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Abstract. Recent control algorithms for Markov decision processes (MDPs) have been designed

using an implicit analogy with well-established optimization algorithms. In this paper, we review this

analogy across four problem classes with a unified solution characterization allowing for a systematic

transformation of algorithms from one domain to the other. In particular, we identify equivalent

optimization and control algorithms that have already been pointed out in the existing literature,

but mostly in a scattered way. With this unifying framework in mind, we adopt the quasi-Newton

method from convex optimization to introduce a novel control algorithm coined as quasi-policy

iteration (QPI). In particular, QPI is based on a novel approximation of the “Hessian” matrix in

the policy iteration algorithm by exploiting two linear structural constraints specific to MDPs and

by allowing for the incorporation of prior information on the transition probability kernel. While

the proposed algorithm has the same computational complexity as value iteration, it interestingly

exhibits an empirical convergence behavior similar to policy iteration with a very low sensitivity to

the discount factor.

Keywords: Dynamic programming, reinforcement learning, optimization algorithms, quasi-Newton

methods, Markov decision processes.

1. Introduction

The problem of control, or the decision-making problem as it is also known within the operations

research community, has been the subject of much research since the introduction of the Bellman

principle of optimality in the late 1950s [4]. Apart from the fact that policy iteration (PI) is an

instance of the Newton method, which has been known since the late 1970s [45], more recent works

have made implicit use of the relationship between optimization and control problems to develop new

control algorithms, with faster convergence and/or lower complexity, inspired by their counterparts

for solving optimization problems. For instance, accelerated versions of value iteration (VI) in [21]

are inspired by Polyak momentum and Nesterov acceleration in convex optimization, while the

Q-learning combined with Polyak momentum and Nesterov acceleration produces momentum Q-

learning [59]. In particular, more recently, Halpern’s anchoring acceleration scheme [23] has been
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used to introduce the Anchored VI algorithm [34] with an improved convergence rate for large values

of discount factor γ and even for γ = 1.

The implicit connection between optimization algorithms and control algorithms for Markov de-

cision processes (MDPs) with a finite state-action space has also been studied more systematically.

In [57], the authors look at the connection between constrained convex optimization algorithms and

control algorithms such as Frank-Wolfe algorithm [16] and conservative PI [27]. A detailed com-

parison between deterministic optimization algorithms and model-based1 control algorithms is also

provided in [22], where the author looks at a wide range of optimization algorithms including gra-

dient descent, accelerated gradient descent, Newton method, and quasi-Newton method and their

counterparts for solving control problems.

When it comes to infinite (continuous) state-action spaces, except in special cases such as lin-

ear–quadratic regulators (LQR), one needs to resort to finite-dimensional approximation techniques

for computational purposes. This approximation may be at the modeling level by aggregation (dis-

cretization) of the state and action spaces, which readily falls into the finite MDP setting mentioned

above [6, 44]. Alternatively, one may directly approximate the value function via finite parametriza-

tion by minimizing (a proxy of) the residual of its fixed-point characterization based on the Bellman

principle of optimality [7, 55]. Examples of such include linear parameterization [9, 56], or nonlinear

parameterization with, for instance, neural network architectures [8, 52, 54] or max-plus approxi-

mation [5, 20, 32, 31, 38]. We also note that there is an alternative characterization of the original

function as the solution to an infinite-dimensional linear program [24], paving the way for approxima-

tion techniques via finite tractable convex optimization [12, 25, 39]. With this view of the literature,

it is worth noting that one can cast almost all of these approximation techniques as the solution to

a finite-dimensional fixed-point or convex optimization problem.

Motivated by these observations, we exploit the well-known root-finding characterization of opti-

mization problems and fixed-point characterization of control problems to provide a framework for

explicit transformation of deterministic (resp. stochastic) convex optimization problems to model-

based (resp. model-free) control problems, and vice versa (Table 1). These transformations, in turn,

allow us to identify “equivalent” algorithms in the two domains that have already been pointed out

in the existing literature, but mostly in a scattered way (Table 2).

The main contribution of this paper is that using the developed equivalence framework, we

adopt the quasi-Newton method from convex optimization to introduce the quasi-policy iteration

(QPI) algorithm with the following distinct features:

(1) Hessian approximation via structural information: QPI is based on a novel approx-

imation of the “Hessian” matrix in the PI algorithm by exploiting two linear structural

constraints specific to MDPs and by allowing for the incorporation of prior information on

1In this paper, the terminologies of “model-free” and “model-based” indicate the available information (oracle),

i.e., whether we have access to the model or only the system trajectory (samples); see Section 2.1 for more details. We

note that this is different from the common terminologies in the RL literature where these terms refer to the solution

approach, i.e., whether we identify the model along the way (model-based RL) or directly solve the Bellman equation

to find the value function (model-free RL).
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the transition probability kernel of the MDP (Theorem 4.1). In the special case of incorpo-

rating a uniform prior for the transition kernel, QPI can be viewed as a modification of the

standard VI using two novel directions with adaptive step-sizes (Corollary 4.2).

(2) Convergence rate and sensitivity to discount factor: The per-iteration computational

complexity of QPI is the same as VI (i.e., O(n2) where n is the number of states), and its

convergence can be guaranteed by safeguarding via standard VI (Theorem 4.1). However,

in our numerical simulations with random and structured MDPs, QPI exhibits an empirical

behavior similar to PI (which has a O(n3) per-iteration complexity) concerning sensitivity

of convergence rate to discounted factor (Figure 1).

(3) Extension to model-free control (a.k.a. RL): We also introduce the quasi-policy learn-

ing (QPL) algorithm, the stochastic version of QPI, as a novel model-free algorithm, and

guarantee its convergence by safeguarding via standard Q-learning (QL) algorithm (Theo-

rem 4.4).

The paper is organized as follows. In Section 2, we describe the connection between optimization

and control problems by providing the explicit transformations between them. We then use this

framework to look at equivalent algorithms from the two domains in Section 3. In Section 4,

we introduce and analyze the model-based QPI algorithm and its model-free extension, the QPL

algorithm. All the technical proofs are provided in Section 5. The performance of these algorithms

is then compared with multiple control algorithms via extensive numerical experiments in Section 6.

Section 7 concludes the paper by providing some final remarks.

Notations. For a vector v ∈ Rn, we use v(i) and [v](i) to denote its i-th element. Similarly, M(i, j)

and [M ](i, j) denote the element in row i and column j of the matrix M ∈ Rm×n. We use ·⊤ to

denote the transpose of a vector/matrix. We use ∥·∥2 and ∥·∥∞ to denote the 2-norm and ∞-norm

of a vector, respectively. We use ∥·∥2 and ∥·∥F for the induced 2-norm and the Frobenius norm of

a matrix, respectively. Let x ∼ P be a random variable with distribution P. We particularly use

x̂ ∼ P to denote a sample of the random variable x drawn from the distribution P. The identity

operator is denoted by Id. We use 1 and 0 to denote the all-one and all-zero vectors, respectively. I

and E = 11⊤ denote the identity and all-one matrices, respectively. We denote the i-th unit vector

by ei, that is, the vector with its i-th element equal to 1 and all other elements equal to 0.

2. Equivalence Transformations

In this section, we provide the generic framework that connects the optimization problems to

the control problems. In particular, we provide the explicit transformations between specific char-

acterizations of the solutions to these problems. Table 1 provides a condensed summary of this

framework.
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Domain Optimization Control

Problem

Function f̂ : Rℓ ×Ξ→ R,
Random variable ξ ∼ P,

min
x
{f(x) := EP[f̂(x, ξ)]}

State s ∈ S, Control a ∈ A,
Dynamics s+ ∼ P(·|s, a), Cost c : S ×A → R,

min
π:S→A

EP
[∑∞

t=0 γ
tc(st, π(st))

∣∣s0 = s
]
, ∀s ∈ S

Type Deterministic Stochastic Model-based Model-free

Equivalent

characterization
∇f(x⋆) = 0 EP[∇f̂(x⋆, ξ)] = 0 v⋆ = T (v⋆) q⋆ = EP

[
T̂ (q⋆, s+)

]
Available

oracle/info

∇f(x)
(Prob. distribution P)

∇f̂(x, ξ)
(Samples ξ̂)

T (v)

(Prob. kernel P, Cost c)

T̂ (q, s+)

(Samples (s, a, c(s, a), ŝ+))

Transformation

x

∇f
Id−∇f
∇2f

I −∇2f

←−−−−−−−−−−−−−−−→
−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−

v

Id−T
T

I − γP

γP

(x, ξ)

∇f̂
Id−∇f̂
∇2f̂

I −∇2f̂

←−−−−−−−−−−−−−−−−−→
−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−

(q, s+)

Id−T̂
T̂

I − γP̂

γP̂

Table 1. Equivalence transformations: The symbol Id denotes the identity operator, and T is the

Bellman operator (3). The random operator T̂ is the sampled Bellman operator (5). The matrix P = P (v)

is the state transition probability matrix of the Markov chain under the greedy policy w.r.t. the value

function v. The matrix P̂ = P̂ (q, ŝ+) is the sampled state-action transition probability matrix of the

Markov chain under the greedy policy w.r.t. the Q-function q.

