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Uncertainty: Scalable Algorithms and Experimental

Validation in Automated Vehicles
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Abstract—To increase system robustness and autonomy, in
this article, we propose a non-linear fault estimation filter for
a class of linear dynamical systems, subject to structured un-
certainty, measurement noise and system delays, in the presence
of additive and multiplicative faults. The proposed filter archi-
tecture combines tools from model-based control approaches,
regression techniques, and convex optimization. The proposed
method estimates the additive and multiplicative faults using a
linear residual generator combined with non-linear regression.
An offline simulator allows us to numerically characterize the
mismatch between an assumed linear model and a range of
alternative linear models that exhibit different levels of structured
uncertainty. Moreover, we show how the performance bounds
of the estimator, valid in the absence of uncertainty, can be
used to determine appropriate countermeasures for measurement
noise. In the scope of this work, we focus particularly on a fault
estimation problem for SAE level 4 automated vehicles, which
must remain operational in various cases and can not rely on
the driver. The proposed approach is demonstrated in simulations
and in an experimental setting, where it is shown that additive
and multiplicative faults can be estimated in a real vehicle under
the influence of model uncertainty, measurement noise, and delay.

Index Terms—Fault estimation, model uncertainty, convex
optimization, automated vehicles.

I. INTRODUCTION

AUTOMATED vehicles are currently the subject of on-
going research aimed at achieving higher levels of au-

tomation and eventual autonomy. As we continue to strive for
these higher levels of automation, it has become clear that this
technology has the potential to have a positive impact on our
society by increasing road capacity, reducing traffic conges-
tion, improving safety, and reducing emissions [1]. Although
these vehicles can positively impact society, proving their
safety in operation remains tedious [2]. As vehicles reach these
higher levels of automation, they should become self-aware
of their state of health and limitations, tasks typically fulfilled
by human drivers in non-automated vehicles. Specifically, for
certain subsystems and functionalities, for example, the power
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steering system of an automated vehicle, this self-awareness
is crucial, since it is considered to be safety-critical [3], i.e.,
a system whose malfunction may result in death or serious
injury to people. Different types and magnitudes of faults may
require different actions to mitigate them. This could involve
using robust controllers for closed-loop mitigation or bringing
the vehicle to a safe state if the combination of faults exceeds a
certain threshold [4]. Therefore, it is crucial to have knowledge
of current faults and their severity.

The problem of fault diagnosis can be divided into three
parts. Firstly, the presence of a fault needs to be detected,
which we define as the process of identifying anomalies or
deviations from normal operation, which involves generating
a residual signal. This is done through, e.g., parity-space-
based approaches, banks of state observers, and parameter
estimation [5], [6]. Second, the fault must be isolated, that is,
the process of separating or distinguishing between multiple
fault sources within a system. The detection and isolation of
faults should be done while remaining insensitive to potential
exogenous disturbances [7], uncertainties in the system [8], or
other real-life phenomena, such as measurement or actuation
delay [9] or noise [10]. This will help prevent false positives
and/or misclassification of the fault. Third, the fault can be
estimated to determine its severity and to be used in mitigating
measures (e.g., closed-loop mitigation). This can be done
through, e.g., proportional and integral observers [11], adaptive
observers [12] or unknown input observers [13].

In the context of automated vehicle steering systems, the
state-of-the-art specifically addresses the detection and estima-
tion of additive and multiplicative faults [14]. The detection of
additive faults in a steering system is covered in [15], followed
by [16], [17] for its estimation. In [18] single multiplicative
faults and sensor faults are detected and in [19], respectively,
estimated. Simultaneous detection, isolation, and estimation of
additive and multiplicative faults are covered in [4], although
the approach does not cover its robustness in the presence
of unmodeled perturbations (e.g., model uncertainty). Uncer-
tainty in the automated driving application under study can be
induced by model uncertainty, input/measurement delays, and
measurement noise. In a general sense, uncertainty in linear
systems is divided into two categories: structured uncertainty
and uncertainty arising from non-linearities that cannot be
accounted for in the system model. Structured uncertainty is
a term frequently discussed in the field of robust control [20],
which involves assuming a bounded uncertainty in certain
parts of the linear model. A popular solution for fault esti-



2

mation, in the presence of structured uncertainty, is to use
sliding mode observers [21], [22] (SMO). However, SMOs
are potentially sensitive to measurement noise and chattering.
Observer-based methods, e.g., Kalman filters, have the notion
of modeling uncertainty and sensor noise embedded as process
and measurement noise [23], which is, however, assumed to
be Gaussian. Therefore, in the case of structured uncertainty,
a Kalman-type filter may fail [24].

An alternative option is to use a data-driven approach to
learn model uncertainty when non-linearities appear in the
system difficult to capture via linear models, e.g., through
neural networks [25], or a variety of other full-learning-based
approaches [26]. Combining model knowledge and data could
lead to a stronger combination than using either of the two
in isolation. In [27], a linear detection and estimation filter
is presented, which is trained (based on data) to reject the
output mismatch between a non-linear high-fidelity simulator
and an abstract linear model. Other mismatches in signals and
dynamics in the high-fidelity non-linear simulator (e.g., states
or disturbances) are difficult to interpret in a linear sense.
This limits the performance of the algorithm when applied to
systems where these mismatch signals could be characterized.
The works [28], [29] examine non-linear systems by adding an
additive non-linear term to an assumed linear system. [28] uses
convex optimization to learn the uncertain behavior, originat-
ing from non-linearities and noise, using mismatch signatures
of such effects. [29] employs an adaptive method to identify
the dynamics of noise and uncertainties online. However, this
method requires a certain degree of excitation of the signals
inside the regressor term to identify the uncertainties.

Current fault detection, isolation, and estimation method-
ologies are evolving to address the challenges of structured
uncertainties, measurement noise, and delays in various sys-
tems [5]. However, a significant gap persists in the literature
concerning the robust simultaneous estimation of additive and
multiplicative faults, where the faults act through the same
input or output channel. Specifically in an experimental setting
where uncertainty, delays, and noise may affect the estimation
process. Although robust methods have been developed to esti-
mate simultaneous faults under uncertain conditions [30]–[32],
these works do not consider the simultaneous appearance of
faults on the same channel. The challenge of estimating faults
acting on the same channel has been covered in, e.g., [4],
although their robustness against real-world phenomena re-
mains untested in experimental settings. Consequently, this
gap presents a critical area for research, as establishing the
reliability of these methods in practical scenarios is essential
to advance automated driving technologies.

Main Contributions: In view of the literature mentioned
above, this study’s contributions are summarized as follows:

(i) Scalable design for robust multivariate fault estimation.
We propose a scalable algorithm to design robust fault
estimation filters capable of simultaneously estimating both
additive and multiplicative faults with similar dynamic
effects. The particular features studied in this work are
the presence of model uncertainties, input/output delays,
and measurement noise. The scalability of the proposed
approach is with respect to the states and input size of
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Fig. 1: Block diagram of the proposed robust diagnosis filter.

the dynamical systems. This study is the robust version of
the nominal designs in [4], [16], considering the following
additional key challenges:
• Structured model uncertainty: To address structured

model uncertainty, our proposed method exploits both
data and a model-based approach. We leverage prior
knowledge about the source of the uncertainty and its
effects. We propose a robust counterpart of existing
convex optimization tools for estimation filters where the
uncertain parameters belong to a known set.

• Measurement noise and input delay: To reduce the impact
of noise on fault estimates, we borrow the performance
bounds of the estimation error introduced in our previous
study [4] to serve as an objective reference for training
the filter parameters. Additionally, we address the po-
tential input/output delay by augmenting the filter states
with the average identified delays.

(ii) Experimental validation in automated driving. Another
main contribution of this study is the validation of our
theoretical results on a real vehicle. We demonstrate that
the proposed robustified approach outperforms the state-of-
the-practice in estimating faults in real-time operation.
The remainder of this paper is organized as follows. Sec. II

introduces the problem setting, the state-of-the-art on fault
estimation of additive and multiplicative faults, its limita-
tions given the real-life phenomena mentioned above, and
an outline of the proposed approach. Sec. III introduces the
robust approach toward fault estimation. Sec. IV then provides
the results, both in a synthetic example and using real-life
experimental data. Finally, Sec. V concludes the work.

