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Abstract

The main theme of this thesis is twofold. First, we study a class of specifications, mainly the

reachability type questions, in the context of controlled diffusion processes. The second part

of the thesis is centered around the fault detection and isolation (FDI) problem for large scale

nonlinear dynamical systems.

Reachability is a fundamental concept in the study of dynamical systems, and in view of

applications of this concept ranging from engineering, manufacturing, biology, and economics,

to name but a few, has been studied extensively in the control theory literature. One particular

problem that has turned out to be of fundamental importance in engineering is the so-called

“reach-avoid” problem. In the deterministic setting this problem consists of determining the

set of initial conditions for which one can find at least one control strategy to steer the system

to a target set while avoiding certain obstacles. The focus of the first part in this thesis is on the

stochastic counterpart of this problem with an extension to more sophisticated maneuvers which

we call the “motion planning” problem. From the technical standpoint, this part can be viewed

as a theoretical bridge between the desired class of specifications and the existing numerical

tools (e.g., partial differential equation (PDE) solvers) that can be used for verification and

control synthesis purposes.

The second part of the thesis focuses on the FDI problem for large scale nonlinear systems.

FDI comprises two stages: residual generation and decision making; the former is the subject

addressed here. The thesis presents a novel perspective along with a scalable methodology

to design an FDI filter for high dimensional nonlinear systems. Previous approaches on FDI

problems are either confined to linear systems, or they are only applicable to low dimensional

dynamics with specific structures. In contrast, we propose an optimization-based approach to

robustify a linear residual generator given some statistical information about the disturbance

signatures, shifting attention from the system dynamics to the disturbance inputs. The pro-

posed scheme provides an alarm threshold whose performance is quantified in a probabilistic

fashion.

From the technical standpoint, the proposed FDI methodology is effectively a relaxation

from a robust formulation to probabilistic constraints. In this light, the alarm threshold ob-

tained via the optimization program has a probabilistic performance index. Intuitively speak-

ing, one would expect to improve the false alarm rate by increasing the filter threshold. The goal

of the last part of the thesis is to quantify this connection rigorously. Namely, in a more general

setting including a class of non-convex problems, we establish a theoretical bridge between the

optimum values of a robust program and its randomized counterpart. The theoretical results

of this part are finally deployed to diagnose and mitigate a cyber-physical attack introduced

by the interaction between IT infrastructure and power system.

iii



iv



Zusammenfassung

Diese Dissertation besteht aus zwei Teilen. Zuerst wird eine Klasse von Spezifikationen für

kontrollierte Diffusionsprozesse untersucht, vor allem mit Bezug auf Fragen der Erreichbarkeit.

Der zweite Teil der Arbeit behandelt das Problem der Fehlererkennung und -isolierung (FDI)

in grossen nichtlinearen dynamischen Systemen.

Erreichbarkeit ist ein fundamentales Konzept in der Untersuchung von dynamischen Syste-

men und wird als solches ausführlich in der Regelungstechnik behandelt. Anwendungen finden

sich in verschiedensten Disziplinen wie den Ingenieurwissenschaften, der Systembiologie, der

Produktionstechnik und der Ökonomie. Im Bereich der Ingenieurwissenschaften ist insbeson-

dere das sogenannte “Erreichbarkeit-Vermeidungsproblem” von fundamentaler Wichtigkeit. Im

deterministischen Fall besteht das Problem darin, die Menge der Anfangsbedingungen zu bes-

timmen, für welche mindestens eine Regelstrategie existiert, die das System in eine gegebene

Zielmenge führt, wobei bestimmte Hindernisse zu vermeiden sind. Der Fokus des ersten Teils

dieser Arbeit liegt auf dem stochastischen Pendant zu diesem Problem, ergänzt mit kom-

plizierteren Zielvorgaben, das als “Trajektorienplanungsproblem” bezeichnet wird. Von einem

regelungstechnischen Standpunkt her kann dieser erste Teil als theoretische Verbindung von

der gewünschten Spezifikation des Reglers und der vorhandenen numerischen Software (z.B.

Lösungsmethoden für partiellen Differentialgleichungen) betrachtet werden, die zur Synthese

und Verifikation verwendet werden kann.

Der zweite Teil dieser Dissertation befasst sich mit dem FDI Problem für grosse nichtlineare

dynamische Systeme. FDI besteht aus zwei Schritten: die Bestimmung der Regelabweichung

sowie die Entscheidungsfindung, wobei der Fokus hier auf dem ersten Schritt liegt. Diese

Arbeit präsentiert eine neue Sichtweise zusammen mit einer Methodik für den Entwurf eines

FDI Filters für hochdimensionale nichtlineare Systeme. Bisherige Methoden für FDI Probleme

beschränken sich entweder auf lineare Systeme oder sind nur für niedrigdimensionale Systeme

mit spezifischer Struktur anwendbar. Im Gegensatz dazu wird ein optimierungsbasierter Ansatz

für den Entwurf eines robusten Verfahrens zur Bestimmung der Regelabweichung vorgestellt,

basierend auf statistischer Information über die Störsignale. Dieser Ansatz verschiebt die

Sichtweise weg von der Systemdynamik und hin zu der Störgrösse. Er führt auf ein einfaches

Schema, das einen Alarm liefert sobald ein bestimmter Schwellenwert überschritten wird, wobei

die Güte dieses Schwellenwertes probabilistisch quantifiziert werden kann.

Von einem mathematischen Standpunkt aus gesehen stellt die vorgeschlagene FDI Methodik

eine Relaxation von einer robusten zu einer probabilistischen Formulierung dar. Aus diesem

Blickwinkel wird klar, weshalb der Schwellenwert, der durch die Lösung des Optimierungsprob-

lems ermittelt wird, eine probabilistische Güte besitzt. Intuitiv betrachtet wird die Anzahl von

Fehlalarmen bei einer Erhöhung dieses Schwellenwertes ansteigen. Das Ziel des letzten Teils

v



dieser Dissertation ist es, diesen Zusammenhang genauer zu untersuchen. Zu diesem Zweck

wird gezeigt, wie in einem sehr allgemeinen Rahmen eine Schranke zwischen dem optimalen

Zielfunktionswert eines robusten Optimierungsproblems und dem einer Näherungslösung mit-

tels Stichproben hergeleitet werden kann. Schliesslich wird betrachtet, wie diese theoretischen

Ergebnisse verwendet werden können, um cyberphysische Angriffe auf die Schnittstelle zwis-

chen IT-Infrastruktur und Stromversorgungssystem zu erkennen und auszuschalten.
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CHAPTER1
Introduction

This thesis mainly addresses two problems: motion planning of controlled diffusions, and the

problem of fault detection and isolation (FDI) in the context of high dimensional nonlinear

systems. The former is a generalized concept of the so-called reachability problem which has

received much attention through the study of safety problems in the dynamics and control

literature. The latter, the FDI problem, is one of the fundamental subjects in the design of

highly reliable control systems.

The first part of the thesis studies the motion planning problem in continuous time and

space setting. The two fields of robotics and control have contributed much to motion planning.

In the robotics community, research on motion planning typically focuses on the computational

issues along with considerations of basic kinematic limitations, while in the control community

the emphasis is mainly on the dynamic behavior and specific aspects of trajectory performance

that usually involve high order differential constraints. The approach of this thesis on the

motion planning is aligned with the latter point of view. This viewpoint has been investigated

in the literature in various combinations of deterministic or stochastic dynamics, discrete or

continuous time and discrete or continuous space. To date however, there is no treatment in

the literature that would allow one to deal with continuous state, continuous time stochastic

systems. This thesis fills this gap by investigating motion planning problems for controlled

diffusions governed by controlled stochastic differential equations. We tackle the problem from

an optimal control perspective based on the dynamic programming argument, which leads to

a PDE characterization of the desired set of initial conditions. More detail regarding this part

and its contribution is provided in Section 1.1.1

The FDI problem, the central topic in the second part, is one of the main subject in the

design of reliable control systems. The FDI task involves generating a diagnosis signal to detect

the occurrence of a specific fault. This is typically accomplished by designing a filter with all

available signals as inputs (e.g., control signals and given measurements) and a scalar output

that implements a non-zero mapping from the fault to the residual while decoupling unknown

disturbances. The concept of residual plays a central role for the FDI problem which has

been extensively studied in the last two decades. In the literature, the existing approaches are

either confined to linear systems or they are only applicable to low dimensional systems with

specific structures. Here we will present a novel perspective along with a scalable methodology

to robustify a linear residual generator for high dimensional nonlinear systems; the details

1



Chapter 1. Introduction

regarding the proposed approach is discussed in Section 1.1.2.

1.1 Outline and Contributions

Here we outline the organization and contributions of the thesis:

1.1.1 Part I: Stochastic Motion Planning for Diffusions

In Part I the basic object of our study is an Rd-valued controlled random process (Xt,x;u
s )s≥t,

initialized at (t, x) under the control policy u ∈ Ut, where Ut is the set of admissible control

policies at time t.

A. Stochastic Reach-Avoid Problem

In Chapter 2, we consider a class of stochastic reachability problems with state constraints.

The main objective is to characterize the set of initial conditions x ∈ Rd for which there exists

an admissible control strategy u such that with probability more than a given value p > 0 the

state trajectory hits a target set A before visiting obstacle B. Previous approaches to solving

these problems in continuous time and space context are either studied in the deterministic

setting [Aub91] or address almost-sure stochastic notions [AD90]. In contrast, we propose

a new methodology to tackle probabilistic specifications that are less stringent than almost

sure requirements. More precisely, based on different arriving time requirements, we aim to

characterize the following set of initial conditions:

Definition (Reach-Avoid). Consider a fixed initial time t ∈ [0, T ]. Given sets A,B ⊂ Rd, we

define the following reach-avoid initial sets:

RA(t, p;A,B) :=
{
x ∈ Rd

∣∣ ∃u ∈ Ut :

P
(
∃s ∈ [t, T ], Xt,x;u

s ∈ A and ∀r ∈ [t, s] Xt,x;u
r /∈ B

)
> p
}
.

R̃A(t, p;A,B) :=
{
x ∈ Rd

∣∣ ∃u ∈ Ut :

P
(
Xt,x;u
T ∈ A and ∀r ∈ [t, T ] Xt,x;u

r /∈ B
)
> p
}
.

In a direct approach, based on the theory of stochastic target problems, the authors of

[BET10] recently extended the almost sure requirement of [ST02a, ST02b] to the controlled

probability of success; see also the recent book [Tou13]. Here, following the same problem but

in an indirect approach, we first establish a link from the above sets of initial conditions to

a class of stochastic optimal control problems. In this light, we characterize the desired sets

based on the tools from PDEs. Due to the discontinuities of the value functions involved, the

PDE is understood in the generalized notion of the so-called discontinuous viscosity solutions.

Furthermore, we provide theoretical justifications so that the reach-avoid problem is amenable

to numerical solutions by means of off-the-shelf PDE solvers.

2



1.1 Outline and Contributions

B. Stochastic Motion Planning

Chapter 3 generalizes the reach-avoid problem discussed in Chapter 2 to a motion planning

specification. Motion planning of dynamical systems can be viewed as a scheme for executing

excursions of the state of the system to certain given sets in a specific order according to a

specified time schedule. Formally speaking, we consider the following set of initial conditions:

Definition (Motion-Planning). Consider a fixed initial time t ∈ [0, T ]. Given a sequence of set

pairs (Wi, Gi)
n
i=1 and horizon times (Ti)

n
i=1 ⊂ [t, T ], we define the following motion-planning

initial sets:

MP
(
t, p; (Wi, Gi)

n
i=1, T

)
:=

{
x ∈ Rd

∣∣∣ ∃u ∈ Ut : P
{
∃(si)ni=1 ⊂ [t, T ] | Xt,x;u

si ∈ Gi and Xt,x;u
r ∈Wi \Gi,

∀r ∈ [si−1, si[, ∀i ≤ n
}
> p

}
,

M̃P
(
t, p; (Wi, Gi)

n
i=1, (Ti)

n
i=1

)
:=

{
x ∈ Rd

∣∣∣ ∃u ∈ U : P
{
Xt,x;u
Ti

∈ Gi and Xt,x;u
r ∈Wi,

∀r ∈ [Ti−1, Ti], ∀i ≤ n
}
> p

}
.

Despite extensive studies on motion planning objectives in the deterministic setting [Sus91,

CS98a, MS90] as well as stochastic but discrete time or space [CCL11, SL10, BHKH05], the

continuous time and space settings seem to be investigated much less. In fact, our formal

definition of the motion planning above is, to the best of our knowledge, new in the literature.

Through a dynamic programming argument, similar to the preceding chapter, we propose a

PDE characterization for the desired initial condition sets. The proposed approach leads to a

sequence of PDEs, for which the first one has a known boundary condition, while the boundary

conditions of the subsequent ones are determined by the solutions to the preceding steps.

During the PhD, we also approached the motion planning objective from different per-

spective that allows us to extend the class of specifications to more sophisticated maneuvers

comprising long (possibly infinite) sequences of actions (e.g., linear temporal logic [CES86]).

For this purpose the proposed PDE approach may not be an efficient scheme for two reasons:

first, one is required to numerically solve a certain PDE for each excursion in a recursive fash-

ion; second, not every specification can be translated into a finite-time reachability framework.

Motivated by that, we develop an approach based on the so-called symbolic models which

constructs a two-way bridge from a continuous (infinite) system to a discrete (finite) approxi-

mation such that a controller designed for the approximation can be refined to a controller for

the original systems with an a priori ε-precision. This work is, however, not covered in this

thesis, and we refer the interested readers to [ZMEM+13b, ZMEAL13] for further details.
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Chapter 1. Introduction

1.1.2 Part II: Fault Detection for Large Scale Nonlinear Systems

The study in Part II is mainly motivated by the FDI problem with the prospect to devise a

scalable methodology applicable to relatively high dimensional nonlinear systems.

A. An Optimization-Based Approach with Probabilistic Performance Index

In Chapter 4 we develop a novel approach to FDI which strikes a balance between analytical and

computational tractability, and is applicable to relatively large dimensional nonlinear dynamics.

For this purpose, we propose a design perspective that basically shifts the emphasis from the

system dynamics to the family of disturbances that the system may encounter. Consider a

general dynamical system as in Figure 1.1 with its inputs categorized into (i) unknown inputs

d, (ii) fault signal f , and (iii) known inputs u.

System Dynamics FDI Filter

Figure 1.1: General configuration of the FDI filter

The FDI task is to design a filter fed by known signals (u and y) whose output, which

is known as the residual and denoted by r, differentiates whether the measurements are a

consequence of some accepted input disturbances d, or due to the fault signal f . Formally

speaking, the residual may be viewed as the function r(d, f), and the FDI design is ideally

translated as the mapping requirements

d 7→ r(d, 0) ≡ 0, (1.1a)

f 7→ r(d, f) 6= 0, ∀d (1.1b)

where condition (1.1a) ensures that the residual of the filter, r, is not excited when the system

is perturbed by normal disturbances d, while condition (1.1b) guarantees the filter sensitivity

to the fault f in the presence of any disturbance d. In practice, however, it may be difficult,

or even impossible, to satisfy condition (1.1a) exactly. An attempt to circumvent this issue is

to consider the worst case scenario in the robust formulation

RP :





min
γ

γ

s.t.
∥∥r(d, 0)

∥∥ ≤ γ, ∀d ∈ D
f 7→ r(d, f) 6= 0, ∀d ∈ D

,

where D is set of normal disturbances, and the above minimization is running over a given

class of FDI filters. Note that the parameter γ can be cast as the alarm threshold of the

designed filter. In this work, assuming that some statistical information of the disturbance

d is available, we relax the robust perspective by introducing probabilistic constraints in the
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following fashions:

AP :





min
γ

γ

s.t. E
[
J
(
‖r‖
)]
≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D
CP :





min
γ

γ

s.t. P
(
‖r‖ ≤ γ

)
≥ 1− ε

f 7→ r(d, f) 6= 0, ∀d ∈ D
,

where P is the probability measure on a prescribed probability space and E[ · ] is meant with

respect to P. The disturbance d is viewed as a random variable taking values in D and

r := r(d, 0). The function J in AP and ε ∈ (0, 1) in CP are both design parameters. In the

sequel, invoking randomized techniques, we propose a scalable optimization-based scheme along

with probabilistic certificates to tackle the above relaxed formulations. Finally, the performance

of the proposed methodology is illustrated in an application to an emerging problem of cyber

security in power transmission systems which led to an EU patent sponsored by ETH Zurich

[MEVAL].

B. Performance Bound for Random Programs

The above formulation proposes the chance constrained perspective CP to relax the robust
formulation RP of the original FDI problem. In this light, the alarm threshold γ obtained
through the proposed optimization program may be violated with probability at most ε. In
Chapter 5 our goal is to quantify how the false alarm rate would be improved by increasing the
threshold γ. To this end, and in more general setting, we establish a theoretical bridge from
the optimal values of the two optimization programs

RCP :





min
x

cᵀx

s.t. f(x, d) ≤ 0, ∀d ∈ D
x ∈ X

, CCPε :





min
x

cᵀx

s.t. P[f(x, d) ≤ 0] ≥ 1− ε
x ∈ X

,

where RCP and CCPε stand, respectively, for robust convex program and chance constrained

program (cf. the formulation RP and CP in previous part), to a random counterpart so called

scenario convex program

SCP :





min
x

cᵀx

s.t. f(x, di) ≤ 0, ∀i ∈ {1, · · · , N}
x ∈ X

,

where (di)
N
i=1 are N independent and identically distributed (i.i.d.) samples drawn according

to the probability measure P supported on D, and X is a compact convex subset of Rn. Along

this way, we also extend the results to a certain class of non-convex problems that allows, for

example, binary decision variables and non-convex set X.

1.2 Publications

The work presented in this thesis mainly relies on previously published or submitted articles.

The thesis only contains a subset of the research performed throughout my PhD studies and

several projects are not featured here. The corresponding articles are listed below according

to the related chapters along with relevant application-oriented projects.
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1.2.1 Part I

• Chapter 2

– P. Mohajerin Esfahani, D. Chatterjee, and J. Lygeros, “On Stochastic Reach-

Avoid Problem and Set Characterization for Diffusions”, submitted, Oct 2013,

arXiv: 1202.4375 [MECL13].

– P. Mohajerin Esfahani, D. Chatterjee, and J. Lygeros, “On a Problem of Stochas-

tic Reach-Avoid Set Characterization”, in IEEE Conference on Decision and Control

(CDC), Orlando, Florida, USA, Dec 2011 [MECL11].

• Chapter 3

– P. Mohajerin Esfahani, D. Chatterjee, and J. Lygeros, “Motion Planning for

Continuous Time Stochastic Processes via Optimal Control”, submitted to IEEE

Transaction of Automatic Control (TAC), Nov 2013, arXiv: 1211.1138 [MECL12].

– P. Mohajerin Esfahani, A. Milias-Argeitis, D. Chatterjee, “Analysis of Controlled

Biological Switches via Stochastic Motion Planning”, in European Control Confer-

ence (ECC), Zurich, Switzerland, Jul 2013 [MEMAC13].

• Relevant Applications to Part I

– T. Wood, P. Mohajerin Esfahani, and J. Lygeros, “Hybrid Modelling and Reach-

ability on Autonomous RC-Cars”, in IFAC Conference on Analysis and Design of

Hybrid Systems (ADHS), Eindhoven, Netherland, Jun 2012 [WMEL12].

1.2.2 Part II

• Chapter 4

– P. Mohajerin Esfahani and John Lygeros, “A Tractable Fault Detection and Iso-

lation Approach for Nonlinear Systems with Probabilistic Performance”, submitted

to IEEE Transaction of Automatic Control (TAC), Feb 2013, Preprint [MEL13].

– M. Vrakopoulou, P. Mohajerin Esfahani, K. Margellos, J. Lygeros, G. Andersson,

“Cyber-Attacks in the Automatic Generation Control”, submitted to Cyber Physical

Systems Approach to Smart Electric Power Grid, Understanding Complex Systems,

Khaitan, McCalley, and Liu Editors, Springer-Verlag Inc., 2014 [VMEM+].

– P. Mohajerin Esfahani, M. Vrakopoulou, G. Andersson, J. Lygeros, “A Tractable

Nonlinear Fault Detection and Isolation Technique with Application to the Cyber-

Physical Security of Power Systems”, in IEEE Conference on Decision and Control

(CDC), Maui, Hawaii, USA, Dec 2012 [MEVAL12].

– P. Mohajerin Esfahani, M. Vrakopoulou, G. Andersson, J. Lygeros, “Intrusion

Detection in Electric Power Networks”, Patent applied for PCT-EP-13002162, filed

on 22 July 2013 (Awarded for the best top 20 patents at ETH) [MEVAL].
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CHAPTER2
Stochastic Reach-Avoid Problem

In this chapter we develop a framework for formulating a class of stochastic reachability prob-

lems with state constraints as a stochastic optimal control problem. Previous approaches to

solving these problems are either confined to the deterministic setting or address almost-sure

stochastic notions. In contrast, we propose a new methodology to tackle probabilistic specifi-

cations that are less stringent than almost sure requirements. To this end, we first establish a

connection between two stochastic reach-avoid problems and three classes of different stochas-

tic optimal control problems involved with discontinuous payoff functions. Subsequently, we

focus on solutions to one of the classes of stochastic optimal control problems—the exit-time

problem, which solves both the reach-avoid problems mentioned above. We then derive a weak

version of a dynamic programming principle (DPP) for the corresponding value function; in

this direction our contribution compared to the existing literature is to allow for discontinu-

ous payoff functions. Moreover, based on our DPP, we give an alternative characterization of

the value function as a solution to a partial differential equation in the sense of discontinu-

ous viscosity solutions, along with boundary conditions both in Dirichlet and viscosity senses.