2.1. Control problem

A common formulation of the control problem relies on the concept of Markov decision processes

(MDPs). MDPs are a powerful modeling framework for stochastic environments that can be con-

trolled to minimize some measure of cost. An MDP is a tuple (S,A,P, c, γ), where S and A are the

state space and action space, respectively. The transition kernel P encapsulates the state dynamics:

for each triplet (s, a, s+) ∈ S × A × S, it gives the probability P(s+|s, a) of the transition to state

s+ given that the system is in state s and the chosen control is a. The cost function c : S ×A → R,
bounded from below, represents the cost c(s, a) of taking the control action a while the system is

in state s. The discount factor γ ∈ (0, 1) can be seen as a trade-off parameter between short- and

long-term costs. In this study, we consider tabular MDPs with a finite state-action space. In par-

ticular, we take S = {1, 2, . . . , n} and A = {1, 2, . . . ,m}. This, in turn, allows us to treat functions

f : S → R and g : S × A → R as vectors f ∈ R|S| = Rn and g ∈ R|S×A| = Rnm – in the latter case,

we are considering a proper 1-to-1 mapping S ×A → {1, 2, . . . , nm}.
Let us now fix a control policy π : S → A, i.e., a mapping from states to actions. The stage

cost of the policy π is denoted by cπ ∈ R|S| = Rn with elements cπ(s) = c
(
s, π(s)

)
for s ∈ S. The

transition (probability) kernel of the resulting Markov chain under the policy π is denoted by Pπ,

where Pπ(s+|s) = P
(
s+|s, π(s)

)
for s, s+ ∈ S. We also define the matrix P π ∈ R|S|×|S| = Rn×n,
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with elements P π(s, s+) := Pπ(s+|s) for s, s+ ∈ S, to be the corresponding transition (probability)

matrix. The value of a policy is the expected, discounted, accumulative cost of following this policy

over an infinite-horizon trajectory: For the policy π, we define the value function vπ ∈ R|S| = Rn

with elements

vπ(s) := Est+1∼Pπ(·|st)
[∑∞

t=0 γ
tcπ(st) | s0 = s

]
,

and the Q-function qπ ∈ R|S×A| = Rnm with elements

qπ(s, a) := c(s, a) + γEs+∼P(·|s,a)[v
π(s+)],

so that we also have vπ(s) = qπ
(
(s, π(s)

)
for each s ∈ S. Given a value function v, let us also define

πv : S → A by

πv(s) ∈ argmin
a∈A

{
c(s, a) + γEs+∼P(·|s,a)

[
v(s+)

]}
,

to be the greedy policy w.r.t. v. Similarly, for a Q-function q, define πq : S → A by

πq(s) ∈ argmin
a∈A

q(s, a),

to be the greedy policy w.r.t. q. The problem of interest is to control the MDP optimally, that is, to

find the optimal policy π∗ with the optimal value/Q-function

v⋆ = min
π

vπ, q⋆ = min
π

qπ, (1)

so that the expected, discounted, infinite-horizon cost is minimized. Let us also note that the optimal

policy, i.e., the minimizer of the preceding optimization problems, is the greedy policy w.r.t. v⋆ and

q⋆, that is, π⋆ = πv⋆ = πq⋆ .

Interestingly, the optimal value/Q-function introduced in (1) can be equivalently characterized

as the fixed point of two different operators each of which is useful depending on the available

information (oracle):

(i) Model-based control: When we have access to the transition kernel and the cost function, the

problem is usually characterized by the fixed-point problem v⋆ = T (v⋆), i.e., for each s ∈ S

v⋆(s) = [T (v⋆)](s), (2)

where T : R|S| → R|S| is the Bellman operator given by

[T (v)](s) := min
a∈A

{
c(s, a) + γEs+∼P(·|s,a)

[
v(s+)

]}
. (3)

That is, v⋆ is the unique fixed-point of the Bellman operator T . The uniqueness follows from the

fact that the operator T is a γ-contraction in ∞-norm. Observe that, in this case, T can be exactly

computed given the model of the underlying MDP.

(ii) Model-free control: Alternatively, the model may not be known, and instead, one can generate

samples. Examples of this are very large systems where identifying the model is prohibitively

expensive but transitions between states can be observed and recorded, such as those in video

games. This problem has been studied extensively in the reinforcement learning community and
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is often characterized as the expected fixed-point problem q⋆ = Es+∼P

[
T̂ (q⋆, s+)

]
, i.e., for each

(s, a) ∈ S ×A
q⋆(s, a) = Es+∼P(·|s,a)

[
[T̂ (q⋆, s+)](s, a)

]
, (4)

where T̂ : R|S×A| × S → R|S×A| is the sampled Bellman operator given by2

[T̂ (q, ŝ+)](s, a) := c(s, a) + γ min
a+∈A

q(ŝ+, a+), (5)

with ŝ+ ∼ P(·|s, a) being a sample of the next state drawn from the distribution P(·|s, a) for the

pair (s, a).

2.2. Optimization problem

We now look at the root-finding characterization of the solution to convex optimization problems.

Consider the minimization problem

min
x∈Rℓ

{
f(x) = Eξ∼P[f̂(x, ξ)]

}
, (6)

where the function f̂ : Rℓ × Ξ → R and the probability distribution P over Ξ are such that the

function f : Rℓ → R is twice continuously differentiable and strongly convex. Much like the control

problem, this problem can be considered in two settings:

(i) Deterministic optimization: Assuming that P in (6) is known and the corresponding expec-

tation can be computed, the unique minimizer x⋆ satisfies

∇f(x⋆) = 0. (7)

(ii) Stochastic optimization: Now assume that P in (6) is unknown but can be sampled from. In

this case, the minimizer x⋆ satisfies the expected root-finding problem

Eξ∼P[∇f̂(x⋆, ξ)] = 0, (8)

where ∇ now denotes the partial derivative w.r.t. x. We note that, above, there is an underlying

assumption that the differentiation w.r.t. x and expectation w.r.t. ξ can be operated in any order.

2.3. Transformation

Before providing the equivalence relations between optimization and control problems, let us

provide an important result for the Bellman operator. For tabular MDPs, the Bellman operator is

piece-wise affine. Indeed, we have T (v) = maxπ∈Π cπ + γP πv, where Π = {π : S → A} is the finite

set of all deterministic control policies. Therefore, by Rademacher’s Theorem, T is differentiable

almost everywhere. In particular, we have (see Section 5.1 for the proof):

Lemma 2.1 (Jacobian of T ). Let S = {1, 2, . . . , n} and A = {1, 2, . . . ,m}. If T is differentiable at

v, then ∂T (v) = γP πv , where πv is the greedy policy w.r.t. v.

2Strictly speaking, the provided sampled Bellman operator is the empirical version of the Bellman operator for the

Q-function, given by [T (q)](s, a) := c(s, a) + γEs+∼P(·|s,a)
[
mina+∈A q(s+, a+)

]
for (s, a) ∈ S ×A.
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Using the preceding result, we can write ∂(Id−T )(v) = I − γP (v), where P (v) := P πv , i.e., the

state transition matrix of the greedy policy πvk w.r.t. vk and Id is the identity operator,. Then,

comparing the characterizations (2) and (7), we can draw the following equivalence relations between

deterministic optimization and model-based control:

x↔ v,

∇f → Id−T, T → Id−∇f,

∇2f → I − γP, P → γ−1(I −∇2f),

where I is the identity matrix, and P = P (v) is the transition matrix of the Markov chain un-

der the greedy policy w.r.t. v. Similarly, for stochastic optimization and model-free control, the

characterizations (4) and (8) point to the following equivalence relations:

(x, ξ)↔ (q, s+),

∇f̂ → Id−T̂ , T̂ → Id−∇f̂ ,

∇2f̂ → I − γP̂ , P̂ → γ−1(I −∇2f̂),

where P̂ = P̂ (q, ŝ+) ∈ Rnm×nm is the synchronously sampled transition matrix of the Markov chain

under πq with elements3

[P̂ (q, ŝ+)]
(
(s, a), (s′, a′)

)
=

{
1 if s′ = ŝ+, a′ = πq(ŝ

+),

0 otherwise,

for each (s, a), (s′, a′) ∈ S ×A, where ŝ+ ∼ P(·|s, a) is again a sample of the next state drawn from

the distribution P(·|s, a) for the state-action pair (s, a).