Notation. The symbol R represents the set of real numbers.
The ones column vector with length n is denoted by 1n :=
[1, 1, . . . , 1]

⊺. The p-norm of a vector v is denoted by ∥v∥p
where p ∈ [1,∞]. The L2-norm of a discrete-time signal
x(k) is defined as ∥x(k)∥L2 = (

∑∞
n=−∞ ∥x(n)∥22)

1
2 . Given a

matrix A ∈ Rn×m, its transpose is denoted by A⊺ ∈ Rm×n,
and A† := (A⊺A)−1A⊺ is the pseudoinverse. The operators
µn[x] and Vn[x] map R-valued discrete-time signals to R-
valued discrete-time signals, and are defined as the first
moment µn[x] (k) := 1

n

∑n−1
i=0 x(k − i) and the centered

second moment V 2
n [x] (k) := 1

n

∑n−1
i=0 x

2(k − i) − µ2
n[x] (k)

of the signal x over the last n time instants. Throughout
this study, we reserve the bold sub-scripted by n, xn, as the
concatenated version of the signal x over the last n time
instants: xn(k) :=

[
x(k), x(k − 1), . . . , x(k − n+ 1)

]⊺
. The

symbol q represents the shift operator, i.e., q[x(k)] = x(k+1).
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II. PROBLEM DESCRIPTION AND OUTLINE OF THE
PROPOSED APPROACH

In this section, we present the class of systems considered
throughout this work. Subsequently, we will formulate the
high-level problem. We further elaborate on the challenges and
shortcomings of the methods available in the current literature.
Finally, an outline of the proposed solution that addresses the
challenges is provided.

A. Model description and problem statement

Throughout this study, we examine nonlinear dynamical
systems characterized by linear time-invariant (LTI) dynamics
within a discrete-time framework. These systems are described
using discrete-time differential algebraic equations (DAEs),
similar to the model formulations presented in [4], [27], [28].
In contrast to the system description in previous work, we
also incorporate the possible presence of model uncertainty in
this description. Therefore, we employ the DAE description
provided in [4, Eq. (1)], and reformulate the model as follows:

H(q;w)[x]+L(q;w)[z] + F (q;w)
[
fa + E⊺zfm

]
= 0. (1)

Here, the variables x, z, fa, and fm represent discrete-time
signals with values in Rnx ,Rnz , and Rnf , respectively, and
are indexed by the discrete time counter k. More specifically,
the variable z is composed of all measurable signals, including
control inputs u and measurements y. The variable x contains
all unknown signals in the system, in this work defined
as the true internal state X , unmeasurable disturbances d,
and measurement noise η representing a set of uncorrelated
Gaussian white noise sequences. The vector E ∈ Rnz selects
which signals in z will be affected by fm. The matrices
H(q;w), L(q;w), and F (q;w) are polynomial functions in the
shift operator q, with nr rows and nx, nz and nf columns,
respectively. These matrices depend on a set of parameters
w ∈ W ⊆ Rnw , where nw represents the number of uncertain
parameters. The symbol W represents a set that contains all
the parametric uncertainties of the model. The exact value
of the uncertainty is unknown a priori, but it is assumed
that the parameters have a nominal value w0 ∈ Rnw . To
efficiently handle structured uncertainty without the need to
account for every potential value in W , we propose the
notion of a representative. These representatives, denoted
as wj ∈ W, j ∈ {0, . . . , v}, where v represents the total
number of representatives, are particular points selected from
the set of uncertainties to adequately capture the spectrum of
uncertainties. They serve as practical stand-ins for the broader
set of uncertainties W , allowing for a more manageable
analysis and optimization of the system under study. Finally,
it is assumed that the uncertainty w comes from a probability
distribution P.

The last real-life phenomena that will appear in this work,
but are not concretely reflected in (1) are the input and
measurement delay, which are embedded in the true system
matrices H(q;w), L(q;w), and F (q;w), and the measurement
noise. Each input delay is characterized as τ (u)i ∈ R time steps,
where i ∈ {1 . . . nu} and nu represent the number of inputs.
Similarly, the output delay is characterized as τ (y)j ∈ R time

steps, where j ∈ {1 . . . ny} and ny represents the number of
inputs. The measurement noise, characterized by the variable
η ∈ Rny , consists of independent Gaussian white noise
signals that affect the output measurements y embedded in the
variable z. Let us now elaborate on how the mentioned real-
life phenomena play a role within the DAE through the system
dynamics depicted (and enclosed by system boundaries) in
Fig. 1. One can define a set of causal linear time-invariant
difference equations



GX(k+1)=A(w)X(k)+Bu(w)u(k − τu)+Bd(w)d(k)

+Bf (w)


fa(k)+E

⊺z(k−τ (u)1 )fm(k)
...

fa(k) + E⊺z(k − τ
(u)
nu )fm(k)

 , (2)


y1(k+τ

(y)
1 )

...
yny

(k + τ
(y)
ny )

 =C(w)X(k) +Dηη(k) +Dd(w)d(k)

where the matrices G, A(w), Bu(w), Bd(w), Bf (w), C(w),
and Dd(w) are constant matrices with appropriate dimensions
as a function of the (time-invariant) uncertainty w. The ma-
trix Dη (in this work assumed to be diagonal) selects the
noise signals η to be added to the output y. By defining
z := [y;u], x := [X; d; η], and E⊺ = [0 I], we can (2)
as (1) with

H(q;w)=

[
I 0
0 Y (q)

][
−qG+A(w)Bd(w) 0

C(w) Dd(w) Dη

]
, (3a)

L(q;w)=

[
U(q) 0
0 I

][
0 Bu(w)
−I 0

]
, F (q;w)=

[
Bf (w)

0

]
. (3b)

Moreover, the polynomial matrices Y (q), U(q) are diagonal
polynomial matrices of size ny × ny , nu × nu, respectively,
containing the delays of measurements and control inputs, i.e.,

Y (q) =

q−τ
(y)
1

. . .

q
−τ

(y)
ny

 , U(q) =

q−τ
(u)
1

. . .

q−τ
(u)
nu

 ,
In the setting described above, the main objective of this study
is to solve the following problem.

Problem. Consider the DAE system (1), (3) with the available
measurement signal z under the influence of measurement
noise η and the characterizations of the delay of the input and
output U(q), Y (q), the uncertain parameters in w ∈ W and
the multivariate signal f = [f⊺a , f

⊺
m]

⊺ comprising both additive
and multiplicative faults. We aim to design a diagnosis filter
that turns the signal z to a signal f̂ (i.e., a causal dynamic
mapping z 7→ f̂ ), which is an accurate estimate of the fault
signal f.

In this work, we require the aggregated fault signal, now
defined as fagg := fa + E⊺zfm, where fagg ∈ R, to be
detectable within the system. That is, we can detect and
estimate the signal’s presence or absence, irrespective of any
other faults or disturbances acting on the system. This is
formalized in the following assumption.
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Assumption II.1 (Detectability). Given the system in (1), (3),
in the absence of noise (that is, η = 0) and
delay (i.e., Y (q), U(q) = I), and with uncertainty
w ∈ W . The polynomial matrices H(q;w) and F (q;w)
in (1), (3) satisfy the necessary and sufficient rank condition
Rank

{[
H(q;w), F (q;w)

]}
> Rank

{
H(q;w)

}
, ∀w ∈ W .

For simplicity of exposition, we further assume that F (q;w)
is a polynomial column vector, i.e., nfa = nfm = 1.

Assumption II.1 enables us to design a filter that detects the
aggregated fault signal fagg . However, this process requires
taking measurements of the uncertain parameters w while
assuming that there is no delay nor noise.