Theoretical justifications are discussed so as to employ off-the-shelf PDE solvers for numer-

ical computations. Finally, we validate the performance of the proposed framework on the

stochastic Zermelo navigation problem.

2.1 Introduction

Reachability is a fundamental concept in the study of dynamical systems, and in view of

applications of this concept ranging from engineering, manufacturing, biology, and economics,

to name but a few, has been studied extensively in the control theory literature. One particular

problem that has turned out to be of fundamental importance in engineering is the so-called

“reach-avoid” problem. In the deterministic setting this problem consists of determining the set

of initial conditions for which one can find at least one control strategy to steer the system to

a target set while avoiding certain obstacles. The set representing the solution to this problem

is known as capture basin [Aub91]. This problem finds applications in air traffic management

[LTS00] and security of power networks [MEVM+10]. A direct approach to compute the capture

basin is formulated in the language of viability theory in [Car96, CQSP02]. Related problems

involving pursuit-evasion games are solved in, e.g., [ALQ+02, GLQ06] employing tools from
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non-smooth analysis, for which computational tools are provided by [CQSP02].

An alternative and indirect approach to reachability involves using level set methods de-

fined by value functions that characterize appropriate optimal control problems. Employing

dynamic programming techniques for reachability and viability problems in the absence of state-

constraints, one can in turn characterize these value functions by solutions to the standard

Hamilton-Jacobi-Bellman (HJB) equations corresponding to these optimal control problems

[Lyg04]. Numerical algorithms based on level set methods were developed by [OS88, Set99]

and have been coded in efficient computational tools by [MT02, Mit05]. Extending the scope of

this technique, the authors of [FG99, BFZ10, ML11] treat the case of time-independent state

constraints and characterize the capture basin by means of a control problem whose value

function is continuous.

In the stochastic setting, different probabilistic analogs of reachability problems have been

studied extensively. In almost-sure setting, stochastic viability and controlled invariance are

treated in [AD90, Aub91, APF00, BJ02]; see also the references therein. Methods involving

stochastic contingent sets [AP98, APF00], viscosity solutions of second-order partial differen-

tial equations [BPQR98, BG99, BJ02], and derivatives of the distance function [DF01] were

developed in this context. In [DF04] the authors developed an equivalence for the invariance

problem between a stochastic differential equation and a certain deterministic control system.

Toward similar objective, the authors in [ST02a] introduced a new class of problems, the so-

called stochastic target problem, and characterized the solution via a dynamic programming

approach. The differential properties of the reachable set were also studied based on the geo-

metrical partial differential equation which is the analogue of the HJB equation [ST02b].

Although almost sure versions of reachability specifications are interesting in their own

right, they may be too strict a concept in some applications. For example, in the safety

assessment context, a common specification involves bounding the probability that undesirable

events take place. In this regard, in the context of stochastic target problem, the authors of

[BET10] recently extended the framework in [ST02a] to allow for unbounded control set so as

to address less stringent than the almost sure requirement; see also the recent book [Tou13].

In this chapter, following the same problem but in an indirect approach, we develop a new

framework for solving the following stochastic reach-avoid problem:

RA: Given an initial state x ∈ Rn, a horizon T > 0, a number p ∈ [0, 1], and

two disjoint sets A,B ⊂ Rn, determine whether there exists a policy such that

the controlled process reaches A prior to entering B within the interval [0, T ] with

probability at least p.

Observe that this is a significantly different problem compared to its almost-sure counterpart

referred to above. It is of course immediate that the solution to the above problem is trivial

if the initial state is either in B (in which case it is almost surely impossible) or in A (in

which case there is nothing to do). However, for generic initial conditions in Rn \ (A ∪ B),

due to the inherent probabilistic nature of the dynamics, the problem of selecting a policy and

determining the probability with which the controlled process reaches the set A prior to hitting

B is non-trivial. In addition, we address the following slightly different reach-avoid problem

compared to RA above, that requires the process be in the set A at time T :

12
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R̃A: Given an initial state x ∈ Rn, a horizon T > 0, a number p ∈ [0, 1], and two

disjoint sets A,B ⊂ Rn, determine whether there exists a policy such that with

probability at least p the controlled process resides in A at time T while avoiding

B on the interval [0, T ].

Throughout the chapter, we consider diffusion processes as the solution to a stochastic

differential equation (SDE), and establish a connection from the Reach-Avoid problems to

different classes of stochastic optimal control problems involving discontinuous payoff functions.

One of the stochastic optimal control problems, which in fact addresses both the Reach-Avoid

problems alluded above, is known as the exit-time problem [FS06, p. 6]. In this light, for the

rest of the work we shall focus on the value function corresponding to the exit-time problem,

and under some assumptions provide a dynamic programming principle (DPP) for it. The DPP

is introduced in a weak sense in the spirit of [BT11], but in the context of exit-time framework;

see also the recent work [BN12] with an extension addressing expectation constraints. This

weak formulation avoids delicate restrictions related to a measurable selection and allows us to

deal with discontinuous payoff functions, which to the best of our knowledge is new compared to

the existing literature on exit-time problems. Based on the proposed DPP, we characterize the

value function as the (discontinuous) viscosity solution of a partial differential equation (PDE)

along with boundary conditions both in viscosity and Dirichlet (pointwise) senses. In this

direction, we subsequently provide theoretical justifications so that the Reach-Avoid problem

is amenable to numerical solutions by means of off-the-shelf PDE solvers.

Organization of the chapter: In Section 2.2 we formally introduce the stochastic reach-

avoid problem RA above. In Section 2.3 we characterize the set of initial conditions that solve

the problem RA above in terms of level sets of three different value functions. An identical

connection is also established for a solution to the related reach-avoid problem R̃A above.

Focusing on the class of exit-time problems, in Section 2.4 we establish a dynamic programming

principle (DPP), and characterize it as the solution of a PDE along with some boundary

conditions. Section 2.5 presents results connecting those in Sections 2.3 and Section 2.4, and

provides a solution to the stochastic reach-avoid problem in an “ε-conservative” sense. One

may observe that this ε-precision can be made arbitrarily small. To illustrate the performance

of our technique, the theoretical results developed in preceding sections are applied to solve

the stochastic Zermelo navigation problem in Section 2.6. We summarize the chapter in 2.7,

and for better readability some of the technical proofs are moved to Appendix 2.8.

Notation

Here is a partial notation list which will be also explained in more details later in the chapter:

• ∧ (resp. ∨): minimum (resp. maximum) operator;

• A (resp. A◦): closure (resp. interior) of the set A;

• Br(x): open Euclidian ball centered at x and radius r;

• Cr(t, x): a cylinder with height and radius r, see (2.14);
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• Uτ : set of Fτ -progressively measurable maps into U;

• T[τ1,τ2] : the collection of all Fτ1-stopping times τ satisfying τ1 ≤ τ ≤ τ2 P-a.s.

• (Xt,x;u
s )s≥0: stochastic process under the control policy u and assumption Xt,x;u

s := x for

all s ≤ t;

• τA: first entry time to A, see Definition 2.3.1;

• V ∗ (resp. V∗): upper semicontinuous (resp. lower semicontinuous) envelope of function

V ;

• USC(S)
(
resp. LSC(S)

)
: collection of all upper semicontinuous (resp. lower semicontinu-

ous) functions from S to R;

• Lu: Dynkin operator, see Definition 2.4.9.

2.2 Problem Statement

Consider a filtered probability space (Ω,F ,F,P) whose filtration F = (Fs)s≥0 is generated

by an n-dimensional Brownian motion (Ws)s≥0 adapted to F. Let the natural filtration of

the Brownian motion (Ws)s≥0 be enlarged by its right-continuous completion; — the usual

conditions of completeness and right continuity, where (Ws)s≥0 is a Brownian motion with

respect to F [KS91, p. 48]. For every t ≥ 0, we introduce an auxiliary subfiltration Ft :=

(Ft,s)s≥0, where Ft,s is the P-completion of σ
(
Wr∨t −Wt, r ∈ [0, s]

)
. Note that for s ≤ t, Ft,s

is the trivial σ−algebra, and any Ft,s-random variable is independent of Ft. By definitions, it

is obvious that Ft,s ⊆ Fs with equality in case of t = 0.

Let U ⊂ Rm be a control set, and Ut denote the set of Ft-progressively measurable maps

into U.1 We employ the shorthand U instead of U0 for the set of all F-progressively measurable

policies. We also denote by T the collection of all F-stopping times. For τ1, τ2 ∈ T with τ1 ≤ τ2

P-a.s. the subset T[τ1,τ2] is the collection of all Fτ1-stopping times τ such that τ1 ≤ τ ≤ τ2 P-a.s.

Note that all Fτ -stopping times and Fτ -progressively measurable processes are independent of

Fτ .

The basic object of our study concerns the Rn-valued stochastic differential equation (SDE)

dXs = f(Xs, us) ds+ σ(Xs, us) dWs, X0 = x, s ≥ 0, (2.1)

where f : Rn×U −→ Rn and σ : Rn×U −→ Rn×d are measurable maps, (Ws)s≥0 is the above

standard d-dimensional Brownian motion, and u := (us)s≥0 ∈ U .2

Assumption 2.2.1. We stipulate that

1Recall [KS91, p. 4] that a U-valued process (ys)s≥0 is Ft-progressively measurable if for each T > 0 the

function Ω× [0, T ] 3 (ω, s) 7→ y(ω, s) ∈ U is measurable, where Ω× [0, T ] is equipped with Ft,T ⊗B[0, T ], U is

equipped with BU, and BS denotes the Borel σ-algebra on a topological space S.
2We slightly abuse notation and earlier used σ as a sigma algebra as well. However, it will be always clear

from the context to which σ we refer.
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X(1)

A
B

Rn

x0

X(2)

X(3)

Figure 2.1: The trajectory X(1) hits A prior to B within time [0, T ], while X(2) and X(3) do

not; all three start from initial state x0.

a. U ⊂ Rm is compact;

b. f and σ are continuous and Lipschitz in their first argument uniformly with respect to the

second.

It is known [Bor05] that under Assumption 2.2.1 there exists a unique strong solution to

the SDE (2.1). By definition of the filtration F, we see that the control functions u ∈ U satisfy

the non-anticipativity condition [Bor05]—to wit, the increment Wt −Ws is independent of the

past history {Wr,ur | r ≤ s} of the Brownian motion and the control for every s ∈ [0, t[. (In

other words, u does not anticipate the future increments of W ). We let (Xt,x;u
s )s≥t denote the

unique strong solution of (2.1) starting from time t at the state x under the control policy u.

For future notational simplicity, we slightly modify the definition of Xt,x;u
s , and extend it to

the whole interval [0, T ] where Xt,x;u
s := x for all s in [0, t]. Measurability on Rn will always

refer to Borel-measurability. In the sequel the complement of a set S ⊂ Rn is denoted by Sc.

Given an initial time t and the sets A,B ⊂ Rn, we are interested in the set of initial

conditions x ∈ Rn where there exists an admissible control strategy u ∈ U such that with

probability more than p the state trajectory Xt,x;u
s hits the set A before set B within the time

horizon T . A pictorial representation of our problems is in Figure 2.1. Our main objective

in this chapter is to propose a framework in order to characterize this set of initial condition,

which is formally introduced as follows:

Definition 2.2.2 (Reach-Avoid within the interval [0, T ]).

RA(t, p;A,B) :=
{
x ∈ Rn

∣∣ ∃u ∈ U :

P
(
∃s ∈ [t, T ], Xt,x;u

s ∈ A and ∀r ∈ [t, s] Xt,x;u
r /∈ B

)
> p
}
.

2.3 Connection to Optimal Control Problems

In this section we establish a connection between the stochastic reach-avoid problem RA and

three different classes of stochastic optimal control problems. The following definition is one

of the key elements in our framework.

15



Chapter 2. Stochastic Reach-Avoid Problem

Definition 2.3.1 (First entry time). Given a control u, the process (Xt,x;u
s )s≥t, and a mea-

surable set A ⊂ Rn, we introduce3 the first entry time to A:

τA(t, x) = inf
{
s ≥ t

∣∣ Xt,x;u
s ∈ A

}
. (2.2)

Remark 2.3.2. Thanks to [EK86, Theorem 1.6, Chapter 2], τA(t, x) is an Ft-stopping time.

Moreover, due to the P-a.s. continuity of the solution process, it can be easily deduced that

given u ∈ U :

τA∪B = τA ∧ τB, (2.3a)

Xt,x;u
s ∈ A =⇒ τA ≤ s, (2.3b)

A is closed =⇒ Xt,x;u
τA

∈ A. (2.3c)

One can think of several different ways of characterizing probabilistic reach avoid sets, see

e.g. [CCL11] and the references therein dealing with discrete-time problems. Motivated by

these works, we consider value functions involving expectation of indicator functions of certain

sets. Three alternative characterizations are considered and we show all three are equivalent.

Consider the value functions Vi : [0, T ]× Rn → [0, 1] for i = 1, 2, 3, defined as follows:

V1(t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ̄ )
]

where τ̄ := τA∪B ∧ T, (2.4a)

V2(t, x) := sup
u∈U

E

[
sup
s∈[t,T ]

{
1A(Xt,x;u

s ) ∧ inf
r∈[t,s]

1Bc(X
t,x;u
r )

}]
, (2.4b)

V3(t, x) := sup
u∈U

sup
τ∈T[t,T ]

inf
σ∈T[t,τ ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
. (2.4c)

Here τA∪B is the hitting time introduced in Definition 2.3.1, and depends on the initial condition

(t, x). For notational simplicity, we drop the initial condition in this section.

In the value function (2.4a) the process Xt,x;u· is controlled until the stopping time τ̄ , by

which instant the process either exits from the set A ∪ B or the terminal time T is reached.

A sample ω ∈ Ω is a “successful” path if the stopped process Xt,x;u
τ̄(ω) (ω) resides in A. This

requirement is captured via the payoff function 1A( · ). In the value function (2.4b) there is

no stopping time, and one may observe that the entire process Xt,x;u· is considered. Here

the requirement of reaching the target set A before the avoid set B is taken into account by

the supremum and infimum operations and payoff functions 1A and 1Bc . In a fashion similar

to (2.4a), the value function in (2.4c) involves some stopping time strategies. The stopping

strategies are not fixed and the stochastic optimal control problem can be viewed as a game

between two players with different authorities. Namely, the first player has both control u ∈ U
and stopping τ ∈ T[t,T ] strategies whereas the second player has only a stopping strategy

σ ∈ T[t,τ ], which is dominated by the first player’s stopping time τ ; each player contributes

through different maps to the payoff function.

The first result of this section, Proposition 2.3.4, asserts that E
[
1A(Xt,x;u

τ̄ )
]

= P
(
τA <

τB, τA ≤ T
)
. Since τA and τB are F-stopping times, it then indicates the mapping (t, x) 7→

3By convention, inf ∅ =∞.
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2.3 Connection to Optimal Control Problems

E
[
1A(Xt,x;u

τ̄ )
]

is indeed well-defined. Furthermore, in Proposition 2.3.5 we shall establish

equality of the three functions V1, V2, V3 that will prove the other value functions are also

well-defined.

Assumption 2.3.3. We assume that the sets A and B are disjoint and closed.

Proposition 2.3.4. Consider the system (2.1), and let A,B ⊂ Rn be given. Under Assump-

tions 2.2.1 and 2.3.3 we have

RA(t, p;A,B) = {x ∈ Rn | V1(t, x) > p},

where the set RA is the set defined in Definition 2.2.2 and V1 is the value function defined in

(2.4a).

Proof. See Appendix 2.8.1

Proposition 2.3.5. Consider the system (2.1), and let A,B ⊂ Rn be given. Under Assump-

tions 2.2.1 and 2.3.3 we have

V1 = V2 = V3 on [0, T ]× Rn,

where the value functions V1, V2, V3 are as defined in (2.4).

Proof. See Appendix 2.8.1.

We now introduce the reach-avoid problem R̃A mentioned in Section 2.1. Let us recall

that the reach-avoid problem in Definition 2.2.2 poses a reach objective while avoiding barriers

within the interval [t, T ]. A similar problem may be formulated as being in the target set at

time T while avoiding barriers over the period [t, T ]. Namely, we define the set R̃A(t, p;A,B)

as the set of all initial conditions for which there exists an admissible control strategy u ∈ U
such that with probability more than p, Xt,x;u

T belongs to A and the process avoids the set B

over the interval [t, T ].

Definition 2.3.6 (Reach-Avoid at the terminal time T ).

R̃A(t, p;A,B) :=
{
x ∈ Rn

∣∣ ∃u ∈ U :

P
(
Xt,x;u
T ∈ A and ∀r ∈ [t, T ] Xt,x;u

r /∈ B
)
> p
}
.

One can establish a connection between the new reach-avoid problem in Definition 2.3.6

and different classes of stochastic optimal control problems along lines similar to Propositions

2.3.4 and 2.3.5. To this end, let us define the value functions Ṽi : [0, T ] × Rn → [0, 1] for

i = 1, 2, 3, as follows:

Ṽ1(t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ̃ )
]

where τ̃ := τB ∧ T, (2.5a)

Ṽ2(t, x) := sup
u∈U

E

[
1A(Xt,x;u

T ) ∧ inf
r∈[t,T ]

1Bc(X
t,x;u
r )

]
, (2.5b)

Ṽ3(t, x) := sup
u∈U

inf
σ∈T[t,T ]

E
[
1A(Xt,x;u

T ) ∧ 1Bc(Xt,x;u
σ )

]
. (2.5c)
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Chapter 2. Stochastic Reach-Avoid Problem

In our subsequent work, the measurability of the functions Vi and Ṽi will turn out to be

irrelevant; see Remark 2.4.8 for details. We state the following proposition concerning assertions

identical to those of Propositions 2.3.4 and 2.3.5 for the reach-avoid problem of Definition 2.3.6.

Proposition 2.3.7. Consider the system (2.1), and let A,B ⊂ Rn be given. If the set B is

closed, then under Assumption 2.2.1 we have R̃A(t, p;A,B) = {x ∈ Rn | Ṽ1(t, x) > p}, where

the set R̃A is the set defined in Definition 2.3.6. Moreover, we have Ṽ1 = Ṽ2 = Ṽ3 on [0, T ]×Rn
where the value functions Ṽ1, Ṽ2, Ṽ3 are as defined in (2.5).

Proof. The proof follows effectively the same arguments as in the proofs of Propositions 2.3.4

and 2.3.5.

2.4 Alternative Characterization of the Exit-Time Problem

The stochastic control problems introduced in (2.4a) and (2.5a) are well-known as the exit-

time problem [FS06, p. 6]. Note that in light of Propositions 2.3.4 and 2.3.7, both problems

in Definitions 2.2.2 and 2.3.6 can alternatively be characterized in the framework of exit-time

problems, see (2.4a) and (2.5a), respectively. Motivated by this, in this section we present

an alternative characterization of the exit-time problem based on solutions to certain partial

differential equations. To this end, we generalize the value functions to

V (t, x) := sup
u∈Ut

E
[
`
(
Xt,x;u
τ̄(t,x)

)]
, τ̄(t, x) := τO(t, x) ∧ T, (2.6)

with

` : Rn → R (2.7)

a given bounded measurable function, and O a measurable set. Note that τO is the stopping

time defined in Definition 2.3.1 that in case of value function (2.4a) can be considered as

O = A ∪B.

Hereafter we shall restrict our control processes to Ut, the set Ut denotes the collection of

all Ft-progressively measurable processes u ∈ U . We will show that the function V in (2.6) is

well-defined, Fact 2.4.2. In view of independence of the increments of Brownian motion, the

restriction of control processes to Ut is not restrictive, and one can show that the value function

in (2.6) remains the same if Ut is replaced by U ; see, for instance, [Kry09, Theorem 3.1.7, p.

132] and [BT11, Remark 5.2].

Our objective is to characterize the value function (2.6) as a (discontinuous) viscosity so-

lution of a suitable Hamilton-Jacobi-Bellman equation. We introduce the set S := [0, T ]× Rn

and define the lower and upper semicontinuous envelopes of function V : S→ R:

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′) V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′)

and also denote by USC(S) and LSC(S) the collection of all upper-semicontinuous and lower-

semicontinuous functions from S to R respectively. Note that, by definition, V∗ ∈ LSC(S) and

V ∗ ∈ USC(S).
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2.4 Alternative Characterization of the Exit-Time Problem

O

(a) Interior cone condition holds at

every point of the boundary.

O

p

(b) Interior cone condition fails

at the point p—the only possi-

ble interior cone at p is a line.

Figure 2.2: Interior cone condition of the boundary.

2.4.1 Assumptions and Preliminaries

Assumption 2.4.1. In addition to Assumption 2.2.1, we stipulate the following:

a. (Non-degeneracy) The controlled processes are uniformly non-degenerate, i.e., there exists

δ > 0 such that for all x ∈ Rn and u ∈ U, σ(x, u)σ
ᵀ
(x, u) > δI where σ(x, u) is the diffusion

term in SDE (2.1).

b. (Interior Cone Condition) There are positive constants h, r, and an Rn-value bounded map

η : O → Rn satisfying

Brt
(
x+ η(x)t

)
⊂ O for all x ∈ O and t ∈ (0, h]

where Br(x) denotes an open ball centered at x and radius r, and O stands for the closure

of the set O.

c. (Lower Semicontinuity) The function ` defined in (2.7) is lower semicontinuous.

Note that if the set A in Section 2.3 is open, then `( · ) = 1A( · ) satisfies Assumption

2.4.1.c. The interior cone condition in Assumption 2.4.1.b. concerns shapes of the set O; figure

2.2 illustrates two typical scenarios.

Fact 2.4.2 (Measurability). Consider the system (2.1), and suppose that Assumption 2.2.1

holds. Fix (t, x,u) ∈ S× U and take an F-stopping time θ : Ω→ [0, T ]. For every measurable

function f : Rn → R, the function

Ω 3 ω 7→ g(ω) := f
(
Xt,x;u
θ(ω) (ω)

)
∈ R

is F-measurable (Recall that
(
Xt,x;u
s

)
s≥t is the unique strong solution of (2.1)).