3. Equivalent Algorithms

We now look at existing algorithms for optimization and control and their equivalence within the

proposed framework. In particular, we show how the application of the proposed transformations

on well-established optimization algorithms such as gradient descent, accelerated gradient descent,

and Newton method leads to well-known control algorithms such as value iteration (VI), accelerated

VI, and policy iteration (PI). We note that these equivalences have already been pointed out in

the existing literature, however, mostly in a scattered way. An exception is [22] where the relation

between deterministic optimization algorithms and model-based control algorithms are studied.

For tabular MDPs with S = {1, . . . , n} and A = {1, . . . ,m}, we have v ∈ Rn and q ∈ Rnm for the

value function and the Q-function, respectively. Correspondingly, we have T : Rn → Rn with

T (v) =
∑

s∈S [T (v)](s) · es,

3Once again, strictly speaking, P̂ (q, ŝ+) is the empirical version of the state-action transition matrix P (q) ∈ Rnm×nm

of the Markov chain under the greedy policy πq w.r.t. q, with elements [P (q)]
(
(s, a), (s′, a′)

)
= P(s′|s, a) if a′ = πq(s

′)

and = 0 otherwise, for (s, a), (s′, a′) ∈ S ×A.
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Deterministic

optimization

(y = x)

Model-based

control

(y = v)

Stochastic

optimization

(y = x)

Model-free

control

(y = q)

g(x) := ∇f(x)
H(x) := ∇2f(x)

g(v) := v − T (v)

H(v) := I − γP (v)

ĝk(x) := ∇f̂(x, ξ̂k)
Ĥk(x) := ∇2f̂(x, ξ̂k)

ĝk(q) := q − T̂ (q, ŝ+k )

Ĥk(q) := I − γP̂ (q, ŝ+k )

GD [35] Relaxed VI [4, 33] SGD [48] QL [58]

dk = −αkg(yk) dk = −αkĝk(yk)

Polyak GD [42] Momentum VI [21]
Momentum SGD [60]

Speedy QL [19], NeSA [13],

Momentum QL [59]dk = −αkg(yk) + βkdk−1

Nesterov GD [41] Accelerated VI [21]
{

d′k−1 = ĝk(yk−1)− ĝk(yk)

dk = −αkĝk(yk) + βkd
′
k−1 + δkdk−1dk = −αkg(yk + βkdk−1) + βkdk−1

NM PI [26] SNR [49, 14] Zap QL [14]

dk = − [H(yk)]
−1 g(yk)

{
Dk = (1− βk)Dk−1 + βkĤk(yk)

dk = −αkD
−1
k ĝk(yk)

Table 2. Equivalent algorithms: The vector dk is the update vector as in a generic iterative scheme

yk+1 = yk + dk for k = 0, 1 . . .. The coefficients αk, βk, δk > 0 are step-sizes. The second row contains

definitions of the mathematical objects used in the rows below. All the provided model-free control

algorithms are synchronous, i.e., all the state-action pairs in the Q-function are updated at each iteration.

(S)GD: (stochastic) gradient descent; VI: value iteration; NM: Newton method; PI: policy iteration; QL:

Q-learning; SNR: stochastic Newton-Raphson.

where es ∈ Rn is the unit vector for the state s ∈ S, and also T̂ : Rnm × Snm → Rnm with

T̂ (q, ŝ+) =
∑

(s,a)∈S×A [T̂ (q, ŝ+)](s, a) · e(s,a),

where e(s,a) ∈ Rnm is the unit vector for the state-action pair (s, a) ∈ S × A. Above, with some

abuse of notation, ŝ+ captures the dependence of the sampled Bellman operator T̂ on the specific

samples ŝ+ ∼ P(·|s, a), with one sample for each (s, a) ∈ S ×A.
Moreover, to ease the exposition, we see any iterative algorithm as

yk+1 = yk + dk, k = 0, 1, . . .

where yk = xk, vk or qk based on the context. In each setting, dk represents the update vector

between iterations k and k + 1. This form allows us to characterize algorithms in terms of dk.

A compact summary of this can be found in Table 2. Let us emphasize that these equivalences

are merely in the update rules and correspond to the equivalent transformations of Table 1. In

particular, they do not imply that these algorithms have the same convergence properties.

3.1. First-order methods

The celebrated gradient descent (GD) [35] method is characterized by dk = −αk∇f(xk), where
αk is a properly chosen step-size. Applying the transformations of Table 1 on GD, we derive the so-

called relaxed VI [33, 43, 21] with dk = −αk

(
vk−T (vk)

)
, for model-based control. In particular, for
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the constant step-size αk = 1, we have the standard VI algorithm vk+1 = T (vk) [4]. The stochastic

counterpart of GD (SGD) [48] is characterized by dk = −αk∇f̂(xk, ξ̂k). Under the transformations

of Table 1, SGD leads to the synchronous Q-learning (QL) algorithm [58, 29] with4

dk = −αk

(
qk − T̂ (qk, ŝ

+
k )
)
. (9)

3.2. Accelerated methods

In the so-called momentum-based algorithms, the update vector dk is specified by gradient oracles

but also depends on dk−1. One such algorithm is GD with Polyak momentum (Polyak GD) [42],

a.k.a. heavy ball method, characterized by

dk = −αk∇f(xk) + βkdk−1.

Another well-known momentum-based algorithm is GD with Nesterov acceleration (Nesterov GD) [41]

with update vector

dk = −αk∇f(xk + βkdk−1) + βkdk−1.

With a proper choice of the step-sizes αk and βk, these schemes can be shown to accelerate the

convergence rate, compared to the standard GD, for particular classes of objective functions [42,

40]. The corresponding model-based control algorithms, using the transformations of Table 1, are

momentum VI [21] with

dk = −αk

(
vk − T (vk)

)
+ βkdk−1,

and accelerated VI [21] with

dk = −αk

(
vk + βkdk−1 − T (vk + βkdk−1)

)
+ βkdk−1.

However, the convergence of the preceding accelerated schemes is in general not guaranteed. In [21],

the authors address this issue by safeguarding, i.e., combining the accelerated VI with the standard

VI. For accelerating SGD, a direct combination of Polyak momentum or Nesterov acceleration with

SGD has been shown to lead to no better (and even worse) performance in terms of convergence

rate [60, 30]. At least, when it comes to almost sure convergence, [37] reports the same rate of

convergence for SGD with Polyak momentum and SGD with Nesterov acceleration as for standard

SGD. Nevertheless, modifications of momentum-based acceleration methods have led to a range of

accelerated SGD algorithms with faster convergence rates with specific assumptions on the problem

data [30, 36, 1]. The idea of using momentum to accelerate QL has also attracted some interest. In

particular, applying the transformations of Table 1 on a generic momentum SGD [60] with{
d′k−1 = ∇f̂(xk−1, ξ̂k)−∇f̂(xk, ξ̂k),
dk = −αk∇f̂(xk, ξ̂k) + βkd

′
k−1 + δkdk−1,

4This is the so-called synchronous update of the Q-function in all state-action pairs in each iteration, corresponding

to the parallel sampling model introduced by [29].
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and step-sizes αk, βk, δk > 0, we obtain the speedy QL [19], NeSA [13], and momentum QL [59]

algorithms with {
d′k−1 =

(
qk−1 − T̂ (qk−1, ŝ

+
k )
)
−
(
qk − T̂ (qk, ŝ

+
k )
)
,

dk = −αk

(
qk − T̂ (qk, ŝ

+
k )
)
+ βkd

′
k−1 + δkdk−1.

(10)

The difference between these three algorithms is in the choice of the step-sizes αk, βk, δk > 0.

3.3. Second-order methods

In second-order algorithms, dk is specified by both the gradient and the Hessian oracles. The

damped Newton method is one such algorithm with dk = −αk[∇2f(xk)]
−1∇f(xk). The pure Newton

step with αk = 1, has a local quadratic convergence, if in addition to f being strongly convex, the

Hessian is Lipschitz-continuous [11, Thm. 5.3]. Globally, however, the pure Newton method can lead

to divergence. This is the reason behind introducing the step-size αk < 1 in the damped version,

which can be used to guarantee a global linear convergence. We can use the transformations of

Table 1 to transform the Newton method into a model-based control with dk = −
(
I−γP (vk)

)−1
(vk−

T (vk)), where P (vk) is the transition matrix of the Markov chain under the greedy policy w.r.t. vk.