B. State-of-the-art on estimation of multivariate faults

In the scope of the above problem description, some previ-
ous work has been carried out to estimate the two faults, fa, fm
(in the absence of uncertainty, delays, and noise, i.e., w = w0,
Y (q) = U(q) = I , and η = 0). Initially, we consider the LTI
scenario, as described in [4]. Also, we assume that the system
is free from noise and delay. The proposed approach has two
steps. First, an estimation of the aggregated fault signal fagg
is performed. This is achieved by applying a suitable LTI
estimation filter N(q;w0) to L(q;w0)[z] (which only requires
the measurable input signals) as follows:

r := a−1(q)N(q;w0)L(q;w0)[z], (4)

where the filter is generated using the linear program [Eq.
(8)][4] and r represents the so-called residual. The denomina-
tor a(q) is intended to make the estimation filter proper. Using
this residual generator, in view of the dynamical system (1), (3)
and given assumption II.1, we can design a filter such that the
following conditions hold:

N(q;w0)H(q;w0) =0, (5a)

a−1(1)N(q;w0)F (q;w0) =1. (5b)

Here, (5a) ensures the rejection of unknown signals in the
residual, and (5b) ensures that the residual generator (4)
can estimate the aggregated fault fagg in steady state. By
combining the conditions (5) and applying them to (1), the
residual (4) can equivalently be written as

r = −a−1(q)N(q;w0)F (q;w0)[fagg]. (6)

This shows that such a residual generator results in a direct
mapping between z and fagg , and due to (5b) the residual
estimates the fault in steady-state. The second step in the
approach, towards the estimation of the individual faults in f
(i.e., fa and fm), is to use the regression operator [4, Definition
3.2], which estimates the separate faults as

Φn[e, r](k) := ϕ†n[e](k) rn(k), (7)

where ϕn[e](k) :=
[
en(k), 1n

]
∈ Rn×2,

where the output Φn[e, r](k) represents the estimated faults
[f̂a, f̂m]

⊺ at time k. In (7), the regression horizon n determines
how much past information from the residual (in rn) and the
input is considered to estimate the fault signals. The signal e

u

lf
lr

vx

−vy

κ = 1
R

ye

ψe

ψ̇

S1

S2

S1 S2

φ

1

Fig. 2: Visual representation of the bicycle model for a vehicle.

in (7) is obtained by filtering the signal E⊺z through a pre-
filter (see Fig. 1), as proposed in [4, Theorem 3.7], i.e.,

e = −a−1(q)N(q)F (q;w0)[E
⊺z]. (8)

The fault estimates obtained are paired with a performance
bound that is demonstrated to be tight in [4], enabling users
to gain an understanding of potential sources of error and ways
to enhance filter performance. In addition, these performance
bounds show that it is possible to estimate the individual fault
components as long as the variance of the input signal e is
non-zero and the signal is bounded, and the filter in Eq. (6) is
stable [4, Proposition 3.3]. Effectively, this makes the approach
bounded-input bounded-output (BIBO) stable. Given bounded
signals E⊺z, fa, fm, the estimation error will remain bounded.
This fundamental condition will remain valid throughout this
study. In an ideal LTI setting, without uncertainty, delay, and
noise, the approach is effective; see [4]. Each of the real-life
phenomena, i.e., uncertainty w, measurement noise η, and the
delayed versions of the variables x, z, fagg will impact the
residual r. In a healthy system, i.e., fagg = 0, the residual (4)
in the absence of real-life phenomena will also be zero, i.e.,
r(w0) = 0, as can be derived from (6). Striving for such
a property for a healthy system in the presence of real-life
phenomena, combined with (5b), will allow the estimation
of faults in a steady state. In the next section, we make
explicit how these real-life phenomena arise in the context of
automated vehicles. This motivates, first, the formulation of a
generic problem setting in Sec. II-D and, secondly, supports
the application of the general methodology in Sec. III to fault
estimation in the automated driving context in Sec IV. Note
that, driven by the experimental application, we only consider
the estimation of faults acting on the input of the system in this
work. However, the methodology can be applied to any system
that allows its fault and dynamics to be described as in (1),
as a result allowing the estimation of, e.g., input/output faults
as well as faults that appear further down in the dynamics of
the system.

C. Real-world challenges in automated vehicles

Automated vehicles are susceptible to faults in the lateral
steering actuation, such as a bias of the actuator with respect
to the desired setpoint (i.e., the occurrence of fa), or a loss
of effectiveness of the actuator that executes the setpoint of
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the steering (i.e., the occurrence of fm). If these faults are not
compensated for, they can lead to potentially dangerous vehi-
cle behavior, especially in the lane-keeping driver assistance
system. Using the model description in Eq. (2), which can
be rewritten as Eq. (1), we can analyze the lateral dynamics
of the automated vehicle in the presence of uncertainties,
measurement noise, and delay. This model is illustrated by
the mechanical model in Fig. 2. The state of the vehicle is
represented by a vector X = [vy, ψ̇, ye, ψe]

⊺, which includes
the lateral velocity (vy), the yaw rate (ψ̇), lateral error from
the lane center (ye), and heading error from the center of
the lane (ψe). The disturbance, d, is represented by a scalar
variable, κ, which indicates the curvature of the road. The
input, u, indicates the input to the vehicle, i.e., the steering
angle of the front wheels. The remainder of the model can be
described by (2) by using the following continous-time state-
space matrices:

Ā =


w(1)Cf+Cr

vxm
w(1) lfCf−lrCr

vxm
− vx 0 0

w(2) lfCf−lrCr

vxI
w(2) l

2
fCf+l

2
rCr

vxI
0 0

−1 0 0 vx

0 −1 0 0

 ,
B̄u =

[
−w(1)Cf

m −w(2) lfCf

I 0 0
]⊺
, B̄f = B̄u,

B̄d =
[
0 0 0 vx

]⊺
, G = C = Dη = I,

Dd = 0, E =
[
0 0 0 1

]⊺
,

(9)

and their discrete-time equivalents:{
A = eĀh, Bu =

∫ h
0
eĀsB̄uds,

Bd =
∫ h
0
eĀsB̄dds, Bf =

∫ h
0
eĀsB̄fds.

The uncertainty in this model is characterized by w =
[w(1), w(2)]⊺, where w(1) expresses the uncertainty that ap-
pears in the vehicle mass m and the stiffness of the front and
rear corners Cf , Cr, respectively. The uncertainty value w(2)

expresses the uncertainty that appears in the yaw moment of
inertia I and the corner stiffness Cf , Cr, respectively. The
mass and yaw moment of inertia may change according to
the loading conditions of the vehicle. These uncertainties may
lead to false positives in the detection of faults in the steering
actuator. This can occur if incorrect parameters are used in the
approach of Sec. II-B, such as when carrying multiple passen-
gers or additional luggage. The cornering stiffness Cf , Cr may
vary on the basis of tire conditions, their pressure, and the load
on the axles or weather conditions.

D. Generic problem description

We will now take a closer look at how the real-life phenom-
ena we propose affect the residual r, leading to an inaccurate
estimate of the faults f . Each subsection will begin with a brief
description of the objective to solve the problem description,
which will be addressed in Sec. III.

1) Model uncertainty: The residual generator (4) estimates
the aggregated fault under the assumption that w0 = w, that
is, the parameters in the dynamical system are known. Now,

let us assume that the system parameters in (1) are defined by
w ̸= w0. In that case, we can rewrite (4) as follows:

r(w0, w, fagg) =a
−1(q)N(q;w0)L(q;w0)[z(w)]. (10)

Here, we explicitly denote that the variable z(w) (as well as
the unknown variable x(w)) is driven by the system (1) with
parameters w ̸= w0.

Remark II.2. For the remainder of this work, it is important to
note that the variables x(w) and z(w), along with the signals
within them, are driven by the system (1), which is subject
to uncertainty from the variable w. However, to simplify the
notation, we will not explicitly include the dependence of these
variables on w.

Now, let us characterize the mapping from the residual
r(w0, w, fagg) (10) to the true aggregated fault fagg . First, we
rewrite the model (1) with model mismatch, given a nominal
model with assumed parameter values w0 and actual parameter
values w, as follows:

(H(q;w)−H(q;w0))[x] +H(q;w0)[x] +F (q;w)[fagg]+

(L(q;w)−L(q;w0))[z]+L(q;w0)[z]=0, (11)

which characterizes the model mismatch between the actual
system and the nominal dynamics. Substituting (11) into (10),
results in the following residual:

r(w0, w, fagg) =−a−1(q)N(q;w0) (H(q;w)−H(q;w0))︸ ︷︷ ︸
∆H(q;w,w0)

[x]

︸ ︷︷ ︸
(I)

+ a−1(q)N(q;w0) (L(q;w)− L(q;w0))︸ ︷︷ ︸
∆L(q;w,w0)

[z]

︸ ︷︷ ︸
(II)

+ a−1(q)N(q;w0)F (q;w)[fagg], (12)

which shows that the residual is a function of the aggregated
fault fagg , the unknown signals x, and the measured signals z.
This may not be a good fault indicator when the terms (I), (II)
in (12) are nonzero (i.e., in the presence of model uncertainty).
Moreover, this effect of model mismatch propagates through
the isolation filter, which assumes that the residual depends
only on the faults fa, fm and E⊺z. This allows us to define
the first objective towards solving the problem statement.