Let us define the function J : S× U → R:

J
(
t, x,u

)
:= E

[
`
(
Xt,x;u
τ̄(t,x)

)]
, τ̄(t, x) := τO(t, x) ∧ T. (2.8)

In the following proposition, we establish continuity of τ̄(t, x) and lower semicontinuity of

J(t, x,u) with respect to (t, x).
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Proposition 2.4.3. Consider the system (2.1), and suppose that Assumptions 2.2.1 and 2.4.1

hold. Then for any strategy u ∈ U and (t0, x0) ∈ S, P-a.s. the function (t, x) 7→ τ̄(t, x) is

continuous at (t0, x0). Moreover, the function (t, x) 7→ J
(
t, x,u

)
defined in (5.19) is uniformly

bounded and lower semicontinuous:

J
(
t, x,u

)
≤ lim inf

(t′,x′)→(t,x)
J
(
t′, x′,u

)
.

Proof. See Appendix 2.8.2.

Remark 2.4.4 (Measurability). As a consequence of Fact 2.4.2 and Proposition 2.4.3, one

can observe that for fixed (t, x,u) ∈ S× U the function

Ω 3 ω 7→ J
(
θ(ω), Xt,x;u

θ(ω) (ω),u
)
∈ R

is F-measurable.

Fact 2.4.5 (Stability under Concatenation). For every u and v in Ut, and θ ∈ T[t,T ]

1[t,θ]u+ 1]θ,T ]v ∈ Ut.

Due to the definition of admissibility, the control process u := (us)s≥0 ∈ Ut at time s ≥ 0

can be viewed as a measurable mapping (Wr∨t − Wt)[0,s] 7→ us ∈ U, where (Ws)s≥0 is the

d-dimensional Brownian motion in (2.1); see [KS91, Def. 1.11, p. 4] for the details. Given

θ ∈ T[t,T ] and u ∈ Ut, for each ω ∈ Ω and the Brownian path up to the stopping time θ, i.e.

(Wr)r∈[0,θ(ω)], we define the random policy uθ ∈ Uθ(ω) as

(W ·∨θ(ω) −Wθ(ω)) 7→ u(W ·∧θ(ω) +W ·∨θ(ω) −Wθ(ω)) =: uθ. (2.9)

Notice that W. ≡ W.∧θ(ω) + W.∨θ(ω) −Wθ(ω). Thus, the randomness of uθ is referred to the

term W.∧θ(ω).

Lemma 2.4.6 (Strong Markov Property). Consider the system (2.1) satisfying Assumptions

2.2.1. Then, for a stopping time θ ∈ T[t,T ] and an admissible control u ∈ Ut, we have

E
[
`
(
Xt,x;u
τ̄(t,x)

) ∣∣∣ Fθ
]

= 1{τ̄(t,x)<θ}`
(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}J

(
θ,Xt,x;u

θ ,uθ
)

P-a.s.,

where uθ is the random policy in the sense of (2.9).

Proof. See Appendix 2.8.2.

2.4.2 Dynamic Programming Principle

The following Theorem provides a dynamic programming principle (DPP) for the exit time

problem introduced in (2.6).
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Theorem 2.4.7 (Dynamic Programming Principle). Consider the system (2.1), and suppose

that Assumptions 2.2.1 and 2.4.1 hold. Then for every (t, x) ∈ S and family of stopping times

{θu,u ∈ Ut} ⊂ T[t,T ], we have

V (t, x) ≤ sup
u∈Ut

E
[
1{τ̄(t,x)≤θu}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θu}V

∗(θu, Xt,x;u
θu

)]
, (2.10)

and

V (t, x) ≥ sup
u∈Ut

E
[
1{τ̄(t,x)≤θu}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θu}V∗

(
θu, Xt,x;u

θu

)]
, (2.11)

where V is the value function defined in (2.6).

Proof. The proof is based on techniques developed in [BT11]. We first assemble an appropriate

covering for the set S, and use this covering to construct a control strategy which satisfies the

required conditions within ε precision, ε > 0 being pre-assigned and arbitrary. For notational

simplicity, in the following we set θ := θu.

Proof of (2.10): In view of Strong Markov Property, Lemma 2.4.6, and the tower property

of conditional expectation [Kal97, Theorem 5.1], for any (t, x) ∈ S we have

E
[
`
(
Xt,x;u
τ̄(t,x)

)]
= E

[
E
[
`
(
Xt,x;u
τ̄(t,x)

)∣∣ Fθ
] ]

= E
[
1{τ̄(t,x)≤θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}J

(
θ,Xt,x;u

θ ,uθ
)]

≤ E
[
1{τ̄(t,x)≤θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}V

∗(θ,Xt,x;u
θ

)]
,

where uθ is the random control as introduced in (2.9). Note that the last inequality follows

from the fact that θ ∈ Uθ(ω) for each ω ∈ Ω. Now taking supremum over all admissible controls

u ∈ Ut leads to the desired dynamic programming inequality (2.10).

Proof of (2.11): Suppose φ : S→ R is uniformly bounded such that

φ ∈ USC(S) and φ ≤ V∗ on S. (2.12)

According to (2.12) and Fact 2.4.3, given ε > 0, for all (t0, x0) ∈ S and u ∈ Ut0 there exists

rε > 0 such that

φ(t, x)− ε ≤ φ(t0, x0) ≤ V∗(t0, x0), ∀(t, x) ∈ Crε(t0, x0) ∩ S,
J
(
t0, x0,u

)
≤ J

(
t, x,u

)
+ ε, ∀(t, x) ∈ Crε(t0, x0) ∩ S,

(2.13)

where Cr(t, x) is a cylinder defined as:

Cr(t, x) := {(s, y) ∈ R× Rn | s ∈]t− r, t] , ‖x− y‖ < r}. (2.14)

Moreover, by definition of (5.19) and (2.6), given ε > 0 and (t0, x0) ∈ S there exists ut0,x0ε ∈ Ut0
such that

V∗(t0, x0) ≤ V (t0, x0) ≤ J
(
t0, x0,u

t0,x0
ε

)
+ ε.
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By the above inequality and (2.13), one can conclude that given ε > 0, for all (t0, x0) ∈ S there

exist ut0,x0ε ∈ Ut0 and rε := rε(t0, x0) > 0 such that

φ(t, x)− 3ε ≤ J
(
t, x,ut0,x0ε

)
∀(t, x) ∈ Crε(t0, x0) ∩ S. (2.15)

Therefore, given ε > 0, the family of cylinders {Crε(t, x) : (t, x) ∈ S, rε(t0, x0) > 0} forms an

open covering of [0, T [×Rn. By the Lindelöf covering Theorem [Dug66, Theorem 6.3 Chapter

VIII], there exists a countable sequence (ti, xi, ri)i∈N of elements of S× R+ such that

[0, T [×Rn ⊂
⋃

i∈N
Cri(ti, xi).

Note that the implication of (2.10) simply holds for (t, x) ∈ {T} × Rn. Let us construct a

sequence (Ci)i∈N0 as

C0 := {T} × Rn, Ci := Cri(ti, xi) \
⋃

j≤i−1

Cj .

By definition Ci are pairwise disjoint and S ⊂ ⋃i∈N0
Ci. Furthermore, P- a.s., (θ,Xt,x;u

θ ) ∈⋃
i∈N0

Ci, and for all i ∈ N0 there exists uti,xiε ∈ Uti such that

φ(t, x)− 3ε ≤ J
(
t, x,uti,xiε

)
, ∀(t, x) ∈ Ci ∩ S. (2.16)

To prove (2.11), let us fix u ∈ Ut and θ ∈ T[t,T ]. Given ε > 0 we define

vε := 1[t,θ]u+ 1]θ,T ]

∑

i∈N0

1Ci(θ,X
t,x;u
θ )uti,xiε . (2.17)

Notice that by Fact 2.4.5, the set Ut is closed under countable concatenation operations, and

consequently vε ∈ Ut. In view of Lemma 2.4.6 and (2.16), it can be deduced that, P-a.e. on Ω

under vε in (2.17),

E
[
`
(
Xt,x;vε
τ̄(t,x)

) ∣∣ Fθ
]

= 1{τ̄(t,x)≤θ}`
(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}J

(
θ,Xt,x;u

θ ,
∑

i∈N0

1Ci(θ,X
t,x;u
θ )uti,xiε

)

= 1{τ̄(t,x)≤θ}`
(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}

∑

i∈N0

J
(
θ,Xt,x;u

θ ,uti,xiε

)
1Ci
(
θ,Xt,x;u

θ

)

≥ 1{τ̄(t,x)≤θ}`
(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}

∑

i∈N0

(
φ
(
θ,Xt,x;u

θ

)
− 3ε

)
1Ci
(
θ,Xt,x;u

θ

)

= 1{τ̄(t,x)≤θ}`
(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}

(
φ
(
θ,Xt,x;u

θ

)
− 3ε

)
.

By the definition of V and the tower property of conditional expectations,

V (t, x) ≥ J(t, x,vε) = E

[
E
[
`
(
Xt,x;vε
τ̄(t,x)

) ∣∣ Fθ
]]

≥ E
[
1{τ̄(t,x)≤θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)>θ}φ

(
θ,Xt,x;u

θ

)]
− 3εE

[
1{τ̄(t,x)>θ}

]
.
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The arbitrariness of u ∈ Ut and ε > 0 imply that

V (t, x) ≥ sup
u∈Ut

E
[
1{τ̄(t,x)≤θ}`

(
Xt,x;u
τ̄(t,x)

)
+ φ

(
θ,Xt,x;u

θ

)]
.

It suffices to find a sequence of continuous functions (φi)i∈N such that Φi ≤ V∗ on S and

converges pointwise to V∗. The existence of such a sequence is guaranteed by [Ren99, Lemma

3.5 ]. Thus, by Fatou’s lemma,

V (t, x) ≥ lim inf
i→∞

sup
u∈Ut

E
[
1{τ̄(t,x)<θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}φi

(
θ,Xt,x;u

θ

)]

≥ sup
u∈Ut

E
[
1{τ̄(t,x)<θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ} lim inf

i→∞
φi
(
θ,Xt,x;u

θ

)]

= sup
u∈Ut

E
[
1{τ̄(t,x)<θ}`

(
Xt,x;u
τ̄(t,x)

)
+ 1{τ̄(t,x)≥θ}V∗

(
θ,Xt,x;u

θ

)]
.

Remark 2.4.8. The dynamic programming principles in (2.10) and (2.11) are introduced in

a weaker sense than the standard DPP for stochastic optimal control problems [FS06]. To wit,

note that one does not have to verify the measurability of the value function V defined in (2.6)

to apply our DPP.

2.4.3 Dynamic Programming Equation

Our objective in this subsection is to demonstrate how the DPP derived in Subsection 2.4.2

characterizes the value function V as a (discontinuous) viscosity solution to an appropriate

HJB equation; for the general theory of viscosity solutions we refer to [CIL92] and [FS06].

To complete the PDE characterization and provide numerical solutions for this PDE, one also

needs appropriate boundary conditions which will be the objective of the next subsection.

Definition 2.4.9 (Dynkin Operator). Given u ∈ U, we denote by Lu the Dynkin operator

(also known as the infinitesimal generator) associated to the controlled diffusion (2.1) as

LuΦ(t, x) := ∂tΦ(t, x) + f(x, u).∂xΦ(t, x) +
1

2
Tr[σ(x, u)σ>(x, u)∂2

xΦ(t, x)],

where Φ is a real-valued function smooth on the interior of S, with ∂tΦ and ∂xΦ denoting the

partial derivatives with respect to t and x respectively, and ∂2
xΦ denoting the Hessian matrix

with respect to x.

We refer to [Kal97, Theorem 17.23] for more details on the above differential operator.

Theorem 2.4.10 (Dynamic Programming Equation). Consider the system (2.1), and suppose

that Assumptions 2.2.1 and 2.4.1 hold. Then,

◦ the lower semicontinuous envelope of V introduced in (2.6) is a viscosity supersolution of

− sup
u∈U
LuV∗(t, x) ≥ 0 on [0, T [×Oc,
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◦ the upper semicontinuous envelope of V is a viscosity subsolution of

− sup
u∈U
LuV ∗(t, x) ≤ 0 on [0, T [×Oc,

Proof. We first prove the supersolution part:

Supersolution: For the sake of contradiction, assume that there exists (t0, x0) ∈ [0, T [×Oc

and a smooth function φ : S→ R satisfying

min
(t,x)∈S

(
V∗ − φ

)
(t, x) =

(
V∗ − φ

)
(t0, x0) = 0

such that for some δ > 0

− sup
u∈U
Luφ(t0, x0) < −2δ

Notice that, without loss of generality, one can assume that (t0, x0) is the strict minimizer of

V∗−φ [FS06, Lemma II 6.1, p. 87]. Since φ is smooth, the map (t, x) 7→ Luφ(t, x) is continuous.

Therefore, there exist u ∈ U and r > 0 such that Br(t0, x0) ⊂ [0, T )×Oc and

−Luφ(t, x) < −δ ∀(t, x) ∈ Br(t0, x0). (2.18)

Let us define the stopping time θ(t, x) ∈ T[t,T ]

θ(t, x) = inf{s ≥ t : (s,Xt,x;u
s ) /∈ Br(t0, x0)}, (2.19)

where (t, x) ∈ Br(t0, x0). Note that by continuity of solutions to (2.1), t < θ(t, x) < T P- a.s.

for all (t, x) ∈ Br(t0, x0). Moreover, selecting r > 0 sufficiently small so that θ(t, x) < τO, we

have

θ(t, x) < τO ∧ T = τ̄(t, x) P- a.s. ∀(t, x) ∈ Br(t0, x0) (2.20)

Applying Itô’s formula and using (2.18), we see that for all (t, x) ∈ Br(t0, x0),

φ(t, x) = E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)
+

∫ θ(t,x)

t
−Luφ

(
s,Xt,x;u

s

)
ds

]

≤ E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
− δ(E[θ(t, x)]− t) < E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
.

Now it suffices to take a sequence (tn, xn, V (tn, xn))n∈N converging to (t0, x0, V∗(t0, x0)) to see

that

φ(tn, xn)→ φ(t0, x0) = V∗(t0, x0).

Therefore, for sufficiently large n we have

V (tn, xn) < E
[
φ
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
< E

[
V∗
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
,

which, in accordance with (2.20), can be expressed as

V (tn, xn) < E
[
1{τ̄(tn,xn)<θ(tn,xn)}`

(
Xtn,xn;u
τ̄(tn,xn)

)
+ 1{τ̄(tn,xn)≥θ(tn,xn)}V∗

(
θ,Xtn,xn;u

θ(tn,xn)

)]
.

This contradicts the DPP in (2.11).
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Subsolution: The subsolution property is proved in a fashion similar to the supersolution

part but with slightly more care. For the sake of contradiction, assume that there exists

(t0, x0) ∈ [0, T [×Oc and a smooth function φ : S→ R satisfying

max
(t,x)∈S

(
V ∗ − φ

)
(t, x) =

(
V ∗ − φ

)
(t0, x0) = 0

such that for some δ > 0

− sup
u∈U
Luφ(t0, x0) > 2δ.

By continuity of the mapping (t, x, u) 7→ Luφ(t, x) and compactness of the control set U,

Assumption 2.2.1.a, there exists r > 0 such that for all u ∈ U

−Luφ(t, x) > δ, ∀(t, x) ∈ Br(t0, x0), (2.21)

where Br(t0, x0) ⊂ [0, T )×Oc. Note as in the preceding part, (t0, x0) can be considered as the

strict maximizer of V ∗ − φ that consequently implies that there exists γ > 0 such that

(
V ∗ − φ

)
(t, x) < −γ, ∀(t, x) ∈ ∂Br(t0, x0). (2.22)

where ∂Br(t0, x0) stands for the boundary of the ball Br(t0, x0). Let θ(t, x) ∈ T[t,T ] be the

stopping time defined in (2.19); notice that θ may, of course, depend on the policy u. Applying

Itô’s formula and using (2.21), one can observe that given u ∈ Ut,

φ(t, x) = E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)
+

∫ θ(t,x)

t
−Lusφ

(
s,Xt,x;u

s

)
ds

]

≥ E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
+ δ(E[θ(t, x)]− t) > E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
.

Now it suffices to take a sequence (tn, xn, V (tn, xn))n∈N converging to (t0, x0, V
∗(t0, x0)) to see

that

φ(tn, xn)→ φ(t0, x0) = V ∗(t0, x0).

As argued in the supersolution part above, for sufficiently large n, for given u ∈ Ut,

V (tn, xn) > E
[
φ
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
> E

[
V ∗
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
+ γ,

where the last inequality is deduced from the fact that
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)
∈ ∂Br(t0, x0)

together with (2.22). Thus, in view of (2.20), we arrive at

V (tn, xn) > E
[
1{τ̄(t,x)<θ(tn,xn)}`

(
Xtn,xn;u
τ̄

)
+ 1{τ̄(t,x)≥θ(tn,xn)}V

∗(θ,Xtn,xn;u
θ(tn,xn)

)]
+ γ.

This contradicts the DPP in (2.10) as γ is chosen uniformly with respect to u ∈ Ut.

2.4.4 Boundary Conditions

Before proceeding with the main result of this subsection on boundary conditions, we need a

preparatory lemma that provides a stronger assertion than Proposition 2.4.3.
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Lemma 2.4.11. Suppose that the conditions of Proposition 2.4.3 hold. Given a sequence of

control policies (un)n∈N ⊂ U and initial conditions (tn, xn)→ (t, x), we have

lim
n→∞

∥∥∥Xt,x;un
τ̄(t,x) −X

tn,xn;un
τ̄(tn,xn)

∥∥∥ = 0, P-a.s.,

where the stopping time τ̄ is introduced in (2.6).

Proof. See Appendix 2.8.2.

The following Proposition provides boundary conditions for the value function V both in

viscosity and Dirichlet (pointwise) senses:

Proposition 2.4.12 (Boundary Conditions). Suppose that the condition of Theorem 2.4.10

holds. Then the value function V introduced in (2.6) satisfies the following boundary value

conditions:

Dirichlet: V (t, x) = `(x) on [0, T ]×O
⋃
{T} × Rn (2.23a)

Viscosity:





lim sup
(O)c3x′→x

t′↑t

V (t′, x′) ≤ `∗(x) on [0, T ]× ∂O⋃{T} × Rn

lim inf
(O)c3x′→x

t′↑t

V (t′, x′) ≥ `(x) on [0, T ]× ∂O⋃{T} × Rn
(2.23b)

Proof. In light of [RB98, Corollary 3.2, p. 65], Assumptions 2.4.1.a. and 2.4.1.b. ensure that

τ̄(t, x) = t, ∀(t, x) ∈ [0, T ]×O ∪ {T} × Rn P-a.s.

which readily implies the pointwise boundary condition (2.23a). To prove the discontinuous

viscosity boundary condition (2.23b), we only show the first assertion; the second one follows

from similar arguments. Let (t, x) ∈ [0, T ] × ∂O
⋃{T} × Rn and (tn, xn) → (t, x), where

tn < T and x ∈ (O)c. In the definition of V in (2.6), one can choose a sequence of policies

that is increasing and attains the supremum value. This sequence, of course, depends on the

initial condition. Thus, let us denote it via two indices (un,j)j∈N as a sequence of policies

corresponding to the initial condition (tn, xn) corresponding to the value V (tn, xn). In this

light, there exists a subsequence of (unj )j∈N such that

V ∗(t, x) = lim
n→∞

V (tn, xn) = lim
n→∞

lim
j→∞

E
[
`
(
X
tn,xn;un,j
τ̄(tn,xn)

)]

≤ lim
j→∞

E
[
`
(
X
tj ,xj ;unj
τ̄(tj ,xj)

)]
≤ E

[
lim
j→∞

`
(
X
tj ,xj ;unj
τ̄(tj ,xj)

)]
≤ `∗(x) (2.24)

where the second and third inequality in (2.24) follow, respectively, from Fatou’s lemma and

the almost sure uniform continuity assertion in Lemma 2.4.11. Let us recall that τ̄(t, x) = t

and consequently X
t,x;unj
τ̄(t,x) = x.

Proposition 2.4.12 provides boundary condition for V in both Dirichlet (pointwise) and

viscosity senses. The Dirichlet boundary condition (2.23a) is the one usually employed to

numerically compute the solution via PDE solvers, whereas the viscosity boundary condition

(2.23b) is required for theoretical support of the numerical schemes and comparison results.
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Rn

Aε

B

A

ε

Figure 2.3: Construction of the sets Aε from A as described in Section 2.5.

2.5 From the Reach-Avoid Problem to the PDE Characteriza-

tion

In this section we draw a connection between the reach-avoid problem of Section 2.2 and the

stochastic optimal control problems detailed in Section 2.3. To this end, note that on the

one hand, an assumption on the sets A and B in the reach-avoid problem (Definition 2.2.2)

within the time interval [0, T ] is that they are closed. On the other hand, our solution to the

stochastic optimal control problem (defined in Section 2.2 and solved in Section 2.4) relies on

lower semicontinuity of the payoff function ` in (2.6), see Assumption 2.4.1.c.

To achieve a reconciliation between the two sets of hypotheses, given sets A and B satisfying

Assumption 2.3.3, we construct a smaller measurable set Aε ⊂ A◦ such that Aε := {x ∈ A |
dist(x,Ac) ≥ ε} 4 and Aε satisfies Assumption 2.4.1.b. Note that this is always possible if

O := A ∪ B satisfies Assumption 2.4.1.b.—indeed, simply take ε < h/2 to see this, where h is

as defined in Assumption 2.4.1.b. Figure 2.3 depicts this case. To be precise, we define

Vε(t, x) := sup
u∈Ut

E
[
`ε
(
Xt,x;u
τε

)]
, τε := τAε∪B ∧ T, (2.25)

where the function `ε : Rn → R is defined as

`ε(x) :=

(
1− dist(x,Aε)

ε

)
∨ 0.

