all terms in the denominators except
det(X, (#)) are constant, we arrive at the minimization
problem of the function J defined in (11). |

In the next section, we propose a tractable conservative
approximation using Semidefinite programming to tackle the
non-convex objective function 7 (6) defined in (10).

Remark 2 (Robust estimation). Alternatively a robust mini-
max estimation formulation similar to [8] could be employed.
This approach, however, requires finding an ambiguity set to
approximate non-Gaussian observation uncertainties due to
the multiplication of Gaussian variables in wy (8).

IV. PROPOSED SOLUTION

The optimization problem (11) is non-convex not only
because of the weight zv—vyl(e), quadratic in the parameters
6, in the second term but also because of the log-determinant
operator on the first term. A typical approach is to use first-
order algorithms to find a solution due to the mentioned
non-convexities. These algorithms, however, only guarantee
convergence to a local optimum. Therefore, selecting an
appropriate initial starting point is crucial to the obtained
quality of the solution. We propose to solve the problem in
two steps: first we perform a convex relaxation of (11) into a
set of LMIs, which we use to compute an initial approximate
minimizer; next, we employ this approximate minimizer to
initialize (warm-start) a first-order optimization method, e.g.,
steepest descent [24] or quasi-Newton algorithms [25], to
solve (11) thus refining our initial minimizer estimate.

Theorem 2 (LMI conservative approximation). Consider the
following LMIs:

Sg’l,i’yr,lﬁ tr(S—I)+~v+ 8
[—xgl ATCO)T
A [T0) ). S } =0
[ -S (y — C(@)Au)} <0 (13)
[(y = C(6)An)" - -
[ —wy (9 - MG)}
0-py - 7"

Then, the optimal value of the nonlinear program (11) is
upper bounded by J* + Hy—C(G*)Au”igl(a*)is*_l , where
J* and (S*,0%) are the optimal value and the optimizer
of (13), respectively.

Proof. Consider a matrix S > 0 upper bounding the covari-
ance matrix Xy () = 0 as

Sw, (0) = C(O)AS, ATCH)" +3, =S. (14

exp(—3(y = CO)AWTE1(0) (v — C(6)Aw) )

Thus, A\;(Ew, (0)) < Ai(S), fori = 1,...,ny(n;+1), which
implies that

logdet (X, (0)) < logdet(S).

Since logdet(S) = E;‘;ﬁ”*” log \;(S) and tr(S) =

Zzg’”“) Ai(S), we also have

logdet (X, (0)) < logdet(S) < tr(S —1).

Using the Schur complement, one can see that (14) is
equivalent to the following linear matrix inequality

-yl ATCO)T

c)A x,-s |

Similarly, considering v > 0 and 8 > 0 such that

(y=C(0)Au)"S™ (y — C(0)Au) <

(v — CO)AW T, (0) 'y — CO)AW) <7, )

and
(0 — o) ", (0 — po) < B,

we can apply again the Schur complement to the inequalities
in (15) and (16), and obtain the last two LMIs in (13).
Finally, replacing the terms in the cost function 7 (#) in (10)
with their bounds and including the corresponding LMIs as
constraints arrives at the LMI (16). Note further that by
definition we have

T+ ly - C(e*)AuH;;;(e*)—S**l -
J(0%) 4 tr(S* — 1) — logdet(Z

(16)

w, (67)) = T(67),

(17)
where the function 7 (0*) is defined in (10), and the last
inequality follows from (14). ]

The tightness of the inequality in (17) mainly depends on
the gap between log det(S) and tr(S —I) since log det(S) is
bounded from above by tr(S — I), which is negligible when
Ai(S) = 1, for i = 1,...,ny(n; + 1). One may employ
a suitable matrix W to scale the eigenvalues of S, replace
log det(S) with log det(WSW) — 21og det(W) and approx-
imate log det(WSW) with tr(WSW — I). Furthermore, the
closeness of J* and J(6*) in (17) is proportional to the
fitness quality of the measurements and whether S* is close
to the covariance matrix accordingly.

In addition, Theorem 2 provides an approximation of
(11) producing an initial near-optimal solution. As already
indicated, we propose to employ this solution to warm-start
a local (non-convex) optimizer. Due to its fast convergence,
we propose to employ as refining optimizer the BFGS algo-
rithm [25, Chapter 6], a variant of quasi-Newton methods.
The BFGS algorithm approximates the Hessian matrix for
its search directions relying on an analytical expression of
the gradient V7 (). The gradient of the cost function (10)
with respect to the parameters 6

oJ oJ

Vo (0) = ]

—[&L 18
a01 aenynx(n7+1) (1%



can be easily derived applying the chain rule:

N4
00,

:zm{(AzwgV(wazwxey4)cg(m
—(AEWJU(X®TEMA®’IX
(v = CO)AW)(y — C(B)AW) S, (69) 1) Y (6)
(Au C(0)Aw)T S, (0)71) Y (0)
+ (0= o)z )o .

where C/(6) is the single-entry matrix of C(f) with the
block matrix of Cg(6) having 1 at index (¢,j) and zero
elsewhere, and 6% is the single-entry vector of # with 1
at index ijk and zero elsewhere.