Objective 1. Consider a system (1), (3) in the presence of
structured uncertainty w ∈ W with representatives wj ∈ W
and absence of delay and noise. Due to the structure of
the uncertainty, employ the representatives {w1 . . . wv} to
minimize the model mismatch terms (I), (II) in (12) of a
healthy system (i.e., fagg = 0), through a filter N(q;w0).
In the scope of this objective we aim to find such a filter by
minimizing the mismatch from an average point-of-view, i.e.,

min
N(q;w0)

1

v

v∑
j=1

∥r(w0, wj , 0)∥2L2
(13)

s.t. (5a), (5b), at nominal w0.
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Furthermore, a second aim in the scope of this objective is to
perform such a minimization in a robust sense, i.e., minimizing
the worst case, as follows:

min
N(q;w0)

max
j≤v

∥r(w0, wj , 0)∥2L2
(14)

s.t. (5a), (5b), at nominal w0.

2) Input and measurement delay: The residual generator (4)
originally assumes the absence of delay, uncertainty, and
measurement noise in the system. We can evaluate how it
would perform on the system with input and output delay,
by inserting the system matrices, containing the effects of
delay (3) (without the effects of noise, i.e., Dη = 0 and
uncertainty, i.e., w = w0), into the filter (4) as follows:

rτ (w0, w0, fagg) =a
−1(q)N(q;w0)L(q;w0)[z],

=− a−1(q)N(q;w0)U(q)F (q;w0)[fagg]

+a−1(q)N(q;w0)

[
0 (I − U(q))Bu
0 0

]
[z]

+a−1(q)N(q;w0)

[
0 0

(I − Y (q))C (I − Y (q))Dd

]
[x],

which shows that rτ , representing the residual of the delayed
system with filter (4), is a function of the fault fagg and
delayed instances of the known signals in z and unknown
signals in x, which could result in false positives for the
fault detection. This allows us to define our second objective
towards solving the problem statement.

Objective 2. Consider a system (1), (3) in the presence of
input and measurement delay, and the absence of uncertainty
w (i.e., w = w0) and noise. Minimize the effect of the delay in
the inputs and measurements in (12), through a filter N(q;w0),
satisfying (5). This is equivalent to designing N(q;w0) for
a healthy system, i.e., fagg = 0, by solving the following
optimization problem:

min
N(q;w0)

∥rτ (w0, w0, 0)∥L2
(15)

s.t. (5a), (5b), at nominal w0.

3) Measurement noise: In this section, we evaluate the
residual generator (4) in the absence of uncertainty (i.e., w =
w0) and delay (i.e., U(q) = Y (q) = 1). Using the detectability
condition from Assumption II.1, the first intuition could be
to handle measurement noise as an unwanted disturbance, as
in (3a), by modeling the state/disturbance matrix as

H(q;w0)=

[
−qG+ABd 0

C Dd Dη

]
. (16)

The goal is then to find a filter that cancels out the effects
of the noise η by finding a filter polynomial N(q;w0) which
belongs to the nullspace of (16). This approach might work for
systems where not all measurements are affected by noise (i.e.,
having measurement redundancy) or through a possible linear
independence between C and Dη . However, in practice, this
is often not the case. For example, for the automated vehicle
application (i.e., the system (1), (3) with matrices as in (9)),
we consider C = Dη = I . This relates to the case where
all states are measured and all are affected by measurement

noise. Numerical analysis shows us that the rank condition in
Assumption II.1 does not hold. This can be explained by the
intuition of finding a filter that cancels the third block column
in (16) which, given Dη = I , has an empty basis (i.e., the
filter coefficients of N(q) that multiply with Dη are equal
to 0). This implies that a residual generator, designed such
that (5) hold, i.e.,

r(w0, w0, fagg) = a−1(q)N(q;w0)

[
0 Bu
−I 0

]
[z], (17)

would cancel the effect of the first block column of L(q;w0),
i.e., the contribution of all available measurements. This re-
stricts the residual generator to only use the input signal u
to estimate the presence of fagg in the system. In that case,
it is not possible to estimate fagg in the vehicle context, as
E⊺z = u is affected by the fault and this affected input
cannot be measured (only the unaffected signal u is measured).
Leaving out the measurement noise term in the matrix (16),
i.e., considering a nominal design, one would be able to
generate a residual generator. However, when finding a filter
according to conditions (5) for (1) and (3a), the residual would
be described as follows:

r(w0, w0, fagg) = a−1
(
q)(N(q;w0)L(q;w0)[z]

+N(q;w0)[0 Dη]
⊺[η]

)
, (18)

which results in a residual depending on the filtered aggregated
fault and a filtered version of the measurement noise, which
propagates further through the isolation filter and affects the
quality of the fault estimates. Since our setting does not allow
full decoupling of η, the treatment of noise in the residual (18)
and therefore in the fault estimates f̂a, f̂m requires a classical
trade-off between estimation speed and accuracy. This brings
us to the third and final objective.

Objective 3. Consider a system (1), (3) in the presence
of measurement noise η and the absence of uncertainty w
(i.e., w = w0) and input/measurement delay (i.e., U(q) =
Y (q) = 1). Characterize the trade-off in attenuating the effect
of measurement noise η at the cost of the estimation speed
and estimation accuracy of the faults f̂agg , f̂a, f̂m.

E. Outline of the proposed approach

As explained in Sec. II-A, detecting and estimating the
aggregated fault fagg and separating the additive fault fa and
the multiplicative fault fm from it is the main challenge in
fault isolation. It becomes even more challenging when their
impacts on the dynamics are linearly dependent. Our study
differs from the one conducted in [4] in that we take into
account several real-life phenomena (which, e.g., arise in an
experimental setting for automated driving) characterized by
Objective 1, 2, and 3. The proposed approach involves incor-
porating prior knowledge of real-life phenomena such as the
uncertainty representatives wj , measurable delays Y (q), U(q),
and characterization of measurement noise η. In the fault
diagnosis part, we robustify the detection and isolation ap-
proach presented in [4, Theorem 3.7] while making use of the
insights gained by the performance bounds developed in that
work. The system, affected by uncertainty, delay, and noise, is
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Fig. 3: Depiction of the uncertainty training procedure.

depicted on the left-hand side in Fig. 1. The proposed approach
first detects and estimates the aggregated fault fagg through
a robustified filter, which is of the form in (4) and will be
robustified in Sec. III for model uncertainty and delay. The
individual contributions fa and fm are then estimated through
a pre-filter and isolation filter, of the form in (7) and (8),
respectively, and further elaborated on in Sec. II-D3 in the
scope of noise attenuation. These blocks comprise the fault
diagnosis algorithm, which is shown on the right-hand side in
Fig. 1. We aim to achieve improved fault estimates compared
to the baseline approach through robustification and prove its
benefits by conducting real experimental field tests in the scope
of automated driving.

III. ROBUSTIFICATION PROCEDURE

A. Model uncertainty

In Section II-D1, we designed a nominal filter for an
uncertain description of the system to detect the aggregated
fault of interest. However, it is important to note that the
residual r that we use to differentiate between faults fa and
fm in that specific case depends on various factors, such as the
mismatch between the assumed dynamics in the filter design
versus the true dynamics of the system (12). Therefore, it is
necessary to adjust the filter requirements in (5) to reflect the
sensitivity to faults and the insensitivity to disturbances and
minimize the effect of the model mismatch on the residual.
Given (13) and (14) from Objective 1, the goal is to minimize
the residual of a healthy system, thus minimizing the effect of
model mismatch. Using (12) and setting f = 0 (i.e., a healthy
system), this is equivalent to minimizing

∥a−1(q)N(q;w0)
(
∆H(q;w,w0)[x]+∆L(q;w,w0)[z]

)
∥L2 . (19)

The approach for mitigating the effect of model uncertainty is
an adaptation of the results presented in [27], where a similar
detection filter (with the same objectives as in (5)) was trained
to detect discrepancies between a high-fidelity simulator and
an abstract linear model. The linear model represents a simpli-
fied representation of the high-fidelity simulator. In [27], the
main source of the mismatch originates from nonlinearities.
However, in that approach, the high-fidelity simulator does not
have a representative internal state X , as such, [27, Eq. (6)
(I)] can only be minimized by assuming linear state and
disturbance dynamics. In our approach, depicted in Fig. 3, the
main objective is to minimize the contribution of both (I) and

(II) from (11) by using prior knowledge about the uncertain
system and its behavior in an experimental setting. This will
be described in more detail below.