The following Theorem asserts that the above technique affords an ε-conservative but pre-

cise way of characterizing the solution to the reach-avoid problem defined in Definition 2.2.2

in the framework of Section 2.4.

Theorem 2.5.1. Consider the system (2.1), and suppose that Assumptions 2.2.1, 2.3.3, 2.4.1.a.

and 2.4.1.b. hold. Then, for all (t, x) ∈ [t, T [×Rn and ε1 ≥ ε2 > 0, we have Vε2(t, x) ≥ Vε1(t, x),

and V (t, x) = limε↓0 Vε(t, x) where the functions V and Vε are defined as (2.4a) and (2.25),

respectively.

Proof. See Appendix 2.8.3.

4dist(x,A) := infy∈A ‖x− y‖, where ‖ · ‖ stands for the Euclidean norm.
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Remark 2.5.2. Observe that for the problem of reachability at the time T , (as defined in

Definition 2.3.6,) the above procedure is unnecessary if the set A is open; see the required

conditions for Proposition 2.3.7.

The following corollary addresses continuity of the value function Vε in (2.25). It not

only simplifies the PDE characterization developed in Subsection 2.4.3 from discontinuous to

continuous regime, but also provides a theoretical justification for existing tools to numerically

solve the corresponding PDE.

Corollary 2.5.3. Consider the system in (2.1), and suppose that Assumptions 2.2.1 and 2.4.1

hold. Then, for any ε > 0 the value function Vε : S→ [0, 1] defined as in (2.25) is continuous.

Furthermore, if (Aε ∪B)c is bounded5 then Vε is the unique viscosity solution of




− sup
u∈U
LuVε(t, x) = 0 in [0, T [×(Aε ∪B)c

Vε(t, x) = `ε(x) on [0, T ]× (Aε ∪B)
⋃{T} × Rn

(2.26)

Proof. The continuity of the value function Vε defined as in (2.25) readily follows from Lipschitz

continuity of the payoff function `ε and uniform continuity of the stopped solution process in

Lemma 2.4.11.6 The PDE characterization of Vε in (2.26) is the straightforward consequence

of its continuity and Theorem 2.4.10 with boundary condition in Proposition 2.4.12. The

uniqueness follows from the weak comparison principle, [FS06, Theorem 8.1 Chap. VII, p.

274], that in fact requires (Aε ∪B)c being bounded.

The following Remark summarizes the preceding results and pave the analytical ground on

so that the Reach-Avoid problem is amenable to numerical solutions by means of off-the-shelf

PDE solvers.

Remark 2.5.4. Theorem 2.5.1 implies that the conservative approximation Vε can be arbitrar-

ily precise, i.e., V (t, x) = limε↓0 Vε(t, x). Corollary 2.5.3 implies that Vε is continuous, i.e., the

PDE characterization in Theorem 2.4.10 can be simplified to the continuous version. Continu-

ous viscosity solution can be numerically solved by invoking existing toolboxes, e.g. [Mit05]. The

precision of numerical solutions can also be made arbitrarily accurate at the cost of computa-

tional time and storage. In other words, let V δ
ε be the numerical solution of Vε obtained through

a numerical routine, and let δ be the discretization parameter (grid size) as required by [Mit05].

Then, since the continuous PDE characterization meets the hypothesis required for the toolbox

[Mit05], we have Vε = limδ↓0 V δ
ε , and consequently we have V (t, x) = limε↓0 limδ↓0 V δ

ε (t, x).

2.6 Numerical Example: Zermelo Navigation Problem

To illustrate the theoretical results of the preceding sections, we apply the proposed reach-avoid

formulation to the Zermelo navigation problem with constraints and stochastic uncertainties.

5One may replace this condition by imposing the drift and diffusion terms to be bounded.
6This continuity result can, alternatively, be deduced via the comparison result of the viscosity characteriza-

tion of Theorem 2.4.10 together with boundary conditions (2.23b) [CIL92].
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y

x

α

VS

f(x, y)

Avoid set Target

waterfall

Figure 2.4: Zermelo navigation problem : a swimmer in the river

In control theory, the Zermelo navigation problem consists of a swimmer who aims to reach

an island (Target) in the middle of a river while avoiding the waterfall, with the river current

leading towards the waterfall. The situation is depicted in Figure 2.4. We say that the swimmer

“succeeds” if he reaches the target before going over the waterfall, the latter forming a part of

his Avoid set.

2.6.1 Mathematical Modeling

The dynamics of the river current are nonlinear; we let f(x, y) denote the river current at

position (x, y) [CQSP97]. We assume that the current flows with constant direction towards

the waterfall, with the magnitude of f decreasing in distance from the middle of the river:

f(x, y) :=

[
1− ay2

0

]
.

To describe the uncertainty of the river current, we consider the diffusion term

σ(x, y) :=

[
σx 0

0 σy

]
.

We assume that the swimmer moves with constant velocity VS , and we assume that he can

change his direction α instantaneously. The complete dynamics of the swimmer in the river is

given by [
dxs
dys

]
=

[
1− ay2 + VS cos(α)

VS sin(α)

]
ds+

[
σx 0

0 σy

]
dWs, (2.27)

where Ws is a two-dimensional Brownian motion, and α ∈ [π, π] is the direction of the swimmer

with respect to the x axis and plays the role of the controller for the swimmer.
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2.6.2 Reach-Avoid Formulation

Obviously, the probability of the swimmer’s “success” starting from some initial position in the
navigation region depends on starting point (x, y). As shown in Section 2.3, this probability
can be characterized as the level set of a value function, and by Theorem 2.4.10 this value func-
tion is the discontinuous viscosity solution of a certain differential equation on the navigation
region with particular lateral and terminal boundary conditions. The differential operator L
in Theorem 2.4.10 can be analytically calculated in this case as follows:

sup
u∈U
LuΦ(t, x, y) = sup

α∈[−π,π]

(
∂tΦ(t, x, y) +

(
1− ay2 + VS cos(α)

)
∂xΦ(t, x, y)

+ VS sin(α)∂yΦ(t, x, y) +
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y)

)
.

It can be shown that the controller value maximizing the above Dynkin operator is

α∗(t, x, y) := arg max
α∈[−π,π]

(
cos(α)∂xΦ(t, x, y) + sin(α)∂yΦ(t, x, y)

)

= arctan(
∂yΦ

∂xΦ
)(t, x, y).

Therefore, the differential operator can be simplified to

sup
u∈U
LuΦ(t, x, y) = ∂tΦ(t, x, y) + (1− ay2)∂xΦ(t, x, y) +

1

2
σ2
x∂

2
xΦ(t, x, y)

+
1

2
σ2
y∂

2
yΦ(t, x, y) + VS‖∇Φ(t, x, y)‖,

where ∇Φ(t, x, y) :=
[
∂xΦ(t, x, y) ∂yΦ(t, x, y)

]
.

2.6.3 Simulation Results

For the following numerical simulations we fix the diffusion coefficients σx = 0.5 and σy = 0.2.

We investigate three different scenarios: first, we assume that the river current is uniform, i.e.,

a = 0 m−1s−1 in (2.27). Moreover, we consider the case that the swimmer velocity is less

than the current flow, e.g., VS = 0.6 ms−1. Based on the above calculations, Figure 2.5(a)

depicts the value function which is the numerical solution of the differential operator equation

in Theorem 2.4.10 with the corresponding terminal and lateral conditions. As expected, since

the swimmer’s speed is less than the river current, if he starts from the beyond the target he

has less chance of reach the island. This scenario is also captured by the value function shown

in Figure 2.5(a).

Second, we assume that the river current is non-uniform and decreases with respect to the

distance from the middle of the river. This means that the swimmer, even in the case that his

speed is less than the current, has a non-zero probability of success if he initially swims to the

sides of the river partially against its direction, followed by swimming in the direction of the

current to reach the target. This scenario is depicted in Figure 2.5(b), where a non-uniform

river current a = 0.04 m−1s−1 in (2.27) is considered.

Third, we consider the case that the swimmer can swim faster than the river current. In

this case we expect the swimmer to succeed with some probability even if he starts from beyond
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(a) The first scenario: the swimmer’s

speed is slower than the river current, the

current being assumed uniform.

(b) The second scenario: the swimmer’s

speed is slower than the maximum river

current.

(c) The third scenario: the swimmer can

swim faster than the maximum river cur-

rent.

Figure 2.5: The value functions for the different scenarios

the target. This scenario is captured in Figure 2.5(c), where the reachable set (of course in

probabilistic fashion) covers the entire navigation region of the river except the region near the

waterfall.

In the following we show the level sets of the aforementioned value functions for p = 0.9. To

wit, as defined in Section 2.3 (and in particular in Proposition 2.3.4), these level sets, roughly

speaking, correspond to the reachable sets with probability p = 90% in certain time horizons

while the swimmer is avoiding the waterfall. By definition, as can be seen in Figure 2.6, these

sets are nested with respect to the time horizon.

All simulations were obtained using the Level Set Method Toolbox [Mit05] (version 1.1),

with a grid 101× 101 in the region of simulation.

2.7 Summary and Outlook

In this chapter we presented a new method to address a class of stochastic reachability problems

with state constraints. The proposed framework provides a set characterization of the stochastic

reach-avoid set based on discontinuous viscosity solutions of a second order PDE. In contrast

to earlier approaches, this methodology is not restricted to almost-sure notions, and one can

compute the set of initial conditions that can satisfy the reach-avoid specification with any
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(a) The first scenario: the swim-

mer’s speed is slower than the river

current, the current being assumed

uniform.
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(b) The second scenario: the swim-

mer’s speed is slower than the max-

imum river current.
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(c) The third scenario: the swim-

mer can swim faster than the max-

imum river current.

Figure 2.6: The level sets of the value functions for the different scenarios

non-zero probability by means of off-the-shelf PDE solvers.

A natural extension of the reach-avoid problem is the motion planning objective as an

excursion through more than one target set in a specific order, while avoiding certain obstacles.

This extension will be the topic of the next chapter. Moreover, in light of Proposition 2.3.5

(resp. Proposition 2.3.7), we know that the stochastic optimal control problems in (2.4) (resp.

(2.5)) have a close connection to the reach-avoid problem. This chapter only studied the

exit-time formulation. As a step further, however, it would be interesting to study the other

formulations, in particular the interpretation of the reach avoid problem as a dynamic game

between two players with different authorities, e.g., a differential game between a stopper and

controller.

2.8 Appendix

This Appendix collects the proofs omitted throughout the chapter.
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2.8 Appendix

2.8.1 Proofs of Section 2.3

Proof of Proposition 2.3.4. In view of Assumption 2.3.3, the implication (2.3b), and the defi-

nition of reach-avoid set in 2.2.2, we can express the set RA(t, p;A,B) as

RA(t, p;A,B) =
{
x ∈ Rn

∣∣ ∃u ∈ U : P
(
τA < τB and τA ≤ T

)
> p
}
. (2.28)

Also, by Assumption 2.3.3, the properties (2.3a) and (2.3c), and the definition of stopping time

τ̄ in (2.4a), given u ∈ U we have

Xt,x;u
τ̄ ∈ A =⇒ τA ≤ τ̄ and τ̄ 6= τB =⇒ T ≥ τ̄ = τA < τB,

which means the sample path Xt,x;u· hits the set A before B at the time τ̄ ≤ T . Moreover,

Xt,x;u
τ̄ /∈ A =⇒ τ̄ 6= τA =⇒ τ̄ = (τB ∧ T ) < τA,

and this means that the sample path does not succeed in reaching A while avoiding set B

within time T . Therefore, the event {τA < τB and τA ≤ T} is equivalent to {Xt,x;u
τ̄ ∈ A},

and

P
(
τA < τB and τA ≤ T

)
= E

[
1A(Xt,x;u

τ̄ )
]
.

This, in view of (2.28) and arbitrariness of control strategy u ∈ U leads to the assertion.

Proof of Proposition 2.3.5. We first establish the equality of V1 = V2. To this end, let us fix

u ∈ U and (t, x) in [0, T ]× Rn. Observe that it suffices to show that pointwise on Ω,

1A(Xt,x;u
τ̄ ) = sup

s∈[t,T ]
{1A(Xt,x;u

s ) ∧ inf
r∈[t,s]

1Bc(X
t,x;u
r )}.

According to the Assumption 2.3.3 and Remark 2.3.2, one can simply see that

sup
s∈[t,T ]

{1A(Xt,x;u
s ) ∧ inf

r∈[t,s]
1Bc(X

t,x;u
r )} = 1

⇐⇒ ∃s ∈ [t, T ] Xt,x;u
s ∈ A and ∀r ∈ [t, s] Xt,x;u

r ∈ Bc

⇐⇒ ∃s ∈ [t, T ] τA ≤ s ≤ T and τB > s

⇐⇒ Xt,x;u
τA

= Xt,x;u
τA∧τB∧T = Xt,x;u

τA∪B∧T ∈ A
⇐⇒ 1A

(
Xt,x;u
τ̄

)
= 1

and since the functions take values in {0, 1}, we have V1(t, x) = V2(t, x).

As a first step towards proving V1 = V3, we start with establishing V3 ≥ V1. It is straight-
forward from the definition that

sup
τ∈T[t,T ]

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≥ inf
σ∈T[t,τ̄]

E
[
1A(Xt,x;u

τ̄ ) ∧ 1Bc(Xt,x;u
σ )

]
, (2.29)

where τ̄ is the stopping time defined in (2.4a). For all stopping times σ ∈ T[t,τ̄ ], in view of

(2.3b) we have

1Bc(X
t,x;u
σ ) = 0 =⇒ Xt,x;u

σ ∈ B =⇒ τB ≤ σ ≤ τ̄ = τA ∧ τB ∧ T
=⇒ τB = σ = τ̄ < τA =⇒ Xt,x;u

τ̄ /∈ A
=⇒ 1A(Xt,x;u

τ̄ ) = 0
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This implies that for all σ ∈ T[t,τ̄ ],

1A(Xt,x;u
τ̄ ) ∧ 1Bc(Xt,x;u

σ ) = 1A(Xt,x;u
τ̄ ) P-a.s.

which, in connection with (2.29) leads to

sup
τ∈T[t,T ]

inf
σ∈T[t,τ ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≥ E

[
1A(Xt,x;u

τ̄ )
]
.

By arbitrariness of the control strategy u ∈ U , we get V3 ≥ V1. It remains to show V2 ≤ V1.

Given u ∈ U and τ ∈ T[t,T ], let us choose σ̄ := τ ∧ τB. Note that since t ≤ σ̄ ≤ τ then σ̄ ∈ T[t,τ ].

Hence,

inf
σ∈T[t,τ ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≤ E

[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ̄ )

]
. (2.30)

Note that by an argument similar to the proof of Proposition 2.3.4, for all τ ∈ T[t,T ]:

1A(Xt,x;u
τ ) ∧ 1Bc(Xt,x;u

σ̄ ) = 1 =⇒ Xt,x;u
τ ∈ A and Xt,x;u

σ̄ /∈ B
=⇒ τA ≤ τ ≤ T and σ̄ 6= τB

=⇒ τA ≤ τ ≤ T and τA ≤ σ̄ = τ < τB

=⇒ τ̄ = τA ∧ τB ∧ T = τA =⇒ 1A(Xt,x;u
τ̄ ) = 1.

It follows that for all τ ∈ T[t,τ ],

1A(Xt,x;u
τ ) ∧ 1Bc(Xt,x;u

σ̄ ) ≤ 1A(Xt,x;u
τ̄ ) P-a.s.

which in connection with (2.30) leads to

sup
τ∈T[t,T ]

inf
σ∈T[t,τ ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≤ E

[
1A(Xt,x;u

τ̄ )
]
.

By arbitrariness of the control strategy u ∈ U we arrive at V3 ≤ V1.

2.8.2 Proofs of Section 2.4

Proof of Proposition 2.4.3. We first prove continuity of τ̄(t, x) with respect to (t, x). Let us

take a sequence (tn, xn) → (t0, x0), and let
(
Xtn,xn;u
r

)
r≥tn be the solution of (2.1) for a given

policy u ∈ U . Let us recall that by definition we assume that Xt,x;u
s := x for all s ∈ [0, t]. Here

we assume that tn ≤ t, but one can effectively follow the same technique for tn > t. Notice that

it is straightforward to observe that by the definition of stochastic integral in (2.1) we have

Xtn,xn;u
r = Xtn,xn;u

t +

∫ r

t
f
(
Xtn,xn;u
s , us

)
ds+

∫ r

t
σ
(
Xtn,xn;u
s , us

)
dWs P-a.s.

Therefore, by virtue of [Kry09, Theorem 2.5.9, p. 83], for all q ≥ 1 we have

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtn,xn;u

r

∥∥2q
]
≤ C1(q, T,K)E

[∥∥x−Xtn,xn;u
t

∥∥2q
]

≤ 22q−1C1(q, T,K)E
[
‖x− xn‖2q +

∥∥xn −Xtn,xn;u
t

∥∥2q
]
,
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where in light of [Kry09, Corollary 2.5.12, p. 86], it leads to

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtn,xn;u

r

∥∥2q
]
≤ C2(q, T,K, ‖x‖)

(
‖x− xn‖2q + |t− tn|q

)
. (2.31)

In the above relations K is the Lipschitz constant of f and σ mentioned in Assumption 2.2.1; C1

and C2 are constant depending on the indicated parameters. Hence, in view of Kolmogorov’s

Continuity Criterion [Pro05, Corollary 1 Chap. IV, p. 220], one may consider a version of the

stochastic process Xt,x;u· which is continuous in (t, x) in the topology of uniform convergence

on compacts. This yields to the fact that P-a.s, for any ε > 0, for all sufficiently large n,

Xtn,xn;u
r ∈ Bε

(
Xt0,x0;u
r

)
, ∀r ∈ [tn, T ], (2.32)

where Bε(y) denotes the ball centered at y and radius ε. Based on the Assumptions 2.4.1.a.

and 2.4.1.b., it is a well-known property of non-degenerate processes that the set of sample

paths that hit the boundary of O and do not enter the set is negligible [RB98, Corollary 3.2,

p. 65]. Hence, by the definition of τ̄ and (2.3b), one can conclude that

∀δ > 0, ∃ε > 0,
⋃

s∈[t0,τ̄(t0,x0)−δ]
Bε(Xt0,x0;u

s ) ∩O = ∅ P-a.s.

This together with (2.32) indicates that P-a.s. for all sufficiently large n,

Xtn,xn;u
r /∈ O, ∀r ∈ [tn, τ̄(t0, x0)[ ,

which in conjunction with P-a.s. continuity of sample paths immediately leads to

lim inf
(tn,xn)→(t,x)

τ̄(tn, xn) ≥ τ̄(t0, x0) P-a.s. (2.33)

On the other hand by the definition of τ̄ and Assumptions 2.4.1.a. and 2.4.1.b., again in view

of [RB98, Corollary 3.2, p. 65],

∀δ > 0, ∃s ∈ [τO(t0, x0), τO(t0, x0) + δ[, Xt0,x0;u
s ∈ O◦ P-a.s.,

where τO is the first entry time to O, and O◦ denotes the interior of the set O. Hence, in light

of (2.32), P-a.s. there exists ε > 0, possibly depending on δ, such that for all sufficiently large

n we have Xtn,xn;u
s ∈ Bε(Xt0,x0;u

s ) ⊂ O. According to the definition of τO(tn, xn) and (2.3b),

this implies τO(tn, xn) ≤ s < τO(t0, x0) + δ. From arbitrariness of δ and the definition of τ̄ in

(5.19), it leads to

lim sup
(tn,xn)→(t,x)

τ̄(tn, xn) ≤ τ̄(t0, x0) P-a.s.,

where in conjunction with (2.33), P-a.s. continuity of the map (t, x) 7→ τ̄(t, x) at (t0, x0) follows.

It remains to show lower semicontinuity of J . Note that J is bounded since ` is. In

accordance with the P-a.s. continuity of Xt,x;u
r and τ̄(t, x) with respect to (t, x), and Fatou’s

lemma, we have

lim inf
n→∞

J
(
tn, xn,u

)
= lim inf

n→∞
E
[
`
(
Xtn,xn;u
τ̄(tn,xn)

)]

= lim inf
n→∞

E
[
`
(
Xtn,xn;u
τ̄(tn,xn) −X

t,x;u
τ̄(tn,xn) +Xt,x;u

τ̄(tn,xn) −X
t,x;u
τ̄(t,x) +Xt,x;u

τ̄(t,x)

)]

= lim inf
n→∞

E
[
`
(
εn +Xt,x;u

τ̄(t,x)

)]
≥ E

[
lim inf
n→∞

`
(
εn +Xt,x;u

τ̄(t,x)

)]
(2.34)

≥ E
[
`
(
Xt,x;u
τ̄(t,x)

)]
= J(t, x,u),
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where inequality in (2.34) follows from Fatou’s Lemma, and εn → 0 P-a.s. as n tends to ∞.

Note that by definition Xt,x;u
τ̄(tn,xn) = x on the set {τ̄(tn, xn) < t}.

Proof of Lemma 2.4.6. By Definition 2.3.1, one has

1{τ̄(t,x)≥θ}τ̄(t, x) = 1{τ̄(t,x)≥θ}
(
τ̄(θ,Xt,x;u

θ ) + θ − t
)

P-a.s.

One can now follow effectively the same computations as in the proof of [BT11, Proposition

5.1] to conclude the assertion.