The derived model-based control algorithm then corresponds to the well-known PI algorithm [45]

with vk+1 =
(
I − γP (vk)

)−1
cπvk , where cπvk is the vector of stage costs corresponding to the greedy

policy πvk w.r.t. vk. Indeed, the fact the Bellman operator is strongly semi-smooth everywhere

has been used to show that the PI algorithm is an instance of the semi-smooth Newton method

with a local quadratic convergence rate [17]. The second-order scheme has also been combined with

the VI algorithm by using the smooth Bellman operation in which the maximization operation is

approximated by a differentiable function, e.g., log-sum-exp [50]. This idea has been recently used

to propose the generalized second-order VI with a quadratic convergence rate [28].

In the model-free case, the stochastic version of the Newton method [49] has been a source of

inspiration for developing second-order-type Q-learning algorithms. In particular, the stochastic

Newton-Raphson (SNR) [49] algorithm with{
Dk = (1− βk)Dk−1 + βk∇2f̂(xk, ξ̂k),

dk = −αkD
−1
k ∇f̂(xk, ξ̂k),

was used for developing the zap QL algorithm [14] with
hk = e(sk,ak) − γ 1

(
ŝ+k , πk(ŝ

+
k )
)
,

δk = qk(sk, ak)− [T̂ (qk, ŝ
+
k )](sk, ak),

Dk = (1− βk) Dk−1 + βk e(sk,ak) h
⊤
k ,

dk = −αk D−1
k δk e(sk,ak),

where πk(ŝ
+
k ) = argmina∈A qk(ŝ

+
k , a) is the greedy action w.r.t. qk evaluated at the sampled next sate

ŝ+k ∼ P(·|sk, ak). Note that the preceding algorithm involves updating one entry of the Q-function qk

at each iteration k, corresponding to the state-action pair (sk, ak) chosen at iteration k – recall that

e(s,a) ∈ Rnm is the unit vector corresponding to the state-action pair (s, a). The implementation
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of zap QL algorithm with synchronous update of the Q-function in all state-action pairs in each

iteration is then characterized by{
Dk = (1− βk)Dk−1 + βk

(
I − γP̂ (qk, ŝ

+
k )
)
,

dk = −αkD
−1
k

(
qk − T̂ (qk, ŝ

+
k )
)
,

(11)

where P̂ (q, ŝ+) is the synchronously sampled state-action transition matrix of the Markov chain un-

der the greedy policy w.r.t. q. Note that (11) is exactly the SNR algorithm under the transformations

of Table 1.

4. Quasi-Policy Iteration (QPI)

While Newton method (NM) has a better convergence rate compared to gradient descent (GD),

it suffers from a higher per-iteration computational cost. To be precise, consider again the un-

constrained minimization problem minx∈Rℓ f(x), where f is twice continuously differentiable and

strongly convex with a Lipschitz-continuous Hessian. Then, the GD update rule xk+1 = xk −
αk∇f(xk), with a proper choice of step-size αk, converges linearly [11, Thm. 3.12] with O(ℓ) per-

iteration complexity (disregarding the complexity of gradient oracle). On the other hand, the NM

update rule xk+1 = xk−αk[∇2f(xk)]
−1∇f(xk), with a proper choice of step-size αk, has a local qua-

dratic convergence rate [11, Thm. 5.3] with O(ℓ3) per-iteration complexity, assuming direct inversion

(and disregarding the complexity of gradient and Hessian oracles).

Quasi-Newton methods (QNMs) are a class of methods that allow for a trade-off between com-

putational complexity and (local) convergence rate. To do so, these methods use a Newton-type

update rule

xk+1 = xk − αkH̃
−1
k ∇f(xk),

where H̃k is an approximation of the true Hessian ∇2f(xk) at iteration k. Different QNMs use

different approximations of the Hessian. A generic approximation scheme in QNMs is

H̃k = argmin
H∈Rℓ×ℓ

∥H −Hprior∥2F s.t. Hri = bi, i = 1, . . . , j, (12)

which minimizes the distance (in Frobenius norm) to a given prior Hprior subject to j (≥ 1) linear

constraints specified by ri, bi ∈ Rℓ. This leads to the approximation H̃k being a rank-j update of

the prior Hprior, i.e.,

H̃k = Hprior + (B −HpriorR)(R⊤R)−1R⊤,

where R = (r1, . . . , rj), B = (b1, . . . , bj) ∈ Rℓ×j . Hence, H̃−1
k can be easily computed based on

H−1
prior using the Woodbury formula. Different choices of the prior and the linear constraints in the

generic approximation scheme above lead to different QNMs. For example, by choosing the so-called

secant conditions with ri = xk−i+1 − xk−i and bi = ∇f(xk−i+1) − ∇f(xk−i) as linear constraints

and Hprior = I as the prior, we derive Anderson mixing with memory j [2], while by using a single

secant condition with j = 1 and choosing Hprior = H̃k−1 as the prior, we derive QNM with Broyden

approximation [10].
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In this section, following a similar idea, we propose the quasi-policy iteration (QPI) algorithm

by incorporating a computationally efficient approximation of the “Hessian” H = I − γP in the

PI algorithm. We note that the authors in [18, 61, 53] also propose the combination of Anderson

mixing with optimal control algorithms. However, the QPI algorithm is fundamentally different in

the sense that it approximates the transition matrix P using a different set of constraints that are

specific to the optimal control algorithms.

4.1. QPI Algorithm

For k ∈ {0, 1, 2, . . .}, let

ck := cπvk , Pk := P πvk , Tk := T (vk).

(Recall that cπvk and P πvk are the stage cost and the state transition matrix of the greedy policy

πvk w.r.t. vk, respectively.) Recall the PI update rule

vk+1 = (I − γPk)
−1ck = vk − (I − γPk)

−1(vk − Tk).

Inspired by the QNM approximation scheme (12), we propose the generic QPI update rule

vk+1 = vk − (I − γP̃k)
−1(vk − Tk), (13)

where

P̃k = argmin
P∈Rn×n

∥P − Pprior∥2F s.t. Pri = bi, i = 1, . . . , j. (14)

Observe that instead of approximating the complete Hessian Hk := (I − γPk)
−1 similar to standard

QNMs, we are only approximating Pk. This choice particularly allows us to exploit the problem

structure in order to form novel constraints and prior as we discuss next.

Regarding the constraints, the problem structure gives us two linear equality constraints: First,

Pk is a row stochastic matrix, i.e.,

Pk1 = 1, (15)

and hence we can set r1 = b1 = 1. Second, we can use the fact that the Bellman operator T

is piece-wise affine. In particular, from the definition (3) of the Bellman operator, it follows that

T (v) = cπv + γP πvv. Thus,

Tk = ck + γPkvk ⇒ Pkvk = γ−1(Tk − ck), (16)

and we can set r2 = vk and b2 = γ−1(Tk − ck). Note that, unlike the standard secant conditions in

QNMs, the constraints (15) and (16) hold exactly. Incorporating these constraints, we propose the

approximation

P̃k = argmin
P∈Rn×n

∥P − Pprior∥2F s.t. P1 = 1, Pvk = γ−1(Tk − ck). (17)

The update rule (13) using the approximation (17) is, however, not necessarily a contraction. The

same problem also arises in similar algorithms such as Anderson accelerated VI [61] and Nesterov
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accelerated VI [21]. Here, we follow the standard solution for this problem, that is, safeguarding the

QPI update against the standard VI update based on the Bellman error

θk := ∥vk − Tk∥∞ .

To be precise, at each iteration k = 0, 1, . . ., we consider the safeguarded QPI update rule as follows

(QPI) compute vk+1 according to (13), (17);

(Safeguard) if θk+1 > γk+1θ0, then vk+1 = Tk.
(18)

The following theorem summarizes the discussion above by providing the QPI update rule explic-

itly (see Section 5.2 for the proof).

Theorem 4.1 (QPI convergence & complexity). Consider the update rule (13) using the approxi-

mation (17) where Pprior1 = 1 and let Gprior = (I − γPprior)
−1. We have

vk+1 = vk − G̃k(vk − Tk), (19a)

where

wk = Tk − ck − γPpriorvk, w̌k = Gpriorwk ∈ Rn, uk = vk − 1⊤vk
n 1, ǔk = G⊤

prioruk ∈ Rn,

τk =

{
0 if u⊤k vk = 0,

(u⊤k vk)
−1 otherwise

∈ R, ηk =

{
0 if u⊤k vk = 0,(
u⊤k (vk − w̌k)

)−1
otherwise

∈ R,

P̃k = Pprior + γ−1τkwku
⊤
k , G̃k = Gprior + ηkw̌kǔ

⊤
k .

(19b)

Moreover, each iteration of the QPI update rule (19) with the safeguarding (18) is a γ-contraction

in the ∞-norm and has a time complexity of O(n2m).