Our approach utilizes inputs, gathered in experiments to,
first, represent relevant healthy scenarios and, second, enable
the characterization of relevant system behavior in these
healthy scenarios. In the automated vehicle application, these
inputs are the steering angle and curvature (9). These inputs,
gathered from experimental data and used for simulation
towards mismatch generation, are characterized as follows:

u := [u[1], u[2], . . . , u[T ]], d := [d[1], d[2], . . . , d[T ]], (20)

where u ∈ Rnu×T , d ∈ Rnd×T , and where T is the total
number of collected data samples. Note that it may not be
possible to collect data on all disturbances d. In that case, it
will be assumed that the specific disturbance signal is zero
over the time horizon [1, T ]. We then use these input matrices
u and d to simulate the system output y and its internal state
X , in scenarios represented by the inputs and disturbances in
these matrices, on all representatives wj of the uncertainty set.
The resulting state and output evolutions are then characterized
as follows.

yj :=[yj [1], yj [2], . . . , yj [T ]], ∀j ∈ [1 . . . v], (21)
Xj :=[Xj [1], Xj [2], . . . , Xj [T ]], ∀j ∈ [1 . . . v]. (22)

Having access to the synthetic training sets of time-series data
of the output y, the state X , the input u, and disturbance d
allows us to collect time-series data of the mismatch signatures
(I) and (II) in (12). To write a finite-time version of (I)
and (II) using (21), (22), which can be used to formulate
a (optimization) program for finding an admissible filter
N(q;w0) that meets the Objective 1, we use the results of [4,
Lemma 3.1]. As an illustrative example, we decompose the
matrix H(q;w0) =

∑dH
i=0Hi(w0)q

i, where dH denotes the
degree of H(q;w0), and Hi(w0) ∈ Rnr×nx . Then, we can
define N̄(w0) :=

[
N0, N1, . . . , NdN

]
∈ R1×dN ·nr , where dN

denotes the degree of N(q;w0), Ni ∈ R1×nr , and

H̄(w0) :=


H0 H1 . . . HdH 0 . . . 0

0 H0 H1 . . . HdH 0
...

...
. . .

. . .
. . . 0

0 . . . 0 H0 H1 . . . HdH

 , (23)

where we drop w0 from the entries of H̄(w0), N̄(w0) for
compact notation, and H̄(w0) ∈ R(dN ·nr)×((dN+dH)·nx). This
allows us to rewrite (5a) as follows:

N(q;w0)H(q;w0) = N̄(w0)H̄(w0)[I, qI, . . . , q
dN+dH ]⊺,

such that the linear formulation N̄H̄ = 0 is equivalent to (5a).
Similarly, we can decompose F (q;w0), L(q;w0) (which are
of degree dF and dL), by substituting (23) with F and L,
respectively, thus retrieving F̄ (w0), L̄(w0). Finally, we can de-
compose a(q) = ā[1, q, . . . , qda ]⊺ where ā = [a0, a1, . . . , ada ],
where da denotes the degree of a(q). This allows us to
rewrite (5b) as N̄ F̄ (w0)1dN×dF = −ā1da , as is also shown
in [4, Lemma 3.1].

Now, by taking (I) and (II) from (12) for each representative
wj ∈ {w1, . . . , wv}, and replacing the variable x with a finite
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time version [X⊺
j , d

⊺]⊺, and replacing z with a finite time
version [y⊺

j , u
⊺]⊺, respectively, we find

N(q;w0)∆H(q;wj , w0)

[
Xj

d

]
=

N̄(w0) (H̄(wj)−H̄(w0))[I, qI, . . . , q
dN+dH ]⊺

[
Xj

d

]
︸ ︷︷ ︸

EH,j

,

N(q;w0)∆L(q;wj , w0)

[
yj
u

]
=

N̄(w0) (L̄(wj)−L̄(w0))[I, qI, . . . , q
dN+dLI]⊺

[
yj ,
u

]
︸ ︷︷ ︸

EL,j

,

The resulting model-mismatch terms EH,j , EL,j ∈ Rnr·dN×T

allow us to formulate (19) for a finite-time residual of length
T , i.e., rT,j where j ∈ {1 . . . v}, as follows:

∥rT,j∥22 = N̄
(
EH,jE

⊺
H,j + EL,jE

⊺
L,j

)
N̄⊺. (24)

As noted in [27, Remark 2], training a model for multiple
model mismatch signatures resulting from a variety of uncer-
tain systems can be approached in different ways. First, an
average-cost approach can be taken, which weighs the effect
of all residuals (24) equally, which is equivalent to minimizing

1

v

v∑
j=1

∥rT,j∥22=N̄
(1
v

v∑
j=1

(
EH,jE

⊺
H,j+EL,jE

⊺
L,j

))
N̄⊺. (25)

The formulation in (25) allows us to formulate a first filter
design according to (13). One of the representatives wj may
result in a much larger mismatch compared to the other
representatives. In such a case, the focus should be on the
representative that results in the most severe mismatch, which
can be achieved by minimizing the worst-case mismatch. This
is also known as a worst-case approach, which involves min-
imizing the worst-case mismatch from (24), i.e., minimizing

max
j≤v

∥rT,j∥22=max
j≤v

N̄
(
EH,jE

⊺
H,j+EL,jE

⊺
L,j

)
N̄⊺. (26)

The formulation in (26) allows us to formulate a first filter
design according to (14). Using (25) and (26), two designs
are introduced that allow us to satisfy the two optimality
criteria (13) and (14), as such that we meet the Objective 1.

Design 1 (Average-cost robust fault estimator for structured
uncertainty). Consider the uncertain system in (11), where the
parametric uncertainties are characterized by W with repre-
sentatives wj , j ∈ {1 . . . v}, with a nominal known value w0.
An average-cost filter, according to (13) in Objective 1, can be
found by minimizing (25) for all uncertainty representatives
while satisfying (5) for nominal w0. This is equivalent to
solving the following quadratic program:

min
N̄

N̄
(

1
v

v∑
j=1

EH,jE
⊺
H,j +

1
v

∑v
j=1EL,jE

⊺
L,j

)
N̄⊺

s.t. N̄H̄(w0) = 0

N̄ F̄ (w0)1dN×dF = −ā1da .

(27)

Similarly, thanks to (26), a second filter can be formulated
according to (14) in Objective 1 can be formulated.

Design 2 (Worst-case robust fault estimator for structured
uncertainty). Consider the uncertain system in (11), where
parametric uncertainties are characterized by W with rep-
resentatives wj , j ∈ {1 . . . v}, with a nominal known value
w0. A worst-case filter, according to (14) in Objective 1, can
be found by minimizing (26) for the worst-impact uncertainty
representatives, while satisfying (5) for nominal w0. This is
equivalent to solving the following quadratic program:

min
N̄

max
i≤v

N̄
(
EH,iE

⊺
H,i + EL,iE

⊺
L,i

)
N̄⊺ (28)

s.t. N̄H̄(w0) = 0

N̄ F̄ (w0)1dN×dF = −ā1da .

Designs 1 and 2 allow us to find an improved solution for
an uncertain system compared to a nominal filter, as will also
be shown in Sec. IV.

Generalization to unseen scenarios: The design per-
spectives in Designs 1 and 2 rely on specific scenarios wj
that are available to us often through experimental data (cf.
Fig. 3 for a pictorial illustration of such a process). However,
it is important to ensure that these designs are also reliable
when facing unseen scenarios (i.e., plausible scenarios that
are not considered in Designs 1 and 2) in real-time operation.
This subject is at the heart of learning problems and is
often referred to as “generalization error”. In general, it is
not possible to draw conclusions (i.e., generalization bound)
from seen (training) scenarios to unseen (test) ones. However,
under certain regularity conditions and for a specific choice of
probabilistic guarantee, one can provide a formal performance
certificate. An example is when the training phase optimizes
the worst-case cost evaluated in the seen (training) scenarios
(that is, Design 2) and the resulting program is (effectively)
convex optimization in the decision variables [28], [33]. Let
us elaborate more on this. We define the constraint function

g(N̄ , γ, wj) := N̄
(
EH,jE

⊺
H,j + EL,jE

⊺
L,j

)
N̄⊺ − γ . (29)

Using the definition of function g in (29), the program (28)
of Design 2 can be rewritten in an epigraph reformulation as

min
N̄,γ

γ

s.t. g(N̄ , γ, wj) ≤ 0, ∀j ∈ {1, . . . , v}
N̄H̄(w0) = 0

N̄ F̄ (w0)1dN×dF = −ā1da .