Proof of Lemma 2.4.11. Let us consider a version of Xt,x;u· which is almost surely continuous

in (t, x) uniformly respect to the policy u; this is always possible since the constant C2 in

(2.31) does not depend on u. That is, u may only affect a negligible subset of Ω; we refer to

[Pro05, Theorem 72 Chap. IV, p. 218] for further details on this issue. Hence, all the relations

in the proof of Proposition 2.4.3, in particular (2.32), hold if we permit the control policy u to

depend on n in an arbitrary way. Therefore, the assertions of Proposition 2.4.3 holds uniformly

with respect to (un)n∈N ⊂ U . That is, for all (t, x) ∈ S, (tn, xn) → (t, x), and (un)n∈N, with

probability one we have

lim
n→∞

sup
s∈[0,T ]

∥∥Xtn,xn;un
s −Xt,x;un

s

∥∥ = 0, lim
n→∞

∣∣τ̄(tn, xn)− τ̄(t, x)
∣∣ = 0 (2.35)

where τ̄ is as defined in (2.6) while the solution process is driven by control policies un.

Moreover, according to [Kry09, Corollary 2.5.10, p. 85]

E
[∥∥Xt,x;u

r −Xt,x;u
s

∥∥2q
]
≤ C3

(
q, T,K, ‖x‖

)∣∣r − s
∣∣q, ∀r, s ∈ [t, T ] ∀q ≥ 1,

following the arguments in the proof of Proposition 2.4.3 in conjunction with above inequality,

one can also deduce that the mapping s 7→ Xt,x;u
s is P-a.s. continuous uniformly with respect

to u. Hence, one can infer that for all (t, x) ∈ S, with probability one we have

lim
n→∞

∥∥Xtn,xn;un
τ̄(tn,xn) −X

t,x;un
τ̄(t,x)

∥∥ ≤ lim
n→∞

∥∥Xtn,xn;un
τ̄(tn,xn) −X

t,x;un
τ̄(tn,xn)

∥∥

+ lim
n→∞

∥∥Xt,x;un
τ̄(tn,xn) −X

t,x;un
τ̄(t,x)

∥∥ = 0.

Notice that the first limit term above tends to zero as the version of the solution process

Xt,x;un· on the compact set [0, T ] is continuous in the initial condition (t, x) uniformly with

respect to n. The second term is the consequence of limits in (2.35) and continuity of the

mapping s 7→ Xt,x;un
s uniformly in n ∈ N.

2.8.3 Proofs of Section 2.5

Proof of Theorem 2.5.1. By definition, the family of the sets (Aε)ε>0 is nested and increasing

as ε ↓ 0. Therefore, in view of (2.3a), τε is nonincreasing as ε ↓ 0 pathwise on Ω. Moreover it

is obvious to see that the family of functions `ε is increasing with respect to ε. Hence, given
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an initial condition (t, x) ∈ S, an admissible control u ∈ Ut, and ε1 ≥ ε2 > 0, pathwise on Ω

we have

`ε2
(
Xt,x;u
τε2

)
< 1 =⇒ τε2 = τB ∧ T < τAε2 < τAε1

=⇒ τε1 = τB ∧ T = τε2 =⇒ `ε2
(
Xt,x;u
τε2

)
≥ `ε1

(
Xt,x;u
τε1

)
,

which immediately leads to Vε2(t, x) ≥ Vε1(t, x). Now let (εi)i∈N be a decreasing sequence

of positive numbers that converges to zero, and for the simplicity of notation let An := Aεn ,

τn := τεn , and `n := `εn . According to the definitions (2.4a) and (2.25), we have

V (t, x)− lim
n→∞

Vεn(t, x) = sup
u∈Ut

E
[
1A
(
Xt,x;u
τ̄

)]
− lim
n→∞

sup
u∈Ut

E
[
`n
(
Xt,x;u
τn

)]

= sup
u∈Ut

E
[
1A
(
Xt,x;u
τ̄

)]
− sup
n∈N

sup
u∈Ut

E
[
`n
(
Xt,x;u
τn

)]
(2.36a)

≤ sup
u∈Ut

(
E
[
1A
(
Xt,x;u
τ̄

)]
− sup
n∈N

E
[
`n
(
Xt,x;u
τn

)])

≤ sup
u∈Ut

inf
n∈N

E
[
1A
(
Xt,x;u
τ̄

)
− 1An

(
Xt,x;u
τn

)]

= sup
u∈Ut

inf
n∈N

P
(
{τAn > τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(2.36b)

= sup
u∈Ut

P
( ⋂

n∈N
{τAn > τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(2.36c)

≤ sup
u∈Ut

P
(
{τA◦ ≥ τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(2.36d)

≤ sup
u∈Ut

P
(
{τA◦ > τA} ∪ {τA = T}

)
= 0 (2.36e)

Note that the equality in (2.36a) is due to the fact that the sequence of the value functions(
Vεn
)
n∈N is increasing pointwise. One can infer the equality (2.36b) when 1A

(
Xt,x;u
τ̄

)
= 1 and

1An
(
Xt,x;u
τn

)
= 0 as 1A

(
Xt,x;u
τ̄

)
≥ 1An

(
Xt,x;u
τn

)
pathwise on Ω. Moreover, since the sequence

of the stopping times (τn)n∈N is decreasing P-a.s., the family of sets
(
{τAn > τA}

)
n∈N is also

decreasing; consequently, the equality (2.36c) follows. In order to show (2.36d), it is not hard

to inspect that

ω ∈
⋂

n∈N
{τAn > τB ∧ T} =⇒ ∀n ∈ N, τAn(ω) > τB(ω) ∧ T

=⇒ ∀n ∈ N, ∀s ≤ τB(ω) ∧ T, Xt,x;u
s (ω) /∈ An

=⇒ ∀s ≤ τB(ω) ∧ T, Xt,x;u
s (ω) /∈

⋃

n∈N
An = A◦

=⇒ ω ∈ {τA◦ ≥ τB ∧ T}.

Based on non-degeneracy and the interior cone condition in Assumptions 2.4.1.a. and 2.4.1.b.

respectively, by virtue of [RB98, Corollary 3.2, p. 65], we see that the set {τA◦ > τA} is

negligible. Moreover, the interior cone condition implies that the Lebesgue measure of ∂A,

boundary of A, is zero. In view of non-degeneracy and Girsanov’s Theorem [KS91, Theorem

5.1, p. 191], Xt,x;u
r has a probability density d(r, y) for r ∈]t, T ]; see [FS06, Section IV.4] and
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references therein. Hence, the aforesaid property of ∂A results in P{τA = T} ≤ P
{
Xt,x;u
T ∈

∂A
}

=
∫
∂A d(T, y)dy = 0, and the second equality of (2.36e) follows. It is straightforward to

see V ≥ Vεn pointwise on S for all n ∈ N. The assertion now follows at once.
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CHAPTER3
Stochastic Motion Planning

In this chapter, we extend the reach-avoid problem discussed in the preceding chapter to

different classes of stochastic motion planning problems which involve a controlled process,

with possibly discontinuous sample paths, visiting certain subsets of the state-space while

avoiding others in a sequential fashion. For this purpose, we first introduce two basic notions

of motion planning, and then establish a connection to a class of stochastic optimal control

problems concerned with sequential stopping times. A weak dynamic programming principle

(DPP) is then proposed, which characterizes the set of initial states that admit a policy enabling

the process to execute the desired maneuver with probability no less than some pre-specified

value. The proposed DPP comprises auxiliary value functions defined in terms of discontinuous

payoff functions. A concrete instance of the use of this novel DPP in the case of diffusion

processes is also presented. In this case, we establish that the aforementioned set of initial

states can be characterized as the level set of a discontinuous viscosity solution to a sequence of

partial differential equations, for which the first one has a known boundary condition, while the

boundary conditions of the subsequent ones are determined by the solutions to the preceding

steps. Finally, the generality and flexibility of the theoretical results are illustrated on an

example involving a biological switch.

3.1 Introduction

Motion planning of dynamical systems can be viewed as a scheme for executing excursions of

the state of the system to certain given sets in a specific order according to a specified time

schedule. The two fields of robotics and control have contributed much to motion planning. In

the robotics community, research on motion planning typically focuses on the computational

issues along with considerations of basic kinematic limitations; see examples of navigation of

unmanned air vehicles [MB00, BMGA02], and recent surveys on motion planning algorithms

[GKM10] and dynamic vehicle routing [BFP+11]. In the control community motion planning

emphasizes the dynamic behavior and specific aspects of trajectory performance that usually

involve high order differential constraints. This chapter deals with motion planning from the

latter point of view.

In the control literature, motion planning problems have been studied extensively in a

deterministic setting from the differential geometric [Sus91, CS98a, MS90] and dynamic pro-
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gramming [SM86] perspectives. However, motion planning in the stochastic setting has received

relatively little attention. In fact, it was not until recently when the basic motion planning

problem involving one target and one obstacle set—the so-called reach-avoid problem, has

been investigated in the context of finite probability spaces for a class of continuous-time

Markov decision processes [BHKH05], and in the discrete-time stochastic hybrid systems con-

text [CCL11, SL10].

In the continuous time and space settings, one may tackle the dynamic programming for-

mulation of the reach-avoid problem from two perspectives: a direct technique based on the

theory of stochastic target problems, and an indirect approach via an exit-time stochastic op-

timal control formulation. For the former, we refer the reader to [ST02b, BET10]; see also the

recent book [Tou13] for details. In Chapter 2 we focused on the latter perspective for reacha-

bility of controlled diffusion processes. Here we continue in the same spirit by going beyond the

reach-avoid problem to more complex motion planning problems for a larger class of stochastic

processes with possibly discontinuous sample paths.

The contributions of this work are outlined as follows:

(i) we formalize the stochastic motion planning problem for continuous time, continuous space

stochastic processes (Section 3.2);

(ii) we establish a connection between different motion planning maneuvers and a class of

stochastic optimal control problems (Section 3.3);

(iii) we propose a weak dynamic programming principle (DPP) under mild assumptions on the

admissible policies and the stochastic process (Section 3.4);

(iv) we derive a partial differential equation (PDE) characterization of the desired set of initial

conditions in the context of controlled diffusions processes based on the proposed DPP

(Section 3.5).

Concerning item (i), we start with the formal definition of a motion planning objective

comprising of two fundamental reachability maneuvers. To the best of our knowledge, this is

new in the literature. We address the following natural question: for which initial states do

there exist admissible policies such that the controlled stochastic processes satisfy the motion

planning objective with a probability greater than a given value p? Under item (ii), we then

characterize this set of initial states by establishing a connection between the motion planning

specifications and a class of stochastic optimal control problems involving discontinuous payoff

functions and a sequence of successive stopping times.

Concerning item (iii), we should highlight that due to the discontinuity of the payoff

functions, the classical results on stochastic optimal control problems and its connection to

Hamilton-Jacobi-Bellman PDE are not applicable here. In the spirit of [BT11], under some

mild assumptions, we propose a weak DPP involving auxiliary value functions. As opposed to

the classical DPP results, this formulation does not need to verify the measurability of the value

functions. The only non-trivial assumption required for the proposed DPP is the continuity of

the sequence of stopping times with respect to the initial states.

Finally, concerning item (iv), we focus on a class of controlled diffusion processes in which

the required assumptions of the proposed DPP are investigated. Indeed, it turns out that

the standard uniform non-degeneracy and exterior cone conditions of the involved sets suffice
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to fulfill the DPP requirements. Subsequently, we demonstrate how the DPP leads to a new

framework for characterizing the desired set of initial conditions based on tools from PDEs.

Due to the discontinuities of the value functions involved, all the PDEs are understood in the

generalized notion of the so-called discontinuous viscosity solutions. In this context, we show

how the value functions can be solved by a means of a sequence of PDEs, in which the preceding

PDE provides the boundary condition of the following one.

On the computational side, it is well-known that PDE techniques suffer from the curse

of dimensionality. In the literature a class of suboptimal control methods referred to as Ap-

proximate Dynamic Programming (ADP) have been developed for dealing with this difficulty;

for a sampling of recent works see [dFVR03, DFVR04, CRVRL06] for a linear programming

approach, [KT03, VL10] for actor-critic algorithms, and [Ber05] for a comprehensive survey on

the entire area. Besides the ADP literature, very recent progress on numerical methods based

on tensor train decompositions holds the potential of substantially ameliorating this curse of

dimensionality; see two representative articles [KO10, KS11] and the references therein. In

this light, taken in its entirety, the results in this study can be viewed as a theoretical bridge

between the motion planning objective formalized in (i) and sophisticated numerical methods

that can be used to address real problem instances. Here we demonstrate the practical use of

this bridge by addressing a stochastic motion planning problem for a biological switch.

As indicated above, the organization of the chapter follows the steps (i)-(iv). In Section 3.2

we formally introduce the stochastic motion planning problems. In Section 3.3 we establish a

connection between the motion planning objectives and a class of stochastic optimal control

problems, for which a weak DPP is proposed in Section 3.4. A concrete instance of the use of

the novel DPP in the case of controlled diffusion processes is presented in Section V, leading

to characterization of the motion planning objective with the help of a sequence of PDE’s in

an iterative fashion. To validate the performance of the proposed methodology, in Section 3.6

the theoretical results are applied to a biological two-gene network. For better readability, the

technical proofs along with required preliminaries are provided in Appendix 3.8.

Notation

Here is a partial notation list which will be also explained in more details later in the chapter:

• a ∧ b := min{a, b} and a ∨ b := max{a, b} for a, b ∈ R;

• Ac (resp. A◦): complement (resp. interior) of the set A;

• A (resp. ∂A): closure (resp. boundary) of the set A;

• Br(x): open Euclidean ball centered at x and radius r;

• B(A): Borel σ-algebra on a topological space A;

• Ut: set of admissible policies at time t;

• (Xt,x;u
s )s≥0: stochastic process under the control policy u and convention Xt,x;u

s := x for

all s ≤ t;
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• (Wi  Gi)≤Ti (resp. Wi
Ti−→ Gi ) : motion planning event of reaching Gi sometime before

time Ti (resp. at time Ti) while staying in Wi, see Definition 3.2.1;

•
(
ΘAk:n
i

)n
i=k

: sequential exit-times from the sets (Ai)
n
i=k in order, see Definition 3.3.1;

• V ∗ (resp. V∗): upper (resp. lower) semicontinuous envelope of the function V ;

• Lu: Dynkin operator, see Definition 2.4.9.

3.2 General Setting and Problem Description

Consider a filtered probability space (Ω,F ,F,P) whose filtration F := (Fs)s≥0 is generated by

an Rdz -valued process (z:=):=≥0(zs)s≥0 with independent increments. Let this natural filtration

be enlarged by its right-continuous completion, i.e., it satisfies the usual conditions of complete-

ness and right continuity [KS91, p. 48]. Consider also an auxiliary subfiltration Ft := (Ft,s)s≥0,

where Ft,s is the P-completion of σ
(
zr∨t − zt, r ∈ [0, s]

)
. It is obvious to observe that any

Ft,s-random variable is independent of Ft, Ft,s ⊆ Fs with equality in case of t = 0, and for

s ≤ t, Ft,s is the trivial σ−algebra.

The object of our study is an Rd-valued controlled random process
(
Xt,x;u
s

)
s≥t, initialized

at (t, x) under the control policy u ∈ Ut, where Ut is the set of admissible policies at time t.

Since the precise class of admissible policies does not play a role until Section IV we defer the

formal definition of these until then. Let T > 0 be a fixed time horizon, and let S := [0, T ]×Rd.
We assume that for every (t, x) ∈ S and u ∈ Ut, the process

(
Xt,x;u
s

)
s≥t is Ft-adapted process

whose sample paths are right continuous with left limits. We denote by T the collection of all F-

stopping times; for τ1, τ2 ∈ T with τ1 ≤ τ2 P-a.s. we let the subset T[τ1,τ2] denote the collection

of all Fτ1-stopping times τ such that τ1 ≤ τ ≤ τ2 P-a.s. Measurability on Rd will always

refer to Borel-measurability, and B(A) stands for the Borel σ-algebra on a topological space

A. Throughout this chapter all the (in)equalities between random variables are understood in

almost sure sense.

Given sets (Wi, Gi) ∈ B(Rd) × B(Rd) for i ∈ {1, · · · , n}, we are interested in a set of

initial conditions (t, x) ∈ S such that there exists an admissible strategy u ∈ Ut steering the

process Xt,x;u· through (Wi)
n
i=1 (“way point” sets) while visiting (Gi)

n
i=1 (“goal” sets) in a pre-

assigned order. One may pose this objective from different perspectives based on different time

scheduling for the excursions between the sets. We formally introduce some of these notions

which will be addressed throughout this chapter.

Definition 3.2.1 (Motion Planning Events). Consider a fixed initial condition (t, x) ∈ S and

admissible policy u ∈ Ut. Given a sequence of pairs (Wi, Gi)
n
i=1 ⊂ B(Rd)×B(Rd) and horizon

42



3.2 General Setting and Problem Description

ଵܩଵܩ

ଶܩଶܩ

ଷܩଷܩ

ଵܹ

ଶܹ

ଷܹ

ܺ௦భܺ௧ ൌ ݔ

ܺ௦మܺ௦య

ସܹ

(a) A sample path satisfying the first three

phases of the specification in the sense of (3.1a)

ଵܩଵܩ

ଶܩଶܩ

ଷܩଷܩ

ଵܹ

ଶܹ

ଷܹ

ܺ భ்

ܺ మ்

ܺ య்

ܺ௧ ൌ ݔ

ସܹ

(b) A sample path satisfying the first three

phases of the specification in the sense of (3.1b)

Figure 3.1: Sample paths of the process Xt,x;u· for a fix policy u ∈ Ut

times (Ti)
n
i=1 ⊂ [t, T ], we introduce the following motion planning events:

{
Xt,x;u· |=

[
(W1  G1) ◦ · · · ◦ (Wn  Gn)

]
≤T

}
:= (3.1a)

{
∃(si)ni=1 ⊂ [t, T ]

∣∣ Xt,x;u
si ∈ Gi and Xt,x;u

r ∈Wi \Gi, ∀r ∈ [si−1, si[, ∀i ≤ n
}
,

{
Xt,x;u· |= (W1

T1−→ G1) ◦ · · · ◦ (Wn
Tn−→ Gn)

}
:= (3.1b)

{
Xt,x;u
Ti

∈ Gi and Xt,x;u
r ∈Wi, ∀r ∈ [Ti−1, Ti], ∀i ≤ n

}
,

where s0 = T0 := t.

The set in (3.1a), roughly speaking, contains the events in the underlying probability space

that the trajectory Xt,x;u· , initialized at (t, x) ∈ S and controlled via u ∈ Ut, succeeds in

visiting (Gi)
n
i=1 in a certain order, while the entire duration between the two visits to Gi−1

and Gi is spent in Wi, all within the time horizon T . In other words, the journey from Gi−1

to the next destination Gi must belong to Wi for all i. Figure 3.1(a) depicts a sample path

that successfully contributes to the first three phases of the excursion in the sense of (3.1a). In

the case of (3.1b), the set of paths is usually more restricted in comparison to (3.1a). Indeed,

not only is the trajectory confined to Wi on the way between Gi−1 and Gi, but also there is a

time schedule (Ti)
n
i=1 that a priori forces the process to be at the goal sets Gi at the specific

times (Ti)
n
i=1. Figure 3.1(b) demonstrates one sample path in which the first three phases of

the excursion are successfully fulfilled.

Note that once a trajectory belonging to the set in (3.1a) visits Gi for the first time, it is

required to remain in Wi+1 until the next goal Gi+1 is reached, whereas a trajectory belonging

to the set in definition (3.1b) may visit the destination Gi several times, while staying in Wi

until the intermediate time schedule Ti. The only requirement, in contrast to (3.1a), is to
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confine the trajectory to be at Gi at the time Ti. As an illustration, one can easily inspect that

the sample path in Figure 3.1(b) indeed violates the requirements of the definition (3.1a) as it

leaves W2 after it visits G1 for the first time. In other words, the definition (3.1a) changes the

admissible way set Wi to Wi+1 immediately after the trajectory visits Gi, while the definition

(3.1b) only changes the admissible way set only after the intermediate time Ti irrespective of

whether the trajectory visits Gi prior to Ti.

For simplicity we may impose the following assumptions:

Assumption 3.2.2. We stipulate that

a. The sets (Gi)
n
i=1 ⊂ B(Rd) are closed.

b. The sets (Wi)
n
i=1 ⊂ B(Rd) are open.

Concerning Assumption 3.2.2.a., if Gi is not closed, then it is not difficult to see that there

could be some continuous transitions through the boundary of Gi that are not admissible in

view of the definition (3.1a) since the trajectory must reside in Wi \Gi for the whole interval

[si−1, si[ and just hit Gi at the time si. Notice that this is not the case for the definition

(3.1b) since the trajectory only visits the sets Gi at the specific times Ti while any continuous

transition and maneuver inside Gi are allowed. Assumption 3.2.2.b. is rather technical and

required for the analysis employed in the subsequent sections.

The events introduced in Definition 3.2.1 depend, of course, on the control policy u ∈ U
and initial condition (t, x) ∈ S. The main objective of this chapter is to determine the set of

initial conditions x ∈ Rd such that there exists an admissible policy u where the probability of

the motion planning events is higher than a certain threshold. Let us formally introduce these

sets as follows:

Definition 3.2.3 (Motion Planning Initial Condition Set). Consider a fixed initial time t ∈
[0, T ]. Given a sequence of set pairs (Wi, Gi)

n
i=1 ⊂ B(Rd)×B(Rd) and horizon times (Ti)

n
i=1 ⊂

[t, T ], we define the following motion planning initial condition sets:

MP
(
t, p; (Wi, Gi)

n
i=1, T

)
:= (3.2a)

{
x ∈ Rd

∣∣ ∃u ∈ Ut : P
{
Xt,x;u· |=

[
(W1  G1) ◦ · · · ◦ (Wn  Gn)

]
≤T } > p

}
,

M̃P
(
t, p; (Wi, Gi)

n
i=1, (Ti)

n
i=1

)
:= (3.2b)

{
x ∈ Rd

∣∣ ∃u ∈ Ut : P
{
Xt,x;u· |= (W1

T1−→ G1) ◦ · · · ◦ (Wn
Tn−→ Gn)

}
> p
}
.