The LMIs (13) initializes the original non-convex problem
with a locally optimal solution. Thus, the computational com-
plexity of the proposed method consists of the well-known
computational complexity of solving the SDP problems [26],
i.e., a one-time solution of (13), and the computation of the
gradient (18) per iteration of the first-order method:

3 1 3 2 1
OWN”+);MWH')+m 2(nr +1)°
+neng(nr +1)7 + (ny)* (nr +1)°),
which is O(n2) when n, n, < nr.

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to verify
the efficacy and performance of the proposed method: em-
ploying the LMIs (13) to warm-start the solution of (11) via
the BFGS optimizer. Additionally, we compare the resulting
solution with the estimates obtained from EM and DKS
algorithms. To obtain a fair comparison, we also employ the
same BFGS optimizer for the M-Step of the EM estimation.

We demonstrate our solution on a three-dimensional, i.e.,
n, = 3, linear time-invariant process model

0.7 025 0 0

Xp1= |0 05 0 |[xx+ [1] (3.5+cos(2k)) + wp,
0 025 07 1

with gy, = [1,0.5,2]". The observation is a two-

dimensional model, i.e., the number of measurements per
time instant is my, = 2. The system has sampled input
and measurement pairs in D every 100 milliseconds for 10
seconds, i.e., ny = 100. As such, the number of parameters
to be estimated is n,n.(n;+1) = 606. The noise covariance
of process, observation and output map dynamics, X, , 2y,
and X, , are assumed to remain constant across the entire
horizon. The initial state and parameter noise covariance are
also assumed similar to the noise covariance of process and
output map dynamics, respectively (i.e., Xy, = Xy, and
Yo, = X,,)- The output map noise biases ji,, are generated
such that p1,, = 5+ e %% cos(0.4k), po,, = 1.5 +
e 0% 5in(0.025k), u3,n, = 2, pa,n, = 5+e7 %0 cos(0.4k),
s = 1.5+e7%6%sin(0.025k), and p6 ,, = 2. The initial
parameter bias, pg,, is derived from u,,, by setting k = 0.
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Fig. 1: The Mean Squared Error of the three methods in high

noise of >, and two different SNRs for 100 experiments.

The DKS and EM algorithms are initialized with these noise
bias values. We examine the performance of our algorithm,
SDP-GD, compared with EM and DKS on four different
scenarios generated by employing High/Low SNR for the
process and observation noise, specifically 30 and 10 dB,
and High/Low parameter variation of:

High: ¥, = diag(2.17, 0.076, 1.19, 1.38, 0.87, 1.27)
Low: %, = diag(6.9, 0.2, 3.8, 4.4, 2.8, 4) - 1072,

Combined results from 100 experiments for each of the
four scenarios, keeping the same ground-truth realization
in each of the scenarios, are illustrated in Figures 1 and
2. In the figures, we illustrate the median (vertical dot-
ted lines) and distribution across experiments of the mean
squared error (MSE) of the predicted parameters, i.e. MSE =
ﬁzglo |6 — 6 |2. One can observe in the figures how
the DKS underperforms compared to the EM and our
SDP-GD solutions in more challenging scenarios where the
process-observation model noise is high or in the presence
of High parameter variation.

The average and standard deviation of the computation
time of each method across 100 experiments are reported in
Table 1. We performed all the experiments on a cluster node
with 384G memory and 40 CPU cores (2 Intel Xeon Gold
6148 @ 2.40GHz). The elapsed execution times confirm our
hypothesis that EM is computationally more expensive than
the other alternatives. The performance of EM and DKS
algorithms highly depends on the initialization, while in con-
trast, our proposed solution takes advantage of a warm-start
initializer obtained from solving a convexified approximation
of the original optimization problem. This initialization helps
converge to a better local optimum faster than the EM
algorithm. In addition, the M-step of the EM algorithm, in
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Fig. 2: The Mean Squared Error of the three methods in low
noise of 3, and two different SNRs for 100 experiments.

Elapsed time per seconds (mean + std)

Experiment Scenario DKS EM SDP-GD
8 |Low Parameter Variation 18+ 4 14265 £ 3112 1265 £ 109
S |High Parameter Variation 27 £ 13 22547 + 6768 1542 4+ 178
8 |Low Parameter Variation 9+3 7999 + 802 1543 + 132
@ |High Parameter Variation 21 + 13 3796 + 412 1605 £+ 128

TABLE I: The Average computation performance on all
scenarios for 100 experiments.

this problem, does not hold a closed-form solution, which
results in utilizing a first-order method. This gradient M-Step
also plays a part in the general slowness of the EM algorithm.
Our algorithm, however, requires a one-time execution of the
set of LMIs followed by an iterative quasi-Newton method
with a superlinear convergence rate. Hence, it provides the
best of both worlds, i.e., better estimations than EM and DKS
with less computation time than EM.

VI. CONCLUSION

We have introduced a method for the estimation of an
unknown output map of a linear time-varying system. We
employed a stochastic characterization of the evolution of
the output map parameters, which serves as a priori in-
formation on a MAP optimization to solve the estimation
problem. The MAP optimization is solved by relaxing the
optimization as an SDP, whose solution serves as warm-start
for a gradient descent algorithm. Comparing with standard
approaches to solve this problem, namely EM and DKS,
we showed experimentally the superiority of our method in
estimation performance, and lower computational demands
compared to EM. Future work will explore the incorporation
of other types of a priori knowledge on the output map,
the development of efficient causal filters following similar
approaches, the minimax formulation for robust estimation,

considering noise models with more general structures, and
introducing methods for efficient design of the control input.
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