Observe that the safeguarded QPI update rule has the same per-iteration complexity as VI.

Moreover, the convergence of QPI is ensured via safeguarding against VI, which leads to the same

theoretically guaranteed linear convergence with rate γ as for VI. However, as we will show in

the numerical examples below, we observe an empirically faster convergence for QPI with its rate

showing less sensitivity to γ similar to PI. We also note that there is also a one-time computational

cost of O(n3) in the QPI update rule (19) for computing Gprior (assuming direct inversion and if

Gprior is not available in closed form). The pseudo-code for the safeguarded QPI is provided in

Algorithm 1 in Appendix C.

Next to be addressed is the choice of the prior Pprior. First of all, note that for a fixed prior in

all iterations, computation of τk and P̃k in (19b) is not needed since the update (19a) only requires

G̃k. The first choice for such a fixed prior is to exploit the available knowledge on the structure

of the MDP. For instance, one can set Pprior = Pµ with µ being the stochastic policy choosing

actions uniformly at random (so that Pprior is the average over actions of and has the same sparsity

pattern as the true transition kernel of the MDP). A computationally advantageous choice for the

prior is the uniform distribution Pprior =
1
nE = 1

n11
⊤ for which the update rule can be simplified

significantly (see Section 5.3 for the proof):
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Corollary 4.2 (QPI with uniform prior). For the uniform prior Pprior = 1
nE, the QPI update

rule (19) equivalently reads as

vk+1 = (1− δk)Tk + δkck + λk1, (20a)

where the scalar coefficients are given by

zk = ck − 1⊤ck
n 1 ∈ Rn, gk = vk − Tk ∈ Rn, yk = gk − 1⊤gk

n 1 ∈ Rn,

δk =

{
0 if v⊤k (yk + zk) = 0,

v⊤k yk
v⊤k (yk+zk)

otherwise
∈ R, λk = γ

n(1−γ)1
⊤((δk − 1)gk + δkck

)
∈ R.

(20b)

Observe that the QPI update rule (20a) is a modification of the standard VI update rule vk+1 =

T (vk) using two new vectors, namely, ck−T (vk) and the all-one vector 1, with adaptive coefficients

δk and λk, respectively.

Another interesting choice for the prior in (17) is Pprior = P̃k−1, i.e., the previous approximation.

This leads to a recursive scheme for approximating the transition matrix similar to QNM with

Broyden approximation [10]. This can be achieved by choosing an initialization P̃−1 such that

P̃−11 = 1 and defining G̃−1 := (1− γP̃−1)
−1 (e.g., P̃−1 =

1
nE and G̃−1 = I + γ

n(1−γ)E).

We finish this section with the following remark.

Remark 4.3 (Other constraints). One can also add extra constraints to the minimization prob-

lem (17) to impose a particular structure on the approximate transition matrix P̃k. For instance,

a natural constraint is to require this matrix to be entry-wise non-negative so that P̃k is indeed a

probability transition matrix; or, one can impose a sparsity pattern on P̃k using the prior knowledge

on the structure of the MDP. However, incorporating such information may lead to the problem (17)

not having a closed-form and/or low-rank solution, undermining the computational efficiency of the

proposed algorithm. In this regard, we note that the problem (17) has a closed-form solution which

is a rank-one update of the prior; see P̃k in (19b).

4.2. Extension to model-free control: QPL algorithm

We now introduce the quasi-policy learning (QPL) algorithm as the extension of QPI for model-

free control problems with access to samples through a generative model. For simplicity, we limit

the following discussion to the extension of the QPI algorithm (20) with a uniform prior. However,

we note that the extension can be similarly applied to the QPI algorithm (19) with the generic prior.

The basic idea is to implement the stochastic version of the QPI update rule for the Q-function

using the samples. In particular, similar to the approximation (17), we use an approximation of the

state-action transition matrix under the greedy policy w.r.t. the Q-function qk at each iteration k,

where the second equality constraint is formed based on the sampled Bellman operator T̂ (·, ŝ+k ),
evaluated at the sampled next states ŝ+k at iteration k, as a surrogate for the Bellman operator T (·).
To be precise, let

T̂k := T̂ (qk, ŝ
+
k ),
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at each iteration k. Also, let c ∈ Rnm be the vector of stage cost (with the same state-action ordering

as the Q-function qk ∈ Rnm). We note that since the proposed QPL algorithm is synchronous with

one sample for each state-action pair in each iteration, we have access to the complete stage cost c

after the first iteration and can treat it as an input to the algorithm. The approximate state-action

transition matrix P̃k at each iteration k is then formed as follows

P̃k = argmin
P∈Rnm×nm

∥P − Pprior∥2F s.t. P1 = 1, P qk = γ−1
(
T̂k − c

)
. (21)

The minimization problem above also has a closed-form solution as a rank-one update of the prior,

which allows us to compute G̃k = (I − γP̃k)
−1 using Woodbury formula. In particular, by using the

uniform prior Pprior =
1

nmE, the update rule of the model-free QPL algorithm is

qk+1 = (1− αk)qk + αk

(
(1− δk)T̂k + δkc+ λk1

)
, (22a)

where

z = c− 1⊤c
nm 1 ∈ Rnm, ĝk = qk − T̂k ∈ Rnm, yk = ĝk − 1⊤ĝk

nm 1 ∈ Rnm,

δk =

{
0 if q⊤k (yk + z) = 0,

q⊤k yk
q⊤k (yk+z)

otherwise
∈ R, λk = γ

nm(1−γ)1
⊤((δk − 1)ĝk + δkc

)
∈ R.

(22b)

and αk is the diminishing learning rate of the algorithm, e.g., αk = 1/(k + 1). Compared to the

standard Q-learning (QL) update rule, i.e., qk+1 = (1− αk)qk + αkT̂k, QPL uses the two additional

vectors c− T̂k and the all-one vector 1 with adaptive coefficients in its update rule.

Similar to the model-based case, the proposed QPL update rule is not necessarily convergent. To

address this issue, we again use the basic idea of safeguarding. However, in this case, we safeguard

the QPL update against the standard QL update based on the sampled Bellman error

θ̂k := ∥qk − T̂k∥∞.

To be precise, we run a QL algorithm

qQL
k+1 = (1− αk)q

QL
k + αkT̂

QL
k ,

in parallel with the QPL algorithm using the same initialization qQL
0 = q0 and the same samples for

computing the corresponding sampled Bellman operator and error

T̂QL
k := T̂ (qQL

k , ŝ+k ), θ̂QL
k := ∥qQL

k − T̂QL
k ∥∞.

We then use the sampled Bellman error of QL to safeguard the QPL update rule as follows

(QPL) compute qk+1 according to (22);

(Safeguard) if k > Ksg and
∑k+1

i=0 θ̂i >
∑k+1

i=0 θ̂QL
i then qk+1 = (1− αk)qk + αkT̂k .

(23)

Note that once the safeguard is activated, the QPL update follows a standard QL step, as opposed

to the QPL step, using its own last iterate qk (and not the last iterate qQL
k of the QL algorithm

that is running in parallel). Moreover, in order to increase the robustness against the stochasticity

of the samples, the safeguard is activated (i) after Ksg iterations and (ii) based on the accumulated
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sampled Bellman errors over the entire history of iterations. The following theorem summarizes

properties of the proposed QPL algorithm (see Section 5.4 for the proof).

Theorem 4.4 (QPL convergence & complexity). The safeguarded QPL algorithm (23) has a per-

iteration complexity of O(nm2) and converges with at least the same rate as QL.

Regarding the preceding result, we note that the per-iteration time complexity of QPL with

safeguard is the same as that of the (synchronous) QL algorithm. Algorithm 2 in Appendix C

provides the pseudo-code for the safeguarded QPL. We finish this section with the following remark

on the asynchronous implementation of QPL.

Remark 4.5 (Asynchronous QPL). The proposed QPL update rule (22) can also be implemented in

an asynchronous fashion. To be precise, this requires forming the approximate state-action transition

matrix P̃k based on a single sample (sk, ak, ŝ
+
k , c(sk, ak)) as follows

P̃k = argmin
P∈Rnm×nm

∥P − Pprior∥2F s.t. P1 = 1, e⊤(sk,ak)Pqk = γ−1
(
T̂k(sk, ak)− c(sk, ak)

)
.