Remark 3.2.4 (Stochastic Reach-Avoid Problem). The motion planning scenarios for only

two sets (W1, G1) basically reduce to the basic reach-avoid maneuver studied in Chapter 2 by

setting the reach set to G1 and the avoid set to Rd \ W1. See also [GLQ06, ML11] for the

corresponding deterministic and [SL10] for the corresponding discrete time stochastic reach-

avoid problems.

Remark 3.2.5 (Mixed Motion Planning Events). One may also consider an event that consists

of a mixture of the events in (4.28), e.g., (W1  G1)≤T1 ◦ (W2
T2−→ G2). Following essentially
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the same analytical techniques as the ones proposed in the subsequent sections, one can also

address these mixed motion planning objectives. We shall provide an example of this nature in

Section 3.6.

Remark 3.2.6 (Time-varying Goal and Way Point Sets). In Definition 3.2.3 the motion

planning objective is introduced in terms of stationary (time-independent) goal and way point

sets. However, note that one can always augment the state space with time, and introduce a

new stochastic process Yt := [X
ᵀ
t , t]

ᵀ
. Therefore, a motion planning concerning moving sets for

Xt can be viewed as a motion planning with stationary sets for the process Yt.

3.3 Connection to Optimal Control Problems

In this section we establish a connection between stochastic motion planning initial condition

sets MP and M̃P of Definition 3.2.3 and a class of stochastic optimal control problems involving

stopping times. First, given a sequence of sets we introduce a sequence of random times that

corresponds to the times that the process Xt,x;u· exits each set in the sequence for the first

time.

Definition 3.3.1 (Sequential Exit-Time). Given an initial condition (t, x) ∈ S and a sequence

of measurable sets (Ai)
n
i=k ⊂ B(Rd), the sequence of random times

(
ΘAk:n
i

)n
i=k

defined1 by

ΘAk:n
i (t, x) := inf

{
r ≥ ΘAk:n

i−1 (t, x) : Xt,x;u
r /∈ Ai

}
, ΘAk:n

k−1 (t, x) := t,

is called the sequential exit-time through the set Ak to An.

Note that the sequential exit-time ΘAk:n
i depends on the control policy u in addition to the

initial condition (t, x), but here and later in the sequel we shall suppress this dependence. For

notational simplicity, we may also drop (t, x) in the subsequent sections.

In Figure 3.2 a sample path of the process Xt,x;u· along with the sequential exit-times

(ΘAk:3
i )ni=k is depicted for different k ∈ {1, 2, 3}. Note that since the initial condition x does

not belongs to A3, the first exit-time of the set A3 is indeed the start time t, i.e., ΘA3:3
3 = t.

Let us highlight the difference between stopping times ΘA1:3
2 and ΘA2:3

2 . The former is the first

exit-time of the set A2 after the time that the process leaves A1, whereas the latter is the

first exit-time of the set A2 from the very beginning. In Section 3.5 we shall see that these

differences will lead to different definitions of value functions in order to derive a dynamic

programming argument.

The following lemma shows that the sequential stopping times are indeed well defined.

Lemma 3.3.2 (Measurability). Consider a sequence of (Ai)
n
i=1 ⊂ B(Rd) and (t, x) ∈ S. The

sequential exit-time ΘA1:n
i (t, x) is an Ft-stopping time for all i ∈ {1, · · · , n}, i.e.,

{
ΘA1:n
i (t, x) ≤

s
}
∈ Ft,s for all s ≥ 0.

Proof. See Appendix 3.8.1.

1By convention, inf ∅ =∞.
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Figure 3.2: Sequential exit-times of a sample path through the sets (Ai)
3
i=k for different values of k

Given (Wi, Gi, Ti)
n
i=1 ⊂ B(Rd) × B(Rd) × [t, T ], we introduce two value functions V, Ṽ :

S→ [0, 1] defined by

V (t, x) := sup
u∈Ut

E

[
n∏

i=1

1Gi
(
Xt,x;u
ηi

)
]
, ηi := ΘB1:n

i ∧ T, Bi := Wi \Gi, (3.3a)

Ṽ (t, x) := sup
u∈Ut

E

[
n∏

i=1

1Gi∩Wi

(
Xt,x;u
η̃i

)
]
, η̃i := ΘW1:n

i ∧ Ti, (3.3b)

where ΘW1:n
i ,ΘB1:n

i are the sequential exit-times in the sense of Definition 3.3.1. Figure 3.3(a)

and 3.3(b) illustrate the sequential exit-times corresponding to the sets Bi and Wi, respectively.

The main result of this section, Theorem 3.3.3 below, establishes a connection from the sets

MP, M̃P and superlevel sets of the value functions V and Ṽ .

Theorem 3.3.3. Fix a probability level p ∈ [0, 1], a sequence of set pairs (Wi, Gi)
n
i=1 ⊂ B(Rd)×

B(Rd), an initial time t ∈ [0, T ], and intermediate times (Ti)
n
i=1 ⊂ [t, T ]. Then,

MP
(
t, p; (Wi, Gi)

n
i=0, T

)
=
{
x ∈ Rd

∣∣ V (t, x) > p
}
. (3.4)

Moreover, suppose Assumption 3.2.2.b. holds. Then,

M̃P
(
t, p; (Wi, Gi)

n
i=0, (Ti)

n
i=1

)
=
{
x ∈ Rd

∣∣ Ṽ (t, x) > p
}
, (3.5)

where the value functions V and Ṽ are as defined in (3.3).

Proof. See Appendix 3.8.1.

Intuitively speaking, observe that the value functions (3.3) consist of a sequence of indicator

functions, where the reward is 1 when the corresponding phase (i.e., reaching Gi while staying

in Wi) of motion planning is fulfilled, while the reward is 0 if it fails. Let us also highlight

that the difference between the time schedule between the two motion planning problems in
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Figure 3.3: Sequential exit-times corresponding to different motion planning events as intro-

duced in (4.28)

(3.3) is captured via the stopping times ηi and η̃i: the former refers to the first time to leave

Wi or hit Gi before T , and the latter only considers the exit time from Wi prior to Ti. Hence,

the product of the indicators evaluates to 1 if and only if the entire journey comprising n

phases is successfully accomplished. In this light, taking expectations yields the probability of

the desired event, and the supremum over admissible policies leads to the assertion that there

exists a policy for which the desired properties hold.

3.4 Dynamic Programming Principle

The objective of this section is to derive a DPP for the value functions V and Ṽ introduced in

(3.3). The DPP provides a bridge between the theoretical characterization of the solution to our

motion planning problem through value functions (Section 3.3) and explicit characterizations

of these value functions using, for example, PDEs (Section 3.5), which can then be used to

solve the original problem numerically.

Let (Ti)
n
i=1 ⊂ [0, T ] be a sequence of times, (Ai)

n
i=1 ⊂ B(Rd) be a sequence of open sets,

and `i : Rr → R for i = 1, · · · , n be a sequence of measurable and bounded payoff functions.

We define the sequence of value functions Vk : [0, T ]× Rd → Rd for each k ∈ {1, . . . , n} as

Vk(t, x) := sup
u∈Ut

E
[ n∏

i=k

`i
(
Xt,x;u

τki

)]
, τki (t, x) := ΘAk:n

i (t, x) ∧ Ti, i ∈ {k, · · · , n}, (3.6)

where the stopping times (ΘWk:n
i )ni=k are sequential exit-times in the sense of Definition 3.3.1.

Recall that the sequential exit-times of Vk correspond to an excursion through the sets (Ai)
n
i=k

irrespective of the first (k − 1) sets. It is straightforward to observe that the value function
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V
(
resp. Ṽ

)
in (3.3) is a particular case of the value function V1 defined as in (3.6) when

Ai := Wi \Gi
(
resp. Ai := Wi

)
, `i := 1Gi

(
resp. `i := 1Gi∩Wi

)
, and Ti := T .

Given a metric space A and function f : A −→ R, the lower and upper semicontinuous

envelopes of f are defined, respectively, as

f∗(x) := lim inf
x′→x

f(x′), f∗(x) := lim sup
x′→x

f(x′).

We denote by USC(A) and LSC(A) the collection of all upper-semicontinuous and lower-

semicontinuous functions from A to R, respectively. To state the main result of this section,

Theorem 3.4.3 below, some technical definitions and assumptions concerning the stochastic

processes Xt,x;u· , admissible strategies Ut, and the payoff functions `i, are needed:

Assumption 3.4.1. For all (t, x) ∈ S, θ ∈ T[t,T ], and u,v ∈ Ut, we stipulate the following

assumptions

a. Admissible control policies:

Ut is the set of Ft-progressively measurable processes with values in a given control set.

That is, the value of u := (us)s∈[0,T ] at time s can be viewed as a measurable mapping

(zr∨t − zt)r∈[0,s] 7→ us for all s ∈ [0, T ], see [KS91, Def. 1.11, p. 4] for the details.

b. Stochastic process:

i. Causality: If 1[t,θ]u = 1[t,θ]v, then we have 1[t,θ]X
t,x;u· = 1[t,θ]X

t,x;v· .

ii. Strong Markov property: For each ω ∈ Ω and the sample path (zr)r∈[0,θ(ω)] up to the

stopping time θ, let the random policy uθ ∈ Uθ(ω) be the mapping (z ·∨θ(ω)−zθ(ω)) 7→
u(z ·∧θ(ω) + z ·∨θ(ω) − zθ(ω)) =: uθ.

2 Then,

E
[
`
(
Xt,x;u
θ+s

) ∣∣∣ Fθ
]

= E
[
`
(
X t̄,x̄;ū
θ+s

) ∣∣∣ t̄ = θ, x̄ = Xt,x;u
θ , ū = uθ

]
, P-a.s.

for all bounded measurable functions ` : Rd → R and s ≥ 0.

iii. Continuity of the exit-times: Given initial condition (t0, x0) ∈ S, for all k ∈
{1, · · · , n} and i ∈ {k, · · · , n} the stochastic mapping (t, x) 7→ Xt,x;u

τki (t,x)
is P-a.s.

continuous at (t0, x0) where the stopping times τki are defined as in (3.6).

c. Payoff functions:

(`i)
n
i=1 are lower semicontinuous, i.e., `i ∈ LSC(Rd) for all i ≤ n.

Remark 3.4.2. Some remarks on the above assumptions are in order:

◦ Assumption 3.4.1.a. implies that the admissible policies u ∈ Ut take action at time t

independent of future information arriving at s > t. This is known as the non-anticipative

strategy and is a standard assumption in stochastic optimal control [Bor05].

2Notice that z · ≡ z ·∧θ(ω) + z ·∨θ(ω) − zθ(ω). Thus, the randomness of uθ is referred to the term z.∧θ(ω).
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◦ Assumption 3.4.1.b. imposes three constraints on the process Xt,x;u· defined on the pre-

scribed probability space: i) causality of the solution processes for a given admissible policy

ii) strong Markov property iii) continuity of exit-time. The causality property is always

satisfied in practical applications; uniqueness of the solution process Xt,x;u· under any

admissible control process u guarantees it. The class of Strong Markov processes is fairly

large; for instance, it contains the solution of SDEs under some mild assumptions on the

drift and diffusion terms [Kry09, Thm. 2.9.4]. The almost sure continuity of the exit-time

with respect to the initial condition of the process is the only potentially restrictive part

of the assumptions. Note that this condition does not always hold even for deterministic

processes with continuous trajectories. One may need to impose conditions on the process

and possibly the sets involved in motion planning in order to satisfy continuity of the

mapping (t, x) 7→ Xt,x;u

τki (t,x)
at the given initial condition with probability one. We shall

elaborate on this issue and its ramifications for a class of diffusion processes in Section

3.5.

◦ Assumption 3.4.1.c. imposes a fairly standard assumption on the payoff functions. In

case `i is the indicator function of a given set, for example in (3.3), this assumption

requires the set to be open. This issue will be addressed in more details in Subsection

3.5.3, in particular how it can be reconciled with Assumption 3.2.2.a..

Let function Jk : S× U0 → R be

Jk(t, x;u) := E
[ n∏

i=k

`i
(
Xt,x;u

τki

)]
,

where
(
τki
)n
i=k

are as defined in (3.6).

The following Theorem, the main result of this section, establishes a dynamic programming

argument for the value function Vk in terms of the “successor” value functions (Vj)
n
j=k+1, all

defined as in (3.6). For ease of notation, we shall introduce deterministic times τkk−1, τ
k
n+1, and

a trivial constant value function Vn+1.

Theorem 3.4.3 (Dynamic Programming Principle). Consider the value functions (Vj)
n
j=1 and

the sequential stopping times (τkj )nj=k introduced in (3.6) where k ∈ {1, · · · , n}. Under As-

sumptions 3.4.1, for all (t, x) ∈ S and family of stopping times {θu,u ∈ Ut} ⊂ T[t,T ], we have

Vk(t, x) ≤ sup
u∈Ut

E

[ n+1∑

j=k

1{τkj−1≤θu<τkj }V
∗
j

(
θu, Xt,x;u

θu

) j−1∏

i=k

`i
(
Xt,x;u

τki

)]
, (3.7a)

Vk(t, x) ≥ sup
u∈Ut

E

[ n+1∑

j=k

1{τkj−1≤θu<τkj }Vj∗
(
θu, Xt,x;u

θu

) j−1∏

i=k

`i
(
Xt,x;u

τki

)]
, (3.7b)

where V ∗j and Vj∗ are, respectively, the upper and the lower semicontinuous envelope of Vj,

τkk−1 := t, Vn+1 ≡ 1, and τkn+1 is any constant time strictly greater than T , say τkn+1 := T + 1.

Proof. See Appendix 3.8.2.
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In our context the DPP proposed in Theorem 3.4.3 allows us to characterize the value

function (3.6) through a sequence of value functions (Vj)
n
j=k+1. That is, (3.7a) and (3.7b)

impose mutual constraints on a value function and subsequent value functions in the sequence.

Moreover, the last function in the sequence is fixed to a constant by construction. Therefore,

assuming that an algorithm to sequentially solve for these mutual constraints can be established,

one could in principle use it to compute all value functions in the sequence and solve the original

motion planning problem. In Section 3.5 we show how, for a class of controlled diffusion

processes, the constraints imposed by (3.7) reduce to PDEs that the value functions need to

satisfy. This enables the use of numerical PDE solution algorithms for this purpose.

Remark 3.4.4 (Measurability). Theorem 3.4.3 introduces DPP’s in a weaker sense than the

standard DPP in stochastic optimal control problems [FS06]. Namely, one does not need to

verify the measurability of the value functions Vk in (3.3) so as to apply the DPP’s. Notice

that in general this measurability issue is non-trivial due to the supremum operation running

over possibly uncountably many policies.

3.5 The Case of Controlled Diffusions

In this section we come to the last step in our construction. We demonstrate how the DPP

derived in Section 3.4, in the context of controlled diffusion processes, gives rise to a series of

PDE’s. Each PDE is understood in the discontinuous viscosity sense with boundary conditions

in both Dirichlet (pointwise) and viscosity senses. This paves the way for using PDE numerical

solvers to numerically approximate the solution of our original motion planning problem for

specific examples. We demonstrate an instance of such an example in Section 3.6.

We first introduce formally the standard probability space setup for SDEs, then proceed

with some preliminaries to ensure that the requirements of the proposed DPP, Assumptions

3.4.1, hold. The section consists of subsections concerning PDE derivation and boundary

conditions along with further discussions on how to deploy existing PDE solvers to numerically

compute our PDE characterization.

Let Ω be C
(
[0, T ],Rzd

)
, the set of continuous functions from [0, T ] into Rzd , and let (zt)t≥0

be the canonical process, i.e., zt(ω) := ωt. We consider P as the Wiener measure on the filtered

probability space (Ω,F ,F), where F is the smallest right continuous filtration on Ω to which

the process (zt)t≥0 is adapted. Let us recall that Ft := (Ft,s)s≥0 is the auxiliary subfiltration

defined as Ft,s := σ
(
zr∨t − zt, r ∈ [0, s]

)
. Let U ⊂ Rdu be a control set, and Ut denote the set

of all Ft- progressively measurable mappings into U. For every u = (ut)t≥0 we consider the

Rd-valued SDE3

dXs = f(Xs, us) ds+ σ(Xs, us) dWs, Xt = x, s ≥ t, (3.8)

where f : Rd×U→ Rd and σ : Rd×U→ Rd×dz are measurable functions, and Ws := zs is the

canonical process.

3We slightly abuse notation and earlier used σ for the sigma algebra as well. However, it will be always clear

from the context to which σ we refer.
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(a) Exterior cone condition holds at every

point of the boundary.

(b) exterior cone condition fails

at the point x—the only possi-

ble exterior cone at x is a line.

Figure 3.4: Exterior cone condition of the boundary

Assumption 3.5.1. We stipulate that

a. U ⊂ Rm is compact;

b. f and σ are continuous and Lipschitz in first argument uniformly with respect to the

second;

c. The diffusion term σ of the SDE (3.8) is uniformly non-degenerate, i.e., there exists

δ > 0 such that for all x ∈ Rd and u ∈ U, ‖σ(x, u)σ>(x, u)‖ > δ.

It is well-known that under Assumptions 3.5.1.a. and 3.5.1.b. there exits a unique strong

solution to the SDE (3.8) [Bor05]; let us denote it by
(
Xt,x;u
s

)
s≥t. For future notational

simplicity, we slightly modify the definition of Xt,x;u
s , and extend it to the whole interval [0, T ]

where Xt,x;u
s := x for all s in [0, t].

In addition to Assumptions 3.5.1 on the SDE (3.8), we impose the following assumption on

the motion planning sets that allows us to guarantee the continuity of sequential exit-times, as

required for the DPP obtained in the preceding section.

Assumption 3.5.2 (Exterior Cone Condition). The open sets (Ai)
n
i=1 satisfy the following

condition: for every i ∈ {1, · · · , n}, there are positive constants h, r an Rd-value bounded map

η : Aci → Rd such that

Brt(x+ η(x)t) ⊂ Aci for all x ∈ Aci and t ∈ (0, h]

where Br(x) denotes an open ball centered at x and radius r and Aci stands for the complement

of the set Ai.

Remark 3.5.3 (Smooth Boundary). If the set Ai is bounded and its boundary ∂Ai is smooth,

then Assumption 3.5.2 holds. Furthermore, boundaries with corners may also satisfy Assump-

tion 3.5.2; Figure 3.4 depicts two different examples.
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3.5.1 A Sequential PDEs

In the context of SDEs, we show how the abstract DPP of Theorem 3.4.3 results in a sequence of

PDEs, to be interpreted in the sense of discontinuous viscosity solutions; for the general theory

of viscosity solutions we refer to [CIL92] and [FS06]. For numerical solutions to these PDEs,

one also needs appropriate boundary conditions which is addressed in the next subsection.

To apply the proposed DPP, one has to make sure that Assumptions 3.4.1 are satisfied.

As pointed out in Remark 3.4.2, the only nontrivial assumption in the context of SDEs is

Assumption 3.4.1.b.iii. The following proposition addresses this issue, and allows us to employ

the DPP of Theorem 3.4.3 for the main result of this subsection.

Proposition 3.5.4. Consider the SDE (3.8) where Assumptions 3.5.1 hold. Suppose the open

sets (Ai)
n
i=1 ⊂ B(Rd) satisfy the exterior cone condition in Assumption 3.5.2. Let

(
ΘA1:n
i

)n
i=1

be the respective sequential exit-times as defined in Definition 3.3.1. Given intermediate times

(Ti)
n
i=1 and control policy u ∈ Ut, for any i ∈ {1. · · · , n}, initial condition (t, x) ∈ S, and

sequence of initial conditions (tm, xm)→ (t, x), we have

lim
m→∞

τi(tm, xm) = τi(t, x) P-a.s., τi(t, x) := ΘA1:n
i (t, x) ∧ Ti.

As a consequence, the stochastic mapping (t, x) 7→ Xt,x;u
τi(t,x) is continuous with probability one,

i.e., lim
m→∞

Xtm,xm;u
τi(tm,xm) = Xt,x;u

τi(t,x) P-a.s. for all i.

Proof. See Appendix 3.8.3.

Let us recall again the Dynkin Operator associated with the SDE (3.8), as also introduced

in the Chapter 2.

Definition 3.5.5 (Dynkin Operator). Given u ∈ U, we denote by Lu the Dynkin operator

(also known as the infinitesimal generator) associated to the SDE (3.8) as

LuΦ(t, x) := ∂tΦ(t, x) + f(x, u).∂xΦ(t, x) +
1

2
Tr[σ(x, u)σ>(x, u)∂2

xΦ(t, x)],

where Φ is a real-valued function smooth on the interior of S, with ∂tΦ and ∂xΦ denoting the

partial derivatives with respect to t and x, respectively, and ∂2
xΦ denoting the Hessian matrix

with respect to x.

Theorem 3.5.6 is the main result of this subsection, which provides a characterization of the

value functions Vk in terms of Dynkin operator in Definition 3.5.5 in the interior of the set of

interest, i.e., [0, Tk[×Ak. We refer to [Kal97, Thm. 17.23] for details on the above differential

operator.

Theorem 3.5.6 (Dynamic Programming Equation). Consider the system (3.8), and suppose

that Assumptions 3.5.1 hold. Let the value functions Vk : S → Rd be as defined in (3.6),

where the sets (Ai)
n
i=1 satisfy Assumption 3.5.2, and the payoff functions (`i)

n
i=1 are all lower

semicontinuous. Then,
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3.5 The Case of Controlled Diffusions

◦ Vk∗ is a viscosity supersolution of

− sup
u∈U
LuVk∗(t, x) ≥ 0 on [0, Tk[×Ak;

◦ V ∗k is a viscosity subsolution of

− sup
u∈U
LuV ∗k (t, x) ≤ 0 on [0, Tk[×Ak.