The above reformulation of the worst-case (28) falls into the
category of the so-called scenario convex problem (SCP). As
shown in [34, Theorem 1], the solution of the SCP, denoted
by (N̄∗, γ∗), enjoys the probabilistic guarantee as a feasible
solution to the so-called chance-constrained program (CCP)

P
[
w ∈ W : g(N̄∗, γ∗, w) ≤ 0

]
≥ 1− ε, (30)

where P is the distribution supported on the uncertainty set W ,
governing the behavior of the possible uncertain parameter w,
and ε ∈ [0, 1] is a prespecified level of constraints violation.
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Note that the CCP constraint takes into consideration the
unseen scenario w ∈ W and allows for constraint violation
up to a probability of ε. In the context of fault detection,
this probability of violation is often referred to as the “false-
alarm rate”. The CCP guarantees can also be extended to a
class of nonconvex problems, which has a direct application
for fault detection problems [28]. It is also interesting to note
that the average cost (27) in Design 1 can also benefit from
some probabilistic guarantees. However, this is beyond the
scope of this study and we refer the interested readers to [28,
Theorem 4.11] for further information.

False negative/missed detection rate: We have two
types of errors in fault detection problems: (i) false positive
(aka false alarm rate) and (ii) false negative (aka missed detec-
tion rate). Looking at the design optimization programs (28),
the constraint N̄H̄(w0) = 0 and the first term of the objec-
tive N̄(EH,jE

⊺
H,j)N̄

⊺ are concerned with the false positive
error, while the constraint N̄ F̄ (w0)1dN×dF = −ā1da and the
second term of the objective N̄(EL,jE

⊺
L,j)N̄

⊺ relate to the
false negative error. Providing a performance certificate for
the false negative is typically more challenging as it requires
additional conditions on the fault signal as well. Namely,
in a practical setting where we have to tolerate non-zero
threshold (i.e., variable γ in constraint function g in (29)),
there are always sufficiently small faults whose contributions
to the residual are suppressed under this threshold, and hence
remain undetected. To determine a minimum value (in the L
sense) for a detectable fault signal, we need to ensure that the
fault aggregated contribution exceeds the term N̄(EH,jE

⊺
H,j+

EL,jEL,j)N̄
⊺. In other words, solving the worst case pro-

gram (28) using the training data set provides us with a
worst-case value γ∗ = N̄(EH,j∗E

⊺
H,j∗ + EL,j∗EL,j∗)N̄

⊺

evaluated in a particular scenario wj∗ (or equivalently the
optimal objective of (28)), which offers a similar probabilistic
chance constraint guarantee for the false negative rate in
unseen scenarios. Having said that, we wish to emphasize
that this would represent a false negative rate for aggregated
faults, not a guarantee for each additive and multiplicative fault
separately. Breaking down the false negative rate requires a
more comprehensive non-trivial analysis, which is beyond the
scope of this study and could serve as a potential direction for
future research. In Sec. IV, we demonstrate the effectiveness
of this approach using both synthetic and real experimental
data.

B. Input and measurement delay

When there are delays in the input (actuation) and output
(measurements) of a system, the current state-of-the-art ap-
proach does not meet the conditions stated in (5), as explained
in Sec. II-D2. That is, the residuals are affected not only by
the fault but also by previous instances of unknown states and
disturbances. The reason for this problem is that the presence
and length of delays are not considered model knowledge
during filter synthesis. Fortunately, there are several methods
in the literature to estimate delays within a system, as reported
in [35]. In the context of our application, i.e. a compact
actuator and sensor network with wired connections, it is safe

to assume that all delay lengths are known and of constant
length. Given these assumptions, we can assume that the
polynomial matrices Y (q), U(q) in (3) are known and can
be incorporated into the synthesis of a residual generator by
rewriting (3), and setting:

H(q;w) :=

[
−qG+A(w) Bd(w) 0
Y (q)C(w) Y (q)Dd(w) Y (q)Dη

]
,

L(q;w) :=

[
0 U(q)Bu(w)
−I 0

]
, F (q;w) :=

[
U(q)Bf (w)

0

]
.

This allows us to incorporate delays as model knowledge and
compensate for them in the filter synthesis problem in De-
sign 1and 2, enabling a filter robust against model uncertainty
and input/measurement delays and satisfying Objective 2.

C. Measurement noise

As noted in Sec. II-D3, generally the measurement noise
cannot be decoupled by modeling it as a disturbance, as it
would imply the rejection of all available measurements, which
will violate Assumption II.1 for our system. Therefore, a
different method must be found to attenuate the effect of noise
on the residual, to reduce its effect on fault estimates f̂a, f̂m.
In contrast to the previous section, we will not be discussing
any methodology to completely decouple the impact of noise.
Instead, we will be explaining various approaches to reduce
noise by adjusting parameters in different filter components.
In addition, we will discuss how these strategies can impact
the accuracy of the estimated faults. Measurement noise affects
the aggregated fault fagg through the second term in (18). The
first way to minimize the effect of noise is through the residual
generator: by minimizing the energy of the noise contribution.
Based on (18), this implies

min
N(q;w0),a(q)

∥a−1(q)N(q;w0)
[
0 Dη

]⊺
[η]∥2.

The numerator N(q;w0) is mainly useful for rejecting the
noise present at specific frequencies. This is effective for
rejecting disturbances within a particular frequency band (by
using, for example, a band-stop filter). However, it is not
very effective for Gaussian white noise, which has a flat
frequency spectrum for all frequencies. Furthermore, the de-
sign of N(q;w0) is already determined through Design 1
and 2. As such, using the design of the denominator a(q)
to attenuate the effect of noise is a better option. This can be
done through a variety of different filter types, e.g., low-pass
filters. This helps to attenuate the contribution of noise above
certain frequency levels. It is important to note, however, that
filtering the residual to reduce noise can have a downside.
As explained in the state-of-the-art (Sec. II-B), a pre-filter
is applied to the input signal before it enters the regression
operator. This pre-filter, as shown in (8), is designed to
compensate for the dynamic mismatch between the residual
and the true aggregated fault. The pre-filter design uses the
same filter denominator a(q). When observing the proposed
performance bounds in [4, Theorem 3.7], and its application
to constant faults in [4, Corollary 3.8], there is a linear
relationship between the variance of the filtered signal e and
the magnitude of the performance bound. If a denominator



10

a(q) is therefore designed to aggressively attenuate noise,
even within the frequency range of the input signal e, the
”excitation” of the signal e is actively reduced, and therefore
the bound on the fault estimation error increases, which could
lead to performance loss regardless of the benefits of noise
attenuation.

The second component in which we can attempt to attenuate
the effect of measurement noise is in the isolation filter (7) as
depicted in Fig. 1. Using [4, Eq. (17)], one can observe that
the mismatch between the aggregated fault and the residual
can be bounded by:

∥Φn[e, r − δ](k)∥≤ Cn(en)√
nVn[e]

∥rn − δn∥2,with δ=fa + efm,

(31)

where the constant Cn(en) is defined in [4, Eq. (10b)].
Given the fact that the residual r is now affected by
additive noise, the mismatch between the residual and the
true aggregated fault δ can be reduced by increasing the
filter horizon n, providing a second direction for noise
attenuation. Intuitively, one would opt to increase n to large
values. However, much like a moving average filter with a
longer horizon, the convergence rate of a fault estimate will
decrease proportionally with the horizon n. To achieve a
good fault estimation performance, it is crucial to carefully
balance two factors: the selection of an appropriate filter
a(q) and the selection of a regression horizon n. Lowering
the cutoff frequency of a(q) reduces the excitation of e
to the regression problem. On the other hand, increasing
the cut-off frequency allows more noise artifacts to enter
the residual, which affects the estimation error. Similarly,
reducing the horizon n minimizes the amount of information
needed for the regression problem, resulting in less time
required to reach the desired fault estimate. However, in a
noisy setting, a reduction of n would compromise the quality
of the estimation. This gives us a qualitative trade-off for
designing a fault estimator in the presence of noise, according
to Objective 3

In summary, the steps involved in the robustification process
are as follows. First, in Sec. II-D1, we apply Designs 1
and 2 to achieve a robust design in the presence of model
uncertainty (Objective 1). Secondly, in Sec. II-D2, we use a
methodology to augment the input and measurement delay to
the system matrices to compensate for its effect (Objective 2).
Finally, in Sec. II-D3, we employ the denominator a(q)
and the isolation filter horizon n to reduce the effect of
measurement noise while balancing accuracy and time-based
performance (Objective 3).