Cf. approximation (21). In particular, by using the uniform prior Pprior =
1

nmE, the corresponding

update rule reads as

qk+1 = qk − αk(1 + δk)
(
qk(sk, ak)− T̂k(sk, ak)

)(
e(sk,ak) + β1

)
,

where the scalar coefficients are given by

β = γ
nm(1−γ) , ρk = 1

nm1⊤qk,

λk =
(
T̂k(sk, ak)− c(sk, ak)− γρk

)(
qk(sk, ak)− ρk

)
,

ηk = ∥qk∥22 − ρ2k − λk, δk =

{
0 if ηk = 0,

λk/ηk otherwise.

Note that the preceding update rule, as expected and similar to ZQL, leads to an update in all entries

of the Q-function qk in each iteration.

5. Technical Proofs

5.1. Proof of Lemma 2.1

Let us define the matrix P a ∈ Rn×n with entries P a(s, s+) = P (s+|s, a), for every control action

a ∈ A. Fix s ∈ S, and observe that

∂v
(
[T (v)](s)

)
= ∂v

(
min
a∈A

{
c(s, a) + γEP(·|s,a)[v(s

+)]
})

= ∂v

(
min
a∈A
{c(s, a) + γ · P a(s, ·) · v}

)
,

where P a(s, ·) is the s-th row of P a. Then, using the envelope theorem [51], we have

∂v
(
[T (v)](s)

)
= ∂v

(
c
(
s, πv(s)

)
+ γ · P πv(s, ·) · v

)
= γ · P πv(s, ·).

Hence, ∂T (v) = γP πv .
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5.2. Proof of Theorem 4.1

First, let us show that the two equality constraints in the minimization problem (17) are linearly

dependent if and only if u⊤k vk = 0. In this regard, observe that the two equality constraints are

linearly dependent if and only if vk = ρ1 for some ρ ∈ R: For ρ = 0, the second equality constraint

becomes trivial; and, for ρ ̸= 0, the two constraints become equivalent. On the other hand, we have

u⊤k vk =
(
vk −

1⊤vk
n

1
)⊤

vk = v⊤k (I −
1

n
E)vk.

Then, since I − 1
nE is positive semi-definite with one zero eigenvalue corresponding to the eigenvec-

tor 1, we have u⊤k vk = 0 if and only if vk = ρ1 for some ρ ∈ R. Hence, the constraints in (17) are

linearly dependent if and only if u⊤k vk = 0.

We first consider the update rule (19) for the case u⊤k vk ̸= 0. Define R := (1, vk), B :=(
1, γ−1(Tk − ck)

)
∈ Rn×2 so that the minimization problem (17) can be written as

P̃k = argmin
P∈Rn×n

{
∥P − Pprior∥2F : PR = B

}
.

Note that, since u⊤k vk ̸= 0 and hence vk and 1 are linearly independent, R is of full column rank.

The solution to the preceding problem is given by

P̃k = Pprior + (B − PpriorR)(R⊤R)−1R⊤.

Now, observe that

(B − PpriorR) =
[
1 1

γ (Tk − ck)
]
− Pprior

[
1 vk

]
=
[
1− Pprior1

1
γ (Tk − ck)− Ppriorvk

]
=
[
0 1

γ (Tk − ck)− Ppriorvk

]
=
[
0 γ−1wk

]
,

where we used the assumption Pprior1 = 1. Also,

(R⊤R)−1 =

([
1⊤

v⊤k

] [
1 vk

])−1

=

[
n v⊤k 1

v⊤k 1 v⊤k vk

]−1

=
1

n(u⊤k vk)

[
v⊤k vk −1⊤vk
−1⊤vk n

]
.

and

(R⊤R)−1R⊤ =
1

u⊤k vk

[
∗
u⊤k

]
.

Therefore, we have

P̃k = Pprior + γ−1(u⊤k vk)
−1wku

⊤
k .

For the case u⊤k vk = 0, as we discussed in the beginning of the proof, the two equality constraints in

the minimization problem (17) become linearly dependent, and, in particular, the second constraint

can be discarded. The solution to the problem (17) in this case is then P̃k = Pprior. Hence, the

approximation (17) can be in general written as

P̃k = Pprior + γ−1τkwku
⊤
k , (24)
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where

τk =

{
0 if u⊤k vk = 0,

(u⊤k vk)
−1 otherwise.

That is, the approximation P̃k is a rank-one update of the prior. Then, if τk = 0, we clearly have

G̃k = (I − γP̃k)
−1 = (I − γPprior)

−1 = Gprior,

and, for the case τk ̸= 0, we can use the the Woodbury formula to write

G̃k = (G−1
prior − τkwku

⊤
k )

−1 = Gprior +
1

τ−1
k − u⊤k (Gpriorwk)

(Gpriorwk)(G
⊤
prioruk)

⊤ = Gprior + ηkw̌kǔ
⊤
k .

What remains to be shown is that ηk is well-defined for u⊤k vk ̸= 0 (i.e., τk ̸= 0). First, we use

Tk = ck + γPkvk to write

η−1
k = u⊤k (vk − w̌k) = u⊤k

(
vk −Gprior(Tk − ck − γPpriorvk)

)
= u⊤k

(
vk −Gprior(γPkvk − γPpriorvk)

)
,

Next, since Pprior = γ−1(I −G−1
prior) and using the fact that vk = uk +

1⊤vk
n 1, we have

η−1
k = u⊤k

(
I − γGprior(Pk − Pprior)

)
vk = u⊤k Gprior(I − γPk)vk

= u⊤k Gprior(I − γPk)(uk + αk1) = u⊤k Gprior(I − γPk)uk +
1⊤vk
n

u⊤k Gprior(I − γPk)1.

Now, note that Pk1 = 1 and Gprior1 = (1− γ)−11. Hence,

η−1
k = u⊤k Gprior(I − γPk)uk +

1⊤vk
n

u⊤k 1 = u⊤k Gprior(I − γPk)uk,

where we also used the fact that u⊤k 1 = 0. Then, since the matrices Gprior and (I − γPk) are non-

singular with their eigenvalues having strictly positive real parts (because the eigenvalues of Pk all

reside within the unit disc), we have

u⊤k Gprior(I − γPk)uk = 0⇔ uk = 0⇔ vk = ρ1 for some ρ ∈ R⇔ u⊤k vk = 0.

That is, ηk is well-defined for u⊤k vk ̸= 0.

Next, we consider the rate of convergence of the safeguarded QPI update rule. Observe that since

T is a γ-contraction in ∞-norm, the safeguarding using standard VI as in (18) implies that

∥vk+1 − Tk+1∥∞ ≤ max{γk+1 ∥v0 − T0∥∞ , γ ∥vk − Tk∥∞}

for all k ≥ 0. This ensures a linear convergence with rate γ.

Finally, the per-iteration time complexity of each iteration of the safeguarded QPI update rule:

The update rule (19a) requires O(n2m) operations for computing the vectors Tk = T (vk), O(n2)

operations for the matrix-vector multiplication, and O(n) operations for the vector additions. Com-

puting the objects in (19b) involves vector/matrix additions and matrix-vector multiplications (all

of size n) and hence requires O(n2) operations. For the safeguarding (18), we need to compute

Tk+1 = T (vk+1) which again requires O(n2m) operations. Summing up the aforementioned com-

plexities, we derive the total time complexity to be O(n2m).
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5.3. Proof of Corollary 4.2

The result follows from Theorem 4.1 by plugging in Pprior =
1
nE and Gprior = I + γ

n(1−γ)E and

simplifying the expression. In particular, we note that the condition v⊤k (yk + zk) = 0 in (20b) is

equivalent to the condition u⊤k vk = 0 in (19b). To see this, recall that u⊤k vk = 0 if and only if

vk = ρ1 for some ρ ∈ R; see the first part of the proof of Theorem 4.1 in Section 5.2. Also, observe

that

v⊤k (yk + zk) = v⊤k
(
gk + ck −

1⊤(gk + ck)

n
1
)
= v⊤k

(
vk − Tk + ck −

1⊤(vk − Tk + ck)

n
1
)

= v⊤k (I −
1

n
E)(vk − Tk + ck) = v⊤k (I −

1

n
E)(I − γPk)vk,

where, for the last equality, we used Tk = ck + γPkvk. Then, since uk = (I − 1
nE)vk = vk − 1⊤vk

n 1,

we have

v⊤k (yk + zk) = u⊤k (I − γPk)(uk +
1⊤vk
n

1) = u⊤k (I − γPk)uk +
1⊤vk
n

u⊤k (I − γPk)1

= u⊤k (I − γPk)uk +
1⊤vk
n

(1− γ)u⊤k 1 = u⊤k (I − γPk)uk,

where, for the last equality, we used the fact that u⊤k 1 = 0. Finally, since (I − γPk) is non-singular

with its eigenvalues having strictly positive real parts (because the eigenvalues of Pk all reside within

the unit disc), we have

v⊤k (yk + zk) = 0⇔ uk = 0⇔ vk = ρ1 for some ρ ∈ R.