Proof. The proof follows the same technique as in the proof of Theorem 2.4.10, which is briefly

sketched in Appendix 3.8.3.

3.5.2 Boundary Conditions

To numerically solve the PDE of Theorem 3.5.6, one needs boundary conditions on the com-

plement of the set where the PDE is defined. This requirement is addressed in the following

proposition.

Proposition 3.5.7 (Boundary Conditions). Suppose that the hypotheses of Theorem 3.5.6

hold. Then the value functions Vk introduced in (3.6) satisfy the following boundary value

conditions:

Dirichlet: Vk(t, x) = Vk+1(t, x)`k(x) on [0, Tk]×Ack
⋃
{Tk} × Rd (3.9a)

Viscosity:





lim sup
Ak3x′→x

t′↑t

Vk(t
′, x′) ≤ V ∗k+1(t, x)`∗k(x) on [0, Tk]× ∂Ak

⋃{Tk} ×Ak

lim inf
Ak3x′→x

t′↑t

Vk(t
′, x′) ≥ Vk+1∗(t, x)`k(x) on [0, Tk]× ∂Ak

⋃{Tk} ×Ak
(3.9b)

Proof. See Appendix 3.8.3.

Proposition 3.5.7 provides boundary condition for Vk in both Dirichlet (pointwise) and

viscosity senses. The Dirichlet boundary condition (3.9a) is the one usually employed to nu-

merically compute the solution via PDE solvers, whereas the viscosity boundary condition

(3.9b) is required for theoretical support of the numerical schemes and comparison results.

Remark 3.5.8. In the SDE setting, one can, without loss of generality, extend the class of ad-

missible policies in the definition of Vk to U0, i.e., Vk(t, x) = supu∈U0 Jk(t, x;u); for a rigorous

technology to prove this assertion see [BT11, Remark 5.2]. Thus, Vk is lower semicontinuous

as it is a supremum over a fixed family of lower semicontinuous functions, see Lemma 3.8.2 in

Appendix 3.8.3. In this light, one may argue that in the viscosity boundary condition (3.9b),

the second assertion is subsumed by the Dirichlet boundary condition (3.9a).

3.5.3 Discussion on Numerical Issues

For the class of controlled diffusion processes (3.8), Subsection 3.5.1 developed a PDE charac-

terization of the value function Vk within the set [0, Tk[×Ak along with boundary conditions
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Chapter 3. Stochastic Motion Planning

in terms of the successor value function Vk+1 provided in Subsection 3.5.2. Since Vn+1 ≡ 1,

one can infer that Theorem 3.5.6 and Proposition 3.5.7 provide a series of PDE where the last

one has known boundary condition, while the boundary conditions of earlier in the sequence

are determined by the solution of subsequent PDE, i.e., Vk+1 provides boundary conditions for

the PDE corresponding to the value function Vk. Let us highlight once again that the basic

motion planning maneuver involving only two sets is effectively the same as the first step of

this series of PDEs and was studied in Chapter 2.

Before proceeding with numerical solutions, we need to properly address two technical

concerns:

(i) On the one hand, for the definition (3.2a) we need to assume that the goal set Gi is closed

so as to allow continuous transition into Gi; see Assumption 3.2.2.a. and the following

discussion. On the other hand, in order to invoke the DPP argument of Section 3.4 and its

consequent PDE in Subsection 3.5.1, we need to impose that the payoff functions (`i)
n
i=1

are all lower semicontinuous; see Assumption 3.4.1.c. In the case of the value function V

in (3.3a), this constraint results in (Gi)
n
i=1 all being open, which in general contradicts

Assumption 3.2.2.a..

(ii) Most of the existing PDE solvers provide theoretical guarantees for continuous viscosity

solutions, e.g., [Mit05]. Theorem 3.5.6, on the other hand, characterizes the solution to

the motion planning problem in terms of discontinuous viscosity solutions. Therefore,

it is a natural question whether we could employ any of available numerical methods to

approximate the solution of our desired value function.

Let us initially highlight the following points: Concerning (i) the contradiction is not ap-

plicable for the motion planning initial set (3.2b) since the goal set Gi can be simply chosen to

be open without confining the continuous transitions. Concerning (ii), we would like to stress

that this discontinuous formulation is inevitable since the value functions defined in (3.3) are

in general discontinuous, and any PDE approach has to rely on discontinuous versions.

To address the above concerns, we propose an ε-conservative but precise way of charac-

terizing the motion planning initial set. Given (Wi, Gi) ∈ B(Rd) ×B(Rd), let us construct a

smaller goal set Gεi ⊂ Gi such that Gεi := {x ∈ Gi| dist(x,Gci ) ≥ ε}.4 For sufficiently small

ε > 0 one may observe that Wi\Gεi satisfies Assumption 3.5.2. Note that this is always possible

if Wi \Gi satisfies Assumption 3.5.2 since one can simply take ε < h/2, where h is as defined

in Assumption 3.5.2. Figure 3.5 depicts this situation.

Formally we define the payoff function `εi : Rd → R as follows:

`εi (x) :=

(
1− dist(x,Gεi )

ε

)
∨ 0.

Replacing the goal sets Gεi and payoff functions `εi in (3.3a), we arrive at the value function

V ε(t, x) := sup
u∈Ut

E

[
n∏

i=1

`εi
(
Xt,x;u
ηεi

)
]
, ηεi := Θ

Bε1:n
i ∧ T, Bε

i := Wi \Gεi .

4dist(x,A) := infy∈A ‖x− y‖, where ‖ · ‖ stands for the Euclidean norm.
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Figure 3.5: Construction of the sets Gεi from Gi as described in Subsection 3.5.3

It is straightforward to inspect that V ε ≤ V since Gεi ⊂ Gi. Moreover, with a similar technique

as in Theorem 2.5.1 (see the proof in Section 2.8.3), one may show that V (t, x) = limε↓0 V ε(t, x)

on the set (t, x) ∈ [t, T [×Rd, which indicates that the approximation scheme can be arbitrarily

precise. Note that the approximated payoff functions `εi are, by construction, Lipschitz contin-

uous that in light of uniform continuity of the process, Lemma 3.8.4 in Appendix 3.8.3, leads

to the continuity of the value function V ε.5 Hence, the discontinuous PDE characterization of

Subsection 3.5.1 can be approximated arbitrarily closely in the continuous regime.

Let us recall that having reduced the motion planning problems to PDEs, numerical meth-

ods and computational algorithms exist to approximate its solution [Mit05]. In Section 3.6 we

demonstrate how to use such methods to address practically relevant problems. In practice,

such methods are effective for systems of relatively small dimension due to the curse of dimen-

sionally. To alleviate this difficulty and extend the method to large problems, we can leverage

on ADP [dFVR03, DFVR04, CRVRL06] or other advances in numerical mathematics, such as

tensor trains [KO10, KS11]. The link between motion planning and the PDEs through DPP is

precisely what allows us to capitalize on any such developments in the numerics.

3.6 Application to a Biological Switch Example

When modeling uncertainty in biochemical reactions, one often resorts to countable Markov

chain models [Wil06] which describe the evolution of molecular numbers. Due to the Markov

property of chemical reactions, one can track the time evolution of the probability distribution

for molecular populations as a family of ordinary differential equations called the chemical

master equation (CME) [AGA09, ESKPG05], also known as the forward Kolmogorov equation.

Though close to the physical reality, the CME is particularly difficult to work with analyti-

cally. One therefore typically employs different approximate solution methods, for example the

Finite State Projection method [Kha] or the moment closure method [SH07]. Such approxima-

tion method resorts to approximating discrete molecule numbers by a continuum and capturing

the stochasticity in their evolution through a stochastic differential equation. This stochastic

continuous-time approximation is called the chemical Langevin equation or the diffusion ap-

proximation, see for example [Kha] and the reference therein. The Langevin approximation can

be inaccurate for chemical species with low copy numbers; it may even assign a negative number

5This continuity result can, alternatively, be deduced via the comparison result of the viscosity characteriza-

tion of Theorem 3.5.6 together with boundary conditions (3.9b) [CIL92].
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to some molecular species. To circumvent this issue we assume here that the species of interest

come in sufficiently high copy numbers to make the Langevin approximation reasonable.

Multistable biological systems are often encountered in nature [BSS01]. In this section we

consider the following chemical Langevin formulation of a bistable two gene network:

{
dXt =

(
f(Yt,ux)− µxXt

)
dt+

√
f(Yt,ux)dW 1

t +
√
µxXtdW

2
t , X0 = x0

dYt =
(
g(Xt,uy)− µyYt

)
dt+

√
g(Xt,uy)dW

3
t +

√
µyYtdW

4
t , Y0 = y0

(3.10)

where Xt and Yt are the concentration of the two repressor proteins with the respective degrada-

tion rates µx and µy; (W i
t )t≥0 are independent standard Brownian motion processes. Functions

f and g are repression functions that describe the impact of each protein on the other’s rate

of synthesis controlled via some external inputs ux and uy.

In the absence of exogenous control signals, the authors of [Che00] study sufficient conditions

on the drifts f and g under which the system dynamic (3.10) without the diffusion term has

two (or more) stable equilibria. In this case, system (3.10) can be viewed as a biological switch

network. The theoretical results of [Che00] are also experimentally investigated in [GCC00] for

a genetic toggle switch in Escherichia coli.

Here we consider the biological switch dynamics where the production rates of proteins

are influenced by external control signals; experimental constructs that can be used to provide

such inputs have recently been reported in the literature [MSSO+11]. The level of repression

is described by a Hill function, which models cooperativity of binding as follows:

f(y, u) :=
θn1

1 k1

yn1 + θn1
1

u, g(x, u) :=
θn2

2 k2

xn2 + θn2
2

u,

where θi are the threshold of the production rate with respective exponents ni, and ki are the

production scaling factors. The parameter u represents the role of external signals that affect

the production rates, for which the control sets are Ux := [ux, ux] and Uy := [uy, uy]. In this

example we consider system (3.10) with the following parameters: θi = 40, µi = 0.04, ki = 4

for both i ∈ {1, 2}, and exponents n1 = 4, n2 = 6. Figure 3.6(a) depicts the drift nullclines and

the equilibria of the system. The equilibria za and zc are stable, while zb is the unstable one.

We should remark that the “stable equilibrium” of SDE (3.10) is understood in the absence of

the diffusion term as the noise may very well push the states from one stable equilibrium to

another.

We first aim to steer the number of proteins toward a target set around the unstable

equilibrium within a certain time horizon, say T1, by synthesizing appropriate input signals ux
and uy . During this task we opt to avoid the region of attraction of the stable equilibria as

well as low numbers for each protein; the latter justifies our Langevin model being well-posed

in the region of interest. These target and avoid sets are denoted, respectively, by the closed

sets B and A in Figure 3.6(b). In the second phase of the task, once the trajectory visits the

target set B, it is required to keep the molecular populations within a slightly larger margin

around the unstable equilibrium for some time, say T2; Figure 3.6(b) depicts this maintenance

margin by the open set C. In the context of reachability, the second phase is known as viability

[Aub91, AP98].
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Figure 3.6: State space of the biological switch (3.10) with desired motion planning sets.

In view of motion planning events introduced in Definition 3.2.1, the first phase of the

path can be expressed as (Ac  B)≤T1 , and the second phase as (C
T2−→ C); see (4.28) for

the detailed definitions of these symbols. By defining the joint process Zt,z;u· :=
[
Xt,x;u· , Y t,y;u·

]
,

with the initial condition z := [x, y] and controller u := [ux,uy], the desired excursion is a

combination of the events studied in the preceding sections and, with a slight abuse of notation,

can be expressed by
{
Zt,z;u· |= (Ac  B)≤T1 ◦ (C

T2−→ C)
}
.

Though the desired path mixes the two events of Definition 3.2.1, one can still invoke the

framework of Section 3.3 and introduce the following value functions:

V1(t, z) := sup
u∈Ut

E
[
1B
(
Zt,z;u
τ11

)
1C
(
Zt,z;u
τ12

)]
, (3.11a)

V2(t, z) := sup
u∈Ut

E
[
1C
(
Zt,z;u
τ22

)]
, (3.11b)

where τ1
1 and τ2

2 are defined in (3.6) with sets A1 := (A ∪ B)c and A2 := C. We define the

stopping time τ1
2 := ΘA1:2

2 ∧ (τ1
1 + T2) to address the concatenation of heterogeneous events in

our specification..

The solution of the motion planning objective is the value function V1 in (3.11a), which

in view of Theorem 3.5.6 is characterized by the Dynkin PDE operator in the interior of

[0, T1[×(A ∪B)c. However, we first need to compute V2 in (3.11b) to provide boundary condi-

tions for V1 according to

V1(t, z) = 1B(z)V2(t, z), (t, z) ∈ [0, T1]× (A ∪B)
⋃
{T1} × R2. (3.12)

It is straightforward to observe that the boundary condition for the value function V2 is

V2(t, z) = 1C(z), (t, z) ∈ [0, T1 + T2]× Cc
⋃
{T1 + T2} × R2.
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(a) V2 in case of full controllability over both pro-

duction rates.

(b) V2 in case only the production rate of protein

x is controllable.

Figure 3.7: The value function V2 as defined in (3.11b) corresponding to probability of staying

in C for 120 time units.

Therefore, we need to solve the PDE of V2 backward from the time T1 +T2 to T1 together with

the above boundary condition. Then, the value function V1 can be computed via solving the

same PDE from T1 to 0 with boundary condition (3.12). The Dynkin operator Lu reduces to

sup
u∈U
Luφ(t, x, y)

= max
u∈U

[
∂tφ+ ∂xφ

(
f(y, ux)− µxx

)
+ ∂yφ

(
g(x, uy)− µyy

)

+
1

2
∂2
xφ
(
f(y, ux) + µxx

)
+

1

2
∂2
yφ
(
g(x, uy) + µyy

)]

= ∂tφ−
(
∂xφ−

1

2
∂2
xφ
)
µxx−

(
∂yφ−

1

2
∂2
yφ
)
µyy

+ max
ux∈[ux,ux]

[
f(y, ux)

(
∂xφ+

1

2
∂2
xφ
)]

+ max
uy∈[uy ,uy ]

[
g(x, uy)

(
∂yφ+

1

2
∂2
yφ
)]
.

Thanks to the linearity of the drift term in u, an optimal policy can be expressed in terms of

derivatives of the value functions V1 and V2 as

u∗x(t, x, y) =

{
ux(t, x, y) if ∂xVi(t, x, y) + 1

2∂
2
xVi(t, x, y) ≥ 0,

ux(t, x, y) if ∂xVi(t, x, y) + 1
2∂

2
xVi(t, x, y) < 0,

u∗y(t, x, y) =

{
uy(t, x, y) if ∂yVi(t, x, y) + 1

2∂
2
yVi(t, x, y) ≥ 0,

uy(t, x, y) if ∂yVi(t, x, y) + 1
2∂

2
yVi(t, x, y) < 0,

where i ∈ {1, 2} corresponds to the phase of the motion.

For this system we investigate two scenarios: one where full control over both production

rates is possible and one where only the production rate of protein x can be controlled. Ac-

cordingly, in the first scenario we set ux = uy = 0 and ux = uy = 2 while in the second we set

ux = 0, ux = 2 and uy = uy = 1. Figure 3.7 depicts the probability distribution of staying in set

C within the time horizon T2 = 120 time units 6 in terms of the initial conditions (x, y) ∈ R2.

6Notice that the half-life of each protein is assumed to be 17.32 time units
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(a) V1 in case of full controllability over the pro-

duction rates.

(b) V1 in case only the production rate of protein

x is controllable.

Figure 3.8: The value function V1 as defined in (3.11a) corresponding to probability of staying

in C for 120 time units, once it reaches B while avoiding A within 60 time units.

V2 is zero outside set C, as the process has obviously left C if it starts outside it. Figures 3.7(a)

and 3.7(b) demonstrate the first and second scenarios, respectively. Note that in the second

case the probability of success dramatically decreases in comparison to the first. This result

indicates the importance of full controllability of the production rates for the achievement of

the desired control objective.

Figure 3.8 depicts the probability of successively reaching set B within the time horizon

T1 = 60 time units and staying in set C for T2 = 120 time units thereafter. Since the objective is

to avoid A, the value function V1 takes zero value on A. Figures 3.8(a) and 3.8(b) demonstrate

the first and second control scenarios, respectively. It is easy to observe the non-smooth

behavior of the value function V1 on the boundary of set B in Figure 3.8(b). This is indeed a

consequence of the boundary condition (3.12). All simulations in this subsection were obtained

using the Level Set Method Toolbox [Mit05] (version 1.1), with a grid 121× 121 in the region

of interest.

3.7 Summary and Outlook

We introduced different notions of stochastic motion planning problems. Based on a class of

stochastic optimal control problems, we characterized the set of initial conditions from which

there exists an admissible policy to execute the desired maneuver with probability no less than

some pre-specified value. We then established a weak DPP in terms of auxiliary value functions.

Subsequently, we focused on a case of diffusions as the solution of a controlled SDE, and

investigated the required conditions to apply the proposed DPP. It turned out that invoking

the DPP one can solve a series of PDEs in a recursive fashion to numerically approximate

the desired initial set as well as the admissible policy for the motion planning specifications.

Finally, the performance of the proposed stochastic motion planning notions was illustrated

for a biological switch network.
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For future work, as Theorem 3.4.3 holds for the broad class of stochastic processes whose

sample paths are right continuous with left limits, one may study the required conditions of

the proposed DPP (Assumptions 3.4.1) for a larger class of stochastic processes, e.g., controlled

Markov jump-diffusions. Furthermore, motivated by the fact that full state measurements may

not be available in practice, an interesting question is to address the motion planning objective

with imperfect information, i.e., an admissible control policy would be only allowed to utilize

the information of the process Ys := h(Xs) where h : Rd → Rdy is a given measurable mapping.

3.8 Appendix

This Appendix collects the missing proofs throughout the chapter.

3.8.1 Proofs of Section 3.3

Proof of Lemma 3.3.2. Let τA be the first exit-time from the set Ai:

τAi(t, x) := inf{s ≥ 0 : Xt,x;u
t+s /∈ Ai}. (3.13)

We know that τA is an Ft-stopping time [EK86, Thm. 1.6, Chapter 2]. Let ω( · ) 7→ ϑs
(
ω( · )

)
:=

ω(s+ · ) be the time-shift operator. From the definition it follows that for all i ≥ 0

ΘA1:n
i+1 = ΘA1:n

i + τAi ◦ ϑΘ
A1:n
i

.

Now the assertion follows directly in light of the measurability of the mapping ϑ and right

continuity of the filtration Ft; see [EK86, Prop. 1.4, Chapter 2] for more details in this regard.

Before proceeding with the proof of Theorem 3.3.3, we start with a fact which is an imme-

diate consequence of right continuity of the process Xt,x;u· :

Fact 3.8.1. Fix a control policy u ∈ Ut and an initial condition (t, x) ∈ S. Let (Ai)
n
i=1 ⊂ B(Rd)

be a sequence of open sets. Then, for all i ∈ {1, · · · , n}

Xt,x;u

Θ
A1:n
i

/∈ Ai, on
{

ΘA1:n
i <∞

}
,

where
(
ΘA1:n
i

)n
i=1

are the sequential exit-times in the sense of Definition 3.3.1.

Proof of Theorem 3.3.3. We first show (3.4). Observe that it suffices to prove that

{
Xt,x;u· |=

[
(W1  G1) ◦ · · · ◦ (Wn  Gn)

]
≤T

}
=

n⋂

i=1

{
Xt,x;u
ηi ∈ Gi

}
(3.14)

for all initial conditions (t, x) and policies u, where the stopping time ηi is as defined in (3.3a).

Let ω belong to the left-hand side of (3.14). In view of the definition (3.1a), there exists a set

of instants (si)
n
i=1 ⊂ [t, T ] such that for all i, Xt,x;u

si (ω) ∈ Gi while Xt,x;u
r (ω) ∈ Wi \ Gi =: Bi

for all r ∈ [si−1, si[, where we set s0 = t. It then follows by an induction argument that
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ηi(ω) = ΘB1:n
i = si, which immediately leads to Xt,x;u

ηi(ω)(ω) ∈ Gi for all i ≤ n. This proves the

relation “ ⊂ ” between the left- and right-hand sides of (3.14). Now suppose that ω belongs

to the right-hand side of (3.14). Then, we have Xt,x;u
ηi(ω)(ω) ∈ Gi for all i ≤ n. In view of

the definition of stopping times ηi in (3.3a), it follows that Xt,x;u
r (ω) ∈ Bi := Wi \ Gi for

all r ∈ [ηi−1(ω), ηi(ω)[. Introducing the time sequence si := ηi(ω) implies the relation “ ⊃ ”

between the left- and right-hand sides of (3.14). Together with preceding argument, this implies

(3.14).

To prove (3.5) we only need to show that

{
Xt,x;u· |= (W1

T1−→ G1) ◦ · · · ◦ (Wn
Tn−→ Gn)

}
=

n⋂

i=1

{
Xt,x;u
η̃i

∈ Gi ∩Wi

}
(3.15)

for all initial conditions (t, x) and policies u, where the stopping time η̃i is introduced in (3.3b).

To this end, let us fix (t, x) ∈ S and u ∈ Ut, and assume that ω belongs to the left-hand side

of (3.15). By definition (3.1b), for all i ≤ n we have Xt,x;u
Ti

(ω) ∈ Gi and Xt,x;u
r (ω) ∈ Wi for

all r ∈ [Ti−1, Ti]. By a straightforward induction, we see that η̃i(ω) = Ti, and consequently

Xt,x;u
η̃i(ω)(ω) ∈ Gi ∩Wi for all i ≤ n. This establishes the relation “ ⊂ ” between the left- and

right-hand sides of (3.15). Now suppose ω belongs to the right-hand side of (3.15). Then, for

all i ≤ n we have Xt,x;u
η̃i(ω)(ω) ∈ Gi ∩Wi. By virtue of Fact 3.8.1 and an induction argument

once again, it is guaranteed that η̃i(ω) = Ti, and consequently it follows that Xt,x;u
Ti

(ω) ∈ Gi
and Xt,x;u

r (ω) ∈ Wi for all r ∈ [Ti−1, Ti]. This establishes the relation “ ⊃ ” in (3.15), and the

assertion follows.