IV. EXPERIMENTAL RESULTS ON AN AUTOMATED VEHICLE

In this section, we will be verifying the contributions made
in Sec. III. To begin with, we will train Designs 1 and 2 by
using experimental data. We will combine these data with the
contributions from Sec. II-D2 and II-D3. After this, we will
be using the same filter setup to detect and estimate faults
in a real vehicle. The experimental data were collected using
a real testing vehicle, which is shown in Fig. 4. The vehicle

Fig. 4: TNO Renault Grand Scenic (2018) testing platform.

TABLE I: Testing matrix for experimental data gathering.

Experiment Road layout fa [rad] fm [-]
Training 1 Straight 0 0
1 Straight 0 0
2 Straight 0.02 0
3 Straight 0 0.3
4 Straight 0.02 0.3
Training 2 Corner 0 0
5 Corner 0 0
6 Corner 0.02 0
7 Corner 0 0.3
8 Corner 0.02 0.3

is a 2018 Renault Grand Scenic that was equipped with a
variety of sensors and actuators to control inputs and measure
outputs shown in Fig. 2 and (9). To measure lateral velocity
vy , a GNSS sensor was used, which communicated its data
to the Axiomtek central computer through a controller area
network (CAN) interface. The yaw rate ψ̇ was measured by
an inertial measurement unit (IMU), which communicated its
data through the vehicle gateway to the data logging facility.
The lateral error ye and the heading error ψe were derived
from the road markings observed by the road marking camera.
The longitudinal velocity vx is measured through the wheel
speed sensors and communicated to the central computing unit.
The built-in steering actuator, which can be accessed through
a CAN interface, was used to actuate the steering angle u
of the wheels. Longitudinal acceleration and braking were
achieved through a retrofitted system that directly actuated
the throttle valve and the position of the brake pedal. The
logged data was then communicated to the logging platform.
The Axiomtek central computer runs a variety of algorithms
using the Robot Operating System (ROS). The platform has
several controllers, including a lane-keeping controller based
on [36], and an adaptive cruise controller based on [37]. These
controllers help the vehicle maintain constant speed and stay in
the lane. Additionally, custom software has been developed to
inject the desired faults fa, fm into the system by manipulating
the steering wheel setpoint u. Although in practice faults are
mainly caused by mechanical defects, it is considered unsafe
to inject these mechanical failures while driving the vehicle.
Therefore, software manipulation of the desired steering angle
is considered the preferred option for testing purposes.

Experimental data have been collected at the RDW proving
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ground in Lelystad, The Netherlands, which features an oval
track that has an approximate straight section of 850m and
a corner radius of around 160m. To represent typical urban
or national road driving, all tests were carried out at a
velocity of 50km · h−1, which is equivalent to 13.88m · s−1.
According to [38], the validity of the linear bicycle model is
guaranteed by constraining the lateral acceleration with 0.5g,
where g represents the gravitational constant. Calculating the
lateral acceleration at the velocity of 13.88m · s−1 through
the corner shows that on the track we have a maximum
lateral acceleration of ay =

v2x
R ≈ 1.2m · s−2, which is well

within the linear operating regime of the model in (9). The
test variations carried out, including different fault scenarios,
are shown in Table I. The tests labeled training are intended
to design the two residual generator designs as proposed in
Sec. III, as well as to gather knowledge to tune the filter
parameters of the estimation filter. Using the trained filter and
the set of parameters, the experimental results are evaluated.
The vehicle parameters are as follows: m = 1845 kg, I =
2372 kg ·m2, lf = 1.219 m, lr = 1.585 m, Cf = 138100 N ·
rad−1, and Cr = 215300 N · rad−1. The actuation and mea-
surement delays have been identified as τu = 0.15s, τvy =
0.06s, τψ̇ = 0.05s, τye = 0.14s, τψe

= 0.14s. The uncertainty
values, as introduced in (9), are chosen to be in the intervals
w(1) ∈ [0.8, 1.2], w(2) ∈ [0.8, 1.2], therefore, assuming that
the real system can have a 20% deviation in relation to the
nominal parameters of the system. These limits are selected
as representatives wj , used in Designs 1, 2.

To strengthen this choice of uncertainty representatives, we
performed the analysis of Sec. III-A concerning generalization
to unseen scenarios. For each design, three variants of SCP
are designed using 4, 40, and 100 representatives, respectively,
sampled from a uniform distribution P ∼ U(0.8, 1.2). Fur-
thermore one variant is designed using the uncertainty limits
as representatives. Then, the constraint (30) of the resulting
designs is tested on 4000 uncertainties sampled from P. The
results are shown in Fig. 5. For the average-cost filter, it is
shown that choosing the corner points of the uncertainty set
W results in the lowest violation of the constraint, that is,
the lowest false alarm rate of a healthy system. In fact, a
larger number of samples incorporated in the design results in
an increase in false alarms (that is, g(N̄ , w), and therefore
a deterioration of performance, as can be observed in the
average-cost results in Fig. 5. This shows that a tactical
selection of representatives is required. For the worst-case
design, it is shown that the selection of corner points greatly
outperforms the option with four randomly chosen uncertainty
representatives. However, the larger the number of samples,
the less constraint violations occur. This shows that although
the corner point representatives outperform random selection
of the same number of representatives, the corner point rep-
resentatives do not contain the absolute worst-case.

A. Preliminary simulation study

Section III-A outlines our proposed approach to robustifying
against model uncertainty. We perform numerical verification
to assess the effectiveness of our approach under uncertain
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Fig. 5: Comparison of the performance of Designs 1 and 2
with corner point representatives and randomly samples rep-
resentatives.
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Fig. 6: Aggregated fault estimation error for simulating the
synthetic system with residual generator over an equidistant
60 × 60 grid (sampled within the uncertainty set W) of
uncertainties.

conditions while in the absence of delay and noise that
occur in the real vehicle. This enables us to demonstrate the
performance of our approach in various uncertain scenarios
that may differ from the condition of the real vehicle.

In this section, we aim to compare two residual generators
- the ”worst-case” (28) and ”average-cost” (27) viewpoint -
with the baseline nominal filter. We only rely on the input
data u sent to the vehicle, since the outputs used in the
residual generator are generated by a simulation model based
on (9). This allows us to test the efficacy of our approach
at different levels of uncertainty in vehicle model parameters.
The synthetic model is free of measurement noise and delay.
Two parameters are still to be designed, which are the filter
polynomial a(q) and the regression horizon n. These parame-
ters are primarily used to reduce noise. Since there is no noise
present in this example, the selection will be explained in the
next section. In this example, we fix the values of a(q) and
n in a(q) = (q− 0.75)3 and n = 500, respectively, to ensure
comparability for the synthetic and experimental results.

Fig. 6 shows the performance of the three proposed residual
generators. We tested the average-cost and worst-case residual
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Fig. 8: Fast Fourier transform of input data u from the training
experiments.

generator on the training data of Table I and evaluated their
performance in the data of experiments 1 and 5, where there
was no fault present. We varied the simulation model affected
by the uncertainty using a 60 × 60 grid of uncertainties,
bounded by w(1) ∈ [0.8, 1.2], w(2) ∈ [0.8, 1.2]. The results
indicate that both the average-cost and worst-case approaches
outperform the nominal filter by several orders of magnitude.
However, the average-cost filter performs slightly better than
the worst-case filter. This is evident from the average L2-norm
of the residual, which was 4.5 · 10−7 rad for the average-
cost filter, compared to 4.81 · 10−7 rad for the worst-case
filter. Furthermore, the maximum L2-norm for all experiments
was 1.95 · 10−6 rad for the average-cost filter, while it was
2.37 · 10−6 rad for the worst-case filter. It is important to
note that the worst-case filter is designed by finding a filter
that minimizes the worst-case impact at one of the uncertainty
representatives. It is unknown whether the representatives of
the chosen model have the greatest impact on the performance

of the residual generator. This question remains open to
research.