This completes the proof.

5.4. Proof of Theorem 4.4

The per-iteration time complexity of each iteration of the safeguarded QPL update rule: The

update rule (22) requires O(nm2) operations for computing the vectors T̂k = T̂ (qk, ŝ
+
k ), and O(nm)

operations for computing the step-sizes δk and λk and the vector additions. For the safeguarding (23),

we need to run a QL algorithm in parallel which also has a O(nm2) per-iteration complexity.

Moreover, we need to compute T̂k+1 (for computing θ̂k+1) which again requires O(nm2) operations.

Summing up the aforementioned complexities, the total time complexity is O(nm2).

Regarding the convergence, observe that the safeguarding ensures that the accumulated sampled

Bellman for QPL is dominated by that of QL ran in parallel, that is,
∑k

i=0 θ̂i ≤
∑k

i=0 θ̂
QL
i for all

k > Ksg, and, if not, it replaces the QPL update by a QL update. This ensures the convergence of

QPL with at least the same rate as QL.

6. Numerical Simulations

We now compare the performance of the proposed algorithms with that of the standard existing

algorithms for the optimal control of different MDPs. See Appendix A for a description of the

considered MDPs. To this end, we first focus on the proposed algorithms with uniform priors
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Figure 1. Performance of model-based algorithms for three values of γ: (a) Garnet MDP; (b) Healthcare

MDP. The bars indicate the iterations at which the safeguard is activated (for NVI, AVI, and QPI).

corresponding to update rules (20) and (22) in Sections 6.1 and 6.2, respectively. The results of

numerical experiments with alternative priors are then reported in Section 6.3.

6.1. Model-based algorithms

For model-based algorithms we consider two MPDs: a randomly generated Garnet MDPs [3] and

the Healthcare MDP [21] with an absorbing state. The proposed QPI algorithm (20) is compared

with the following algorithms: VI (value iteration); NVI (VI with Nesterov acceleration) [21]; AVI

(VI with Anderson acceleration) [18]; and, PI (policy iteration). For AVI, we use a memory of one

leading to a rank-one update (of the identity matrix) for approximating the Hessian so that it is

comparable with the rank-one update of the uniform distribution for approximating the transition

matrix in QPI. See Appendix B for the exact update rules of NVI and AVI. We note that since NVI

and AVI are not guaranteed to converge, we safeguard them using VI (using the same safeguarding

rule (18) used for QPI). All the algorithms are initialized by v0 = 0 with termination condition

∥vk − T (vk)∥∞ ≤ ϵ = 10−6. The results of the simulations are provided in Figures 1 and 2.

In Figure 1, VI, NVI, and AVI show a linear convergence with a rate depending on γ in both

MDPs. In particular, as we increase γ from 0.9 to 0.999, we observe more than a tenfold increase

in the number of iterations required for these algorithms to terminate. This is expected since these

algorithms only use first-order information and their convergence rate is determined by γ.

Figure 1 also shows that for both MDPs, PI converges with a quadratic rate in 3 to 5 iterations,

independent of γ. Now, observe that QPI is the only algorithm showing a similar behavior as
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Figure 2. The running time of the model-based algorithms for three values of γ corresponding to

Figure 1.

PI and terminating in approximately the same number of iterations, independent of γ, in both

MDPs. Moreover, comparing the performance of QPI with AVI (its counterpart in the class of

quasi-Newton methods), we also see the importance of newly introduced linear constraints and prior

in the approximation of the transition matrix. Moreover, observe that QPI’s safeguard is activated

for Healthcare MDP as shown in Figure 1b (one instance for γ = 0.99 and multiple instances for

γ = 0.999). In this regard, we note that for QPI, we have observed that the activation of the

safeguard is particularly due to the existence of absorbing states in the MDP as is the case for the

Healthcare MDP.

Figure 2 reports the corresponding running times of the algorithms. The reported running times

are in line with convergence behaviors seen in Figure 1 and the theoretical time complexity of these

algorithms. In particular, PI and QPI are the only algorithms with running time less sensitive to γ

for both of the considered MDPs. In this regard, we note that since the size of the MDPs considered

in our numerical simulations is relatively small, PI is the fastest algorithm despite the fact that it

requires a matrix inversion.

6.2. Model-free algorithms

For model-free algorithms we also consider two MPDs: again a randomly generated Garnet

MDPs [3] and the Graph MDP [14]. The proposed QPL algorithm (22) is compared with the

following algorithms: QL (Q-learning) as in (9) with αk = 1
(k+1) ; SQL (speedy QL) as in (10) with

αk = 1
(k+1) and βk = δk = 1− 2

(k+1) [19]; and, ZQL (zap QL) as in (11) with αk = βk = 1
(k+1) [14].

All the algorithms are initialized by q0 = 0nm and terminated after K = 104 iterations with a

synchronous sampling of all state-action pairs at each iteration. For QPL, the safeguard is acti-

vated after Ksg = 100 iterations. For each algorithm, we report the average of the Bellman error

∥qk − T (qk)∥∞ over 20 runs of the algorithm. The results of the simulations are provided in Figure 3

and Table 3.
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Figure 3. Performance of model-free algorithms (averaged over 20 runs) for three values of γ: (a) Garnet

MDP; (b) Graph MDP. The bars indicate the iterations at which the safeguard is activated (for QPL).

Table 3. The running time (in seconds) of the model-free algorithms over K = 104 iterations (averaged

over 20 runs) for γ = 0.9 corresponding to Figure 3.

QL SQL QPL ZQL Sampling

Garnet 1.4 2.6 2.7 11 61

Graph 0.089 0.16 0.19 0.28 2.9

As can be seen in Figures 3a and 3b, the performance of QL and SQL (the first-order methods)

deteriorates as γ increases for both MDPs. However, for these MDPs, ZQL (the second-order method

that estimates the transition matrix by averaging over the samples) leads to almost the same error

level after a fixed number of iterations for different values of γ.

Figure 3 shows that the performance of QPL is not as consistent as its model-based counterpart:

QPL has the same rate of convergence as ZQL for Garnet MDP (Figure 3a), while it is showing

the same rate of convergence as QL for Graph MDP (Figures 3b). This means that for structured

MDPs, QPL may not lead to a better performance compared to SQL or ZQL. Moreover, Figure 3b

shows that the safeguard of QPL is activated for Graph MDP and γ = 0.99. In this regard, we

note that the model-free QPL algorithm uses an approximation of the transition matrix which is
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constructed based on sampled data; see (21). This use of sampling on top of approximation can be

the reason behind the poor performance of the model-free QPL algorithm for structured MDPs.

Finally, we note that the running times reported in Table 3 also align with the corresponding

theoretical time complexities of these algorithms. In particular, QPL and SQL require almost the

same amount of time, which is slightly more than QL and less than ZQL. (We report the runtime

only for γ = 0.9 because it is independent of γ). Note that the time required for generating the

samples is reported separately in Table 3, which is indeed the dominating factor in the actual runtime

of the model-free algorithms.

6.3. QPI and QPL with different priors

Figures 4 and 5 report the result of our numerical simulations for the QPI and QPL algorithms,

respectively, with the three choices of the prior: (i) QPI/L-A with a uniform prior Pprior =
1
n11

⊤,

(ii) QPI/L-B with recursive prior Pprior = P̃k−1, and (iii) QPI/L-µ with prior Pprior = Pµ and µ

being the stochastic policy choosing (state-)actions uniformly at random so that the prior has the

same sparsity pattern as the true transition probability matrix.

As depicted in Figures 4a and 5a, the experiments with alternative priors shows no improvement

in the performance of the QPI and QPL algorithms in comparison with the uniform prior for

random Garnet MDPs. For structured MDPs, however, we observe contradictory results as shown

in Figures 4b and 5b: Using a structured prior leads to a significant improvement in the performance

of the (model-based) QPI algorithm for Healthcare MDP, while using a structured or recursive prior

significantly deteriorates the performance of the (model-free) QPL algorithm for Graph MDP.

7. Limitations and Future Research

In this paper, we exploited the well-known root-finding characterization of the optimal solution

to the optimization problems and the fixed-point characterization of the optimal value function

in control problems in order to look at existing equivalent algorithms for solving these problems

in a more systematic way. We then used this framework to propose the model-based quasi-policy

iteration (QPI) algorithm and its model-free counterpart, the quasi-policy learning (QPL) algorithm.

The proposed algorithms were particularly inspired by the quasi-Newton methods and employed a

novel approximation of the “Hessian” by using two new linear constraints specific to MDPs.