Fig. 7 provides a closer look at the filter performance in
the presence of faults and incorporates the estimation of faults
f̂a, f̂m from the residual r. In this example, we use the data
from experiment 8 as input for the synthetic model. Using
this input, the synthetic model is again simulated over the
same grid in the uncertainty set as used for Fig. 6. The
shaded areas in Fig. 7 depict the estimation performance for
all filters considered. It has been observed that even in a noise-
free and delay-free environment, there are inaccuracies in the
nominal design, with errors in f̂a of up to 8.9 · 10−4 rad and
in fm of up to 0.18 in steady state. The worst-case filter has
maximum errors of 1.9·10−3rad in f̂a and 0.02 in f̂m in steady
state, respectively. On the other hand, the estimation performed
using the average-cost residual generator has maximum errors
of 8.1 · 10−4 rad in f̂a and 0.015 in f̂m in steady state. While
the faults fa, fm are transient, the error increases and the
difference between the different filter designs decreases. The
primary cause of error in this scenario is that we assume
that all the information in the regressor (7) is related to a
constant fault fa, fm. However, in the case of a transient fault,
this assumption is not accurate. After the fault stabilizes and
remains constant for n = 500 time steps (i.e., the regressor
horizon), the fault estimates gradually approach their true
values. According to the findings in [4, Theorem 3.7], there is
a source of error that could be reduced by any of the following
methods: 1) increasing the horizon n to minimize the impact
of the transient fault in the regressor, but this would lead to a
slower estimation, 2) placing the poles of a−1(q) toward the
origin to reduce the dynamical mismatch between the residual
and the regressor, but this would also increase the sensitivity
to measurement noise, or 3) increasing the excitation on the
steering input u. However, the last method is not within the
scope of fault diagnosis in this work.

A note should be made on the time-based performance of
the fault estimation. First, it should be noted that the residual
converges to the true aggregated fault within approximately
0.15 s (as can be observed in the third column of Fig. 7);
therefore, to detect and estimate the presence of a fault in fagg ,
the residual generator outperforms a human response time of
around 0.4s to a hazardous situation [39]. Estimating the faults
f̂a and f̂m individually is a more time-consuming process
compared to estimating the combined fault fagg because it
necessitates a historical record of the residual and input to
distinguish between the faults. As previously discussed in
Sec. III-C, selecting a larger horizon n reduces its suscep-
tibility to the influences of measurement noise. In the scope
of our experiments, due to the chosen values of n and a(q),
the estimation time of fa and fm is around 5 seconds. Note,
however, that the speed of the estimation of f̂a and f̂m is
considered less urgent than the estimation speed of fagg , since
high-severity faults in fagg would likely prompt the vehicle
to move to a safe state. Consequently, less critical faults or
incipient faults could be given some time before determining
their precise nature.
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(e) Experiment 4

Fig. 9: Experimental results of experiments 1 to 4, depicting the fault estimation performance for single faults and simultaneous
faults on a straight road.

B. Experimental results

In this section, we present the results the experiments
from Table I. First, we will discuss the selection of filter
parameters a(q) and n. We aim to find an appropriate filter
a(q) that not only reduces noise, but also allows us to use the
input signal u effectively. To analyze the frequency content
of the input signal u, we perform a fast Fourier transform
(FFT) of all the augmented training data, illustrated in Fig. 8.
Upon observation, it is clear that around 30Hz, the roll-off
of the magnitude stagnates, indicating that the actual steering
dynamics diminishes at this frequency. This is the frequency
range that contains the flat spectrum of noise in the signal. As
such, to create a denominator that filters noise while preserving
the frequency content of u, a low-pass filter with a cutoff
frequency at 30Hz is selected. Combining this with the signal
sampling time of 0.01s results in a(q) = (q − e−0.01·30)da ,
where the degree da = 3 is chosen so that the residual
generators resulting are causal. Due to the large effect of
excitation on the performance bound (31), it must be preserved
and not sacrificed by attenuating more noise through a(q).
Hence, the horizon n can be used to attenuate noise from
the relatively soft low-pass filter a(q), as well as to attenuate
the coupling effect between the estimation of f̂a, f̂m, as was
also observed in Sec. IV-A. The filter horizon is increased
to n = 500 to attenuate the noise and coupling effects to
a satisfactory level. As mentioned in the previous section,
allowing around 5 s for the faults f̂a, f̂m is acceptable as long
as the residual has a satisfactory convergence time, which in
all experiments is maximally around 0.4 s. Fig. 9 and 10 show
the experimental results from Table I.

First, Fig. 9 shows the results of the experiments on the
straight road. In these results, an additional graph has been
added to show the moving-horizon variance of the signal u,
i.e., Vn[u], with n = 500, which indicates excitation in these
experiments. Note that this quantity is an unfiltered version
of Vn[e] from (31), which means that its value over time
will allow us to reason about the expected quality of the
estimation. The main source of excitation is the injection of an
additive fault in Fig. 9c and Fig. 9e. For all three variants of
filters, as also explained in the preliminary simulation study,
there is a coupling effect between f̂a and f̂m. This effect
is inevitable given the static relationship from which these
faults are extracted. However, despite the lack of excitation
and this coupling, the fault estimates do converge to their true
constant values when employing either the average-cost or the
worst-case filter. However, the nominal filter fails mainly to
accurately estimate f̂m, which can be caused by the dynamic
mismatch of the true behavior of the vehicle compared to
the identified vehicle model. In general, the average cost
and worst-case design are comparable and mostly identical
in terms of performance, as had already been shown through
simulation in Sec. IV-A. The results of the experiments while
cornering (Fig. 10) show higher levels of excitation in the
steering input u. Namely, in these scenarios, the vehicle must
constantly regulate itself while taking the corner, which causes
relatively higher excitation. As a result, the convergence of
the fault estimates is more precise. The proposed average-cost
and worst-case filter designs outperform the nominal design in
terms of steady-state error in the faults and residual. However,
during transient fault periods, all filter designs perform simi-
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Fig. 10: Experimental results of experiments 5 to 8, depicting the fault estimation performance for single faults and simultaneous
faults on a curved road.

larly in estimating f̂a, f̂m. The nominal design performs worse
in estimating the additive fault f̂a with respect to the results of
the straight road. A mismatch in f̂m implies that the residual r
contains traces that are not part of the aggregated fault, but are
still correlated with the input signal u. Therefore, a mismatch
in fa could be better explained by an uncorrelated or less
correlated trace in r that still affects the residual. An example
of such an uncorrelated, or less correlated, signal could be the
curvature disturbance, which propagates through the residual
generator through mismatch term I (12), in the nominal case,
and less so in the average cost and worst-case design.

When using results for diagnostic purposes, it is crucial to
consider their accuracy and reliability. The estimated faults can
help detect a specific severity of faults using a set threshold
or mitigate them through closed-loop control. However, fault
estimates observed using the nominal filter on a straight road
with a constant multiplicative fault, or in the corner with an
additive and/or multiplicative fault, may not be accurate. This
could lead to false positive detections or overcompensation
in closed-loop mitigation. Therefore, it is important to be
mindful when interpreting the results. Moreover, the inter-
dependence between the estimation of the two faults f̂a, f̂m
can be problematic for all proposed filters, and depending on
the application, different tuning parameters may be used to
attenuate this phenomenon.

V. CONCLUSION

In this work, we focus on the estimation of additive and
multiplicative faults that can cause errors in the steering system
in the context of automated driving. In this experimental

setting, several factors can introduce errors in fault estimation,
such as model uncertainty, measurement noise, and system
delays. We have proposed methodologies to mitigate these
factors and improve the precision and accuracy of the fault
estimation. Our approach has been tested using simulations
and experiments in the field of automated driving, and we
have discussed its effectiveness and limitations. The results
show that incorporating the average-cost or worst-case fault
estimation filter, compared to the baseline filter, improves the
accuracy and precision of individual fault estimates. Future
work includes the implementation of this methodology in
closed-loop applications and exploring the possibility of active
fault isolation within the automotive domain by introducing
excitation to obtain more precise estimates of faults.
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