Safeguarding. The main drawback of the proposed algorithms, similar to other accelerated

VI schemes in the literature, is the need for safeguarding to ensure convergence. Our experiments

in Section 6 showed examples of MDPs in which the safeguard is activated. First, we note that

an alternative way for implementing the safeguard in a model-based QPI algorithm is to scale the

step-sizes in the update rule (20a) using backtracking, similar to the safeguarding of Anderson

acceleration in [61]. Second, a possible approach to guarantee convergence without the need for

safeguarding is the use of the operator splitting method introduced in [47] for policy evaluation. In

this regard, we note that the proposed QPI algorithm is essentially the PI algorithm in which the

policy evaluation step uses the approximation P̃k in (17) instead of the true transition matrix Pk



24

100 102 104
10-6

10-4

10-2

100

100 102 104
10-6

10-4

10-2

100

100 102 104
10-6

10-4

10-2

100

(a)

100 102 104
10-6

10-4

10-2

100

102

100 102 104
10-6

10-4

10-2

100

102

100 102 104
10-6

10-4

10-2

100

102

(b)

Figure 4. Performance of model-based algorithms for three values of γ and three different priors:

(a) Garnet MDP; (b) Healthcare MDP. The bars indicate the iterations at which the safeguard is activated

in QPI.

and the cost c̃k = ck + γ(Pk − P̃k)vk instead of the true cost ck. However, the convergence requires

P̃k to be close to Pk. To be precise, a sufficient condition is ∥Pk− P̃k∥∞ ≤ 1− γ [47, Thm. 1], which

is difficult to achieve for a low-rank approximation P̃k of Pk.

Convergence rate. Another limitation of the current work is the lack of a theoretical guarantee

for the empirically observed improvement in the convergence rate, particularly for the model-based

QPI algorithm. A promising approach for establishing a local super-linear convergence rate is to

use similar results for semi-smooth QNMs [46] with a Broyden-type approximation [10], i.e., setting

Pprior = P̃k−1 in the approximation (17). Another possibility is to use the results for Anderson

acceleration in [15] to establish an improved linear rate for convergence. To that end, similar to

what is done in [53], one needs to use a smoothed version of the Bellman operator, e.g., by replacing

the max operation with a soft-max operation in the Bellman operator. However, in both cases, the

main difficulty to be addressed is the fact that the linear constraints in (17) are not the standard

secant conditions used in QNMs.

Approximation of transition matrix. The proposed algorithms in this study heavily rely on

the approximation (17) of the transition matrix. As we discussed, this approximation easily allows

for incorporation of different priors, e.g., a prior with the same sparsity pattern as the true transition

matrix, or, the recursive prior. Our numerical simulations with these alternative priors however did

not show a definitive improvement in the the performance of the proposed algorithms and hence

needs further investigation with other MDPs. In this regard, we also note that the main drawback
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Figure 5. Performance of model-free algorithms (averaged over 20 runs) for three values of γ and

three different priors: (a) Garnet MDP; (b) Graph MDP. The bars indicate the iterations at which the

safeguard is activated in QPL.

of the approximation (17) is that it does not allow for a computationally efficient incorporation of

other constraints, such as non-negativity constraints. A promising future research direction is the

development of alternative approximation schemes that allow such constraints to be included at a

reasonable computational cost.

Appendix A. MDPs of the numerical simulations

Garnet MDP. The considered Garnet MDP [3] is generated randomly with n = 50 states, m = 5

actions, and the branching parameter nb = 10. For each state-action pair (s, a), we first form the set

of reachable next states {s+1 , . . . , s+nb
} chosen uniformly at random from the state space {1, . . . , n}.

Then, the corresponding probabilities are formed by choosing the points pi ∈ [0, 1], i = 1, . . . , nb−1,

uniformly at random, and setting P(s+i |s, a) = pi − pi−1 with p0 = 0 and pnb
= 1. The stage cost

c(s, a) for each state-action pair (s, a) is also chosen uniformly at random from the interval [0, 1].

Healthcare MDP. The considered Healthcare MDP is borrowed from [21]. The MPD has 6

states corresponding to the deteriorating health condition of a patient with the last state n = 6

being an absorbing state representing the mortality terminal state. For each of the first five states,

one can choose three inputs m ∈ {1, 2, 3} corresponding to increasing levels of drug dosage for

treatment. The goal is to minimize the invasiveness of the treatment while avoiding the terminal
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state. For the transition probabilities, we refer the reader to [21, Fig. D.1]. The cost function is

chosen to be c(n,m) =
∑6

n+=1 n
+P(n+|n,m) +m for each n ∈ {1, 2, 3, 4, 5} and m ∈ {1, 2, 3} and

c(6, 1) = 50.

Graph MDP. The considered Graph MDP is borrowed from [14]. The MDP has 18 state-action

pairs in total and corresponds to a simple path-finding problem. We refer the reader to [14, Sec. 3]

for the description of the MDP.

Appendix B. Accelerated VI algorithms

The update rule of accelerated VI algorithms is as follows: For k ≥ 0 (with initialization v−1 =

v0 = 0)

• Nesterov accelerated VI (NVI) algorithm [21]:

yk = vk + γ−1(1−
√

1− γ2)(vk − vk−1),

vk+1 = yk − (1 + γ)−1
(
yk − T (yk)

)
.

• Anderson accelerated VI (AVI) algorithm [18]:

yk = vk − vk−1,

zk = T (vk)− T (vk−1),

δk =

 0 if y⊤k (yk − zk) = 0,

y⊤k

(
vk−T (vk)

)
y⊤k (yk−zk)

otherwise,

vk+1 = (1− δk)T (vk) + δkT (vk−1).

Appendix C. QPI and QPL pseudo-codes

Algorithm 1 provides the pseudo-code of the safeguarded QPI algorithm with arbitrary initializa-

tion v0. We note that the output of Algorithm 1 satisfies ∥vϵ − v⋆∥∞ ≤ ϵ/(1 − γ), where v⋆ is the

optimal value function.

The pseudo-code for the safeguarded QPL algorithm and arbitrary initialization q0 is provided

in Algorithm 2. We note that lines 4 and 10-13 of Algorithm 2 are related to the QL algorithm

running in parallel for the proposed safeguarding.
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Algorithm 1 Quasi-Policy Iteration (QPI)

Input: cost c : S ×A → R; probability kernel P; discount factor γ ∈ (0, 1); termination constant ϵ > 0;

Output: sub-optimal value function vϵ;

1: initialize v0 ∈ Rn;

2: compute T0 = T (v0) and c0 = cπv0 ; θ0 = ∥v0 − T0∥∞;

3: for k = 1, 2, . . . do

4: if ∥vk−1 − Tk−1∥∞ ≤ ϵ, then terminate;

5: compute vk according to (19) or (20);

6: compute Tk = T (vk) and ck = cπvk ;

7: if ∥vk − Tk∥∞ > γkθ0, then safeguard:

vk = Tk−1; recompute Tk = T (vk) and ck = cπvk ;

8: end for

9: vϵ = vk;

Algorithm 2 Quasi-Policy Learning (QPL)

Input: cost c ∈ Rnm; discount factor γ ∈ (0, 1); maximum number K of iterations; safeguard activation

iteration number Ksg;

Output: sub-optimal Q-function qout;

1: initialize q0 ∈ Rnm; z = c− 1⊤c
nm 1;

2: generate samples ŝ+0 ∼ P(·|s, a) for each (s, a) ∈ S ×A;

3: compute T̂0 = [T̂ (q0, ŝ
+
0 )]; Θ̂0 = ∥q0 − T̂0∥∞;

4: qQL
0 = q0; T̂

QL
0 = T̂0; Θ̂

QL
0 = Θ̂0;

5: for k = 1, 2, . . . ,K do

6: αk = 1/k;

7: compute qk according to (22);

8: generate samples ŝ+k ∼ P(·|s, a) for each (s, a) ∈ S ×A;

9: compute T̂k = T̂ (qk, ŝ
+
k ); θ̂k = ∥qk − T̂k∥∞;

10: qQL
k = (1− αk)q

QL
k−1 + αkT̂

QL
k−1;

11: compute T̂QL
k = T̂ (qQL

k , ŝ+k ); θ̂
QL
k = ∥qQL

k − T̂QL
k ∥∞;

12: if k > Ksg & Θ̂k−1 + θ̂k > Θ̂QL
k−1 + θ̂QL

k , then safeguard:

qk = (1− αk)qk−1 + αkT̂k−1; recompute T̂k = T̂ (qk, ŝ
+
k ); θ̂k = ∥qk − T̂k∥∞;

13: Θ̂k = Θ̂k−1 + θ̂k; Θ̂
QL
k = Θ̂QL

k−1 + θ̂QL
k ;

14: end for

15: qout = qK ;
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