3.8.2 Proofs of Section 3.4

Before proceeding with the proof of Theorem 3.4.3, we need a preparatory lemma.

Lemma 3.8.2. Under Assumptions 3.4.1.b.iii. and 3.4.1.c., the function S 3 (t, x) 7→ Jk(t, x;u) ∈
R is lower semicontinuous for all k ∈ {1, · · · , n} and control policy u ∈ U0.

Proof. Fix k ∈ {1, . . . , n}. It is obvious that the function Jk is uniformly bounded since `k are.

Therefore,

lim inf
(s,y)→(t,x)

Jk
(
s, y;u

)
= lim inf

(s,y)→(t,x)
E
[ n∏

i=k

`i
(
Xs,y;u

τki (s,y)

)]
≥ E

[
lim inf

(s,y)→(t,x)

n∏

i=k

`i
(
Xs,y;u

τki (s,y)

)]

≥ E
[ n∏

i=k

lim inf
(s,y)→(t,x)

`i
(
Xs,y;u

τki (s,y)

)]
≥ E

[ n∏

i=k

`i
(
Xt,x;u

τki (s,y)

)]
= Jk(t, x;u),

where the inequality in the first line follows from the Fatou’s lemma, and the second inequality

in the second line is a direct consequence of Assumptions 3.4.1.b.iii. and 3.4.1.c.

Proof of Theorem 3.4.3. The proof extends the main result of Theorem 2.4.7 on the so-called

reach-avoid maneuver. Let u ∈ Ut, θ := θu ∈ T[t,T ], and uθ be the random policy as introduced
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in Assumption 3.4.1.b.ii. Then we have

E

[ n∏

i=k

`i
(
Xt,x;u

τki

) ∣∣∣ Fθ
]

=
n+1∑

j=k

1{τkj−1≤θ<τkj }E
[ n∏

i=j

`i
(
Xt,x;u

τki

) ∣∣∣ Fθ
] j−1∏

i=k

`i
(
Xt,x;u

τki

)

=
n+1∑

j=k

1{τkj−1≤θ<τkj }Jj
(
θ,Xt,x;u

θ ;uθ
) j−1∏

i=k

`i
(
Xt,x;u

τki

)
(3.16a)

≤
n+1∑

j=k

1{τkj−1≤θ<τkj }Vj
(
θ,Xt,x;u

θ

) j−1∏

i=k

`i
(
Xt,x;u

τki

)
(3.16b)

where (3.16a) follows from Assumption 3.4.1.b.ii. and right continuity of the process, and

(3.16b) is due to the fact that uθ ∈ Uθ(ω) for each realization ω ∈ Ω. In light of the tower

property of conditional expectation [Kal97, Thm. 5.1], arbitrariness of u ∈ Ut, and obvious

inequality Vj ≤ V ∗j , we arrive at (3.7a).

To prove (3.7b), consider uniformly bounded upper semicontinuous functions (φj)
n
j=k ⊂

USC(S) such that φj ≤ Vj∗ on S. Mimicking the ideas in the proof of Theorem 2.4.7 and

due to Lemma 3.8.2, one can construct an admissible control policy uεj for any ε > 0 and

j ∈ {k, · · · , n} such that

φj(t, x)− 3ε ≤ Jj(t, x;uεj) ∀(t, x) ∈ S. (3.17)

Let us fix u ∈ Ut and ε > 0, and define

vε := 1[t,θ]u+ 1]θ,T ]

n∑

j=k

1{τkj−1≤θ<τkj }u
ε
j , (3.18)

where uεj satisfies (3.17). Notice that Assumption 3.4.1.a. ensures vε ∈ Ut. By virtue of the

tower property, Assumptions 3.4.1.b.i. and 3.4.1.b.ii., and the assertions in (3.17) and (3.18),

it follows

Vk(t, x) ≥ Jk(t, x;vε) = E

[
E
[ n∏

i=k

`i
(
Xt,x;vε

τki

) ∣∣∣ Fθ
]]

= E

[ n+1∑

j=k

1{τkj−1≤θ<τkj }Jj
(
θ,Xt,x;u

θ ;uεj
) j−1∏

i=k

`i
(
Xt,x;u

τki

)]

= E

[ n+1∑

j=k

1{τkj−1≤θ<τkj }
(
φj
(
θ,Xt,x;u

θ

)
− 3ε

) j−1∏

i=k

`i
(
Xt,x;u

τki

)]
.

Now, consider a sequence of increasing continuous functions (φmj )m∈N that converges point-wise

to Vj∗. The existence of such sequence is ensured by Lemma 3.8.2, see [Ren99, Lemma 3.5].

By boundedness of (`j)
n
i=1 and the dominated convergence Theorem, we get

Vk(t, x) ≥ E
[ n+1∑

j=k

1{τkj−1≤θ<τkj }
(
Vj∗
(
θ,Xt,x;u

θ

)
− 3ε

) j−1∏

i=k

`i
(
Xt,x;u

τki

)]

Since u ∈ Ut and ε > 0 are arbitrary, this leads to (3.7b).
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3.8.3 Proofs of Section 3.5

Proof of Proposition 3.5.4. The key step in the proof relies on the two Assumptions 3.5.1.c.

and 3.5.2. There is a classical result on non-degenerate diffusion processes indicating that if

the process starts from the tip of a cone, then it enters the cone with probability one [RB98,

Corollary 3.2, p. 65]. This hints at the possibility that the aforementioned Assumptions together

with almost sure continuity of the strong solution of the SDE (3.8) result in the continuity of

sequential exit-times ΘA1:n
i and consequently τi. In the following we shall formally work around

this idea.

Let us assume that tm ≤ t for notational simplicity, but one can effectively follow similar

arguments for tm > t. By the definition of the SDE (3.8),

Xtm,xm;u
r = Xtm,xm;u

t +

∫ r

t
f
(
Xtm,xm;u
s , us

)
ds+

∫ r

t
σ
(
Xtm,xm;u
s , us

)
dWs P-a.s.

By virtue of [Kry09, Thm. 2.5.9, p. 83], for all q ≥ 1 we have

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtm,xm;u

r

∥∥2q
]
≤ C1(q, T,K)E

[∥∥x−Xtm,xm;u
t

∥∥2q
]

≤ 22q−1C1(q, T,K)E
[
‖x− xm‖2q +

∥∥xm −Xtm,xm;u
t

∥∥2q
]
,

whence, in light of [Kry09, Corollary 2.5.12, p. 86], we get

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtn,xn;u

r

∥∥2q
]
≤ C2(q, T,K, ‖x‖)

(
‖x− xn‖2q + |t− tn|q

)
. (3.19)

In the above inequalities, K is the Lipschitz constant of f and σ mentioned in Assumption

3.5.1.b.; C1 and C2 are constant depending on the indicated parameters. Hence, in view of

Kolmogorov’s continuity criterion [Pro05, Corollary 1 Chap. IV, p. 220], one may consider a

version of the stochastic process Xt,x;u· which is continuous in (t, x) in the topology of uniform

convergence on compacts. This leads to the fact that P-a.s, for any ε > 0, for all sufficiently

large m,

Xtm,xm;u
r ∈ Bε

(
Xt0,x0;u
r

)
, ∀r ∈ [tm, T ], (3.20)

where Bε(y) denotes the ball centered at y and radius ε. For simplicity, let us define the

shorthand τmi := τi(tm, xm).7 By the definition of τi and Definition 3.3.1, since the set Ai is

open, we conclude that

∃ε > 0,
⋃

s∈[τ0i−1,τ
0
i [

Bε(Xt0,x0;u
s ) ∩Aci = ∅ P-a.s. (3.21)

By definition τ0
0 := τ0(t0, x0) = t0. As an induction hypothesis, let us assume τ0

i−1 is P-a.s.

continuous, and we proceed with the induction step. One can deduce that (3.21) together with

(3.20) implies that P-a.s. for all sufficiently large m,

Xtm,xm;u
r ∈ Ai, ∀r ∈ [tm, τ

0
i [.

7This notation is only employed in this proof.
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In conjunction with P-a.s. continuity of sample paths, this immediately leads to

lim inf
m→∞

τmi := lim inf
m→∞

τi(tm, xm) ≥ τi(t0, x0) P-a.s. (3.22)

On the other hand, as mentioned earlier, the Assumptions 3.5.1.c. and 3.5.2 imply that the

set of sample paths that hit the boundary of Ai and do not enter the set is negligible [RB98,

Corollary 3.2, p. 65]. Hence

∀δ > 0, ∃s ∈
[
ΘA1:n
i (t0, x0),ΘA1:n

i (t0, x0) + δ
[
, Xt0,x0;u

s ∈ Ai P-a.s.

Hence, in light of (3.20), P-a.s. there exists ε > 0, possibly depending on δ, such that for all

sufficiently large m we have

Xtm,xm;u
s ∈ Bε(Xt0,x0;u

s ) ⊂ Aci
Recalling the induction hypothesis, we note that in accordance with the definition of sequen-

tial stopping times ΘA1:n
i , one can infer that ΘA1:n

i (tm, xm) ≤ s < ΘA1:n
i (t0, x0) + δ. From

arbitrariness of δ and the definition of τi, this leads to

lim sup
m→∞

τi(tm, xm) := lim sup
m→∞

(
ΘA1:n
i (tm, xm) ∧ Ti

)
≤ τi(t0, x0) P-a.s.,

where in conjunction with (3.22), P-a.s. continuity of the map (t, x) 7→ τi(t, x) at (t0, x0) for

any i ∈ {1, · · · , n} follows. The assertion follows by induction.

The continuity of the mapping (t, x) 7→ Xt,x;u
τi(t,x) follows immediately from the almost sure

continuity of the stopping time τi(t, x) in conjunction with the almost sure continuity of the ver-

sion of the stochastic process Xt,x;u· in (t, x); for the latter let us note again that Kolmogorov’s

continuity criterion guarantees the existence of such a version in light of (3.19).

Proof of Theorem 3.5.6. Here we briefly sketch the proof in words, and refer the reader to the

proof of Theorem 2.4.10 for detailed arguments concerning the same technology to prove the

assertion of the Theorem. Note that any Ft-progressively measurable policy u ∈ Ut satisfies

Assumptions 3.4.1.a.. It is a classical result [Øks03, Chap. 7] that the strong solution Xt,x;u· sat-

isfies Assumptions 3.4.1.b.i. and 3.4.1.b.ii. Furthermore, Proposition 3.5.4 together with almost

sure path-continuity of the strong solution guarantees Assumption 3.4.1.b.iii. Hence, having

met all the required assumptions of Theorem 3.4.3, one can employ the DPP (3.7). Namely,

to establish the assertion concerning the supersolution, for the sake of contradiction, one can

assume that there exists (t0, x0) ∈ [0, Tk[×Ak, and a smooth function φ dominated by the value

function Vk∗ where (Vk∗−φ)(t0, x0) = 0, such that for some δ > 0, − supu∈U Luφ(t0, x0) < −2δ.

Since φ is smooth, the map (t, x) 7→ Luφ(t, x) is continuous. Therefore, there exist u ∈ U and

r > 0 such that Br(t0, x0) ⊂ [0, Tk[×Ak and −Luφ(t, x) < −δ for all (t, x) in Br(t0, x0). Let us

define the stopping time θ(t, x) as the first exit time of trajectory Xt,x;u· from the ball Br(t0, x0).

Note that by continuity of solutions to (3.8), t < θ(t, x) P- a.s. for all (t, x) ∈ Br(t0, x0). There-

fore, selecting r > 0 sufficiently small so that θ < τk, and applying Itô’s formula, we see that

for all (t, x) ∈ Br(t0, x0), φ(t, x) < E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
. Now it suffices to take a sequence

(tm, xm, Vk(tm, xm))m∈N converging to (t0, x0, Vk∗(t0, x0)). For sufficiently large m we have

V (tm, xm) < E
[
Vk∗
(
θ(tm, xm), Xtm,xm;u

θ(tm,xm)

)]
which, in view of the fact that θ(tm, xm) < τk ∧ Tk,

contradicts the DPP in (3.7a). The subsolution property is proved effectively in a similar

fashion.
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To provide boundary conditions, in particular in the viscosity sense (3.9b), we need some

preliminaries as follows:

Fact 3.8.3. Consider a control policy u ∈ Ut and initial condition (t, x) ∈ S. Given a sequence

of (Ai)
n
i=k ⊂ B(Rd) and stopping time θ ∈ T[t,T ], for all k ∈ {1, · · · , n} and j ≥ i ≥ k we have

ΘAk:n
j (t, x) = ΘAi:n

j

(
θ,Xt,x;u

θ

)
on

{
ΘAk:n
i−1 (t, x) ≤ θ < ΘAk:n

i (t, x)
}

Lemma 3.8.4. Suppose that the conditions of Proposition 3.5.4 hold. Given a sequence of

control policies (um)m∈N ⊂ U and initial conditions (tm, xm)→ (t, x), we have

lim
m→∞

∥∥∥Xt,x;um
τi(t,x) −X

tm,xm;um
τi(tm,xm)

∥∥∥ = 0 P-a.s., τi(t, x) := ΘA1:n
i (t, x) ∧ Ti.

Note that Lemma 3.8.4 is indeed a stronger statement than Proposition 3.5.4 as the desired

continuity is required uniformly with respective to the control policy. Let us highlight that the

stopping times τi(t, x) and τi(tm, xm) are both effected by control policies um. But nonetheless,

the mapping (t, x) 7→ Xt,x;um
τi is almost surely continuous irrespective of the policies (um)m∈N.

For the proof we refer to an identical technique used in the proof of Lemma 2.4.11 in Section

2.8.2.

Proof of Proposition 3.5.7. The boundary condition in (3.9a) is an immediate consequence of

the definition of the sequential exit-times introduced in Definition 3.3.1. Namely, for any initial

state x ∈ Ack we have ΘAk:n
k (t, x) = t, and in light of Fact 3.8.3 for all i ∈ {k, · · · , n}

ΘAk:n
i (t, x) = Θ

Ak+1:n

i (t, x), ∀(t, x) ∈ [0, Tk]×Ack
⋃
{Tk} × Rd.

Since τkk = t for the above initial conditions, then Xt,x;u

τkk
= x which yields to (3.9a).

For the boundary conditions (3.9b), we show the first assertion; the second follows similarly.

Let
(
tm, xm

)
→
(
t, x
)

where tm < Tk and xm ∈ Ak. Invoking the DPP in Theorem 3.4.3 and

introducing θ := τkk+1 in (3.7a), we reach

Vk(tm, xm) ≤ sup
u∈Ut

E
[
V ∗k+1

(
τkk , X

tm,xm;u

τkk

)
`k
(
Xtm,xm;u

τkk

)]
.

Note that one can replace a sequence of policies in the above inequalities to attain the supre-

mum running over all policies. This sequence, of course, depends on the initial condition

(tm, xm). Hence, let us denote it via two indices (um,j)j∈N. One can deduce that there exists

a subsequence of (umj )j∈N such that

lim
m→∞

Vk(tm, xm) ≤ lim
m→∞

lim
j→∞

E
[
V ∗k+1

(
τkk , X

tm,xm;um,j
τkk

)
`k
(
X
tm,xm;um,j
τkk

)]

≤ lim
j→∞

E
[
V ∗k+1

(
τkk , X

tj ,xj ;umj
τkk

)
`k
(
X
tj ,xj ;umj
τkk

)]

≤ E
[

lim
j→∞

V ∗k+1

(
τkk , X

tj ,xj ;umj
τkk

)
`∗k
(
X
tj ,xj ;umj
τkk

)]
(3.23)

= V ∗k+1(t, x)`∗k(x) (3.24)
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where (3.23) and (3.24) follow, respectively, from Fatou’s lemma and the uniform continuity

assertion in Lemma 3.8.4. Let us recall that by Lemma 3.8.4 we know τkk (tj , xj)→ τkk (t, x) = t

as j → ∞ uniformly with respect to the policies (umj )j∈N. Similar analysis would follow for

the second part of (3.9b) by using the other side of DPP in (3.7b).
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CHAPTER4
A Tractable Approach with Probabilistic

Performance Index

The second part of this thesis presents a novel perspective along with a scalable methodology

to design a fault detection and isolation (FDI) filter for high dimensional nonlinear systems.

Previous approaches on FDI problems are either confined to linear systems or they are only

applicable to low dimensional dynamics with specific structures. In contrast, shifting attention

from the system dynamics to the disturbance inputs, we propose a relaxed design perspective

to train a linear residual generator given some statistical information about the disturbance

patterns. That is, we propose an optimization-based approach to robustify the filter with

respect to finitely many signatures of the nonlinearity. We then invoke existing results in ran-

domized optimization to provide theoretical guarantees for the performance of the proposed

filer. Finally, motivated by a cyber-physical attack emanating from the vulnerabilities intro-

duced by the interaction between IT infrastructure and power system, we deploy the developed

theoretical results to detect such an intrusion before the functionality of the power system is

disrupted.

4.1 Introduction

The task of FDI in control systems involves generating a diagnostic signal sensitive to the

occurrence of specific faults. This task is typically accomplished by designing a filter with

all available information as inputs (e.g., control signals and given measurements) and a scalar

output that implements a non-zero mapping from the fault to the diagnostic signal, which is

known as the residual, while decoupling unknown disturbances. The concept of residual plays

a central role for the FDI problem which has been extensively studied in the last two decades.

In the context of linear systems, Beard and Jones [Bea71, Jon73] pioneered an observer-

based approach whose intrinsic limitation was later improved by Massoumnia et al. [MVW89].

Following the same principles but from a game theoretic perspective, Speyer and coauthors

thoroughly investigated the approach in the presence of noisy measurements [CS98b]. Nyberg

and Frisk extended the class of systems to linear differential-algebraic equation (DAE) appar-

ently subsuming all the previous linear classes [NF06]. This extension greatly enhanced the

applicability of FDI methods since the DAE models appear in a wide range of applications,
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including electrical systems, robotic manipulators, and mechanical systems.

For nonlinear systems, a natural approach is to linearize the model at an operating point,

treat the nonlinear higher order terms as disturbances, and decouple their contributions from

the residual by employing robust techniques [SF91, HP96]. This strategy only works well

if either the system remains close to the chosen operating point, or the exact decoupling is

possible. The former approach is often limited, since in the presence of unknown inputs the

system may have a wide dynamic operating range, which in case linearization leads to a large

mismatch between linear model and nonlinear behavior. The latter approach was explored

in detail by De Persis and Isidori, who in [PI01] proposed a differential geometric approach

to extend the unobservibility subspaces of [Mas86, Section IV], and by Chen and Patton,

who in [CP82, Section 9.2] dealt with a particular class of bilinear systems. These methods

are, however, practically limited by the need to verify the required conditions on the system

dynamics and transfer them into a standard form, which essentially involve solving partial

differential equations, restricting the application of the method to relatively low dimensional

systems.

Motivated by this shortcoming, in this chapter we develop a novel approach to FDI which

strikes a balance between analytical and computational tractability, and is applicable to high

dimensional nonlinear dynamics. For this purpose, we propose a design perspective that ba-

sically shifts the emphasis from the system dynamics to the family of disturbances that the

system may encounter. We assume that some statistical information of the disturbance pat-

terns is available. Following [NF06] we restrict the FDI filters to a class of linear operators

that fully decouple the contribution of the linear part of the dynamics. Thanks to the linearity

of the resulting filter, we then trace the contribution of the nonlinear term to the residual,

and propose an optimization-based methodology to robustify the filter to the nonlinearity sig-

natures of the dynamics by exploiting the statistical properties on the disturbance signals.

The optimization formulation is effectively convex and hence tractable for high dimensional

dynamics. Some preliminary results in this direction were reported in [MEVAL12], while an

application of our approach in the presence of measurement noise was successfully tested for

wind turbines in [SMEKL13].

The performance of the proposed methodology is illustrated in an application to an emerg-

ing problem in cyber security of power networks. In modern power systems, the cyber-physical

interaction of IT infrastructure (SCADA systems) with physical power systems renders the

system vulnerable not only to operational errors but also to malicious external intrusions. As

an example of this type of cyber-physical interaction we consider here the Automatic Gener-

ation Control (AGC) system, which is one of the few control loops in power networks that

are closed over the SCADA system without human operator intervention. In earlier work

[MEVM+10, MEVM+11] we have shown that, having gained access to the AGC signal, an

attacker can provoke frequency deviations and power oscillations by applying sophisticated

attack signals. The resulting disruption can be serious enough to trigger generator out-of-step

protection relays, leading to load shedding and generator tripping. Our earlier work, however,

also indicated that an early detection of the intrusion may allow one to disconnect the AGC

and limit the damage by relying solely on the so-called primary frequency controllers. In this
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chapter we show how to mitigate this cyber-physical security concerns by using the proposed

FDI scheme to develop a protection layer which quickly detects the abnormal signals generated

by the attacker. This approach to enhancing the cyber-security of power transmission systems

led to an EU patent sponsored by ETH Zurich [MEVAL].

The chapter is organized as follows. In Section 4.2 a formal description of the FDI problem

as well as the outline of the proposed methodology is presented. A general class of nonlinear

models is described in Section 4.3. Then, reviewing residual generation for the linear models,

we develop an optimization-based framework for nonlinear systems in Section 4.4. Theoretical

guarantees are also provided in the context of randomized algorithms. We apply the developed

methodology to the AGC case study in Section 4.5, and finally conclude with some remarks

and directions for future work in Section 4.6. For better readability, the technical proofs of

Sections 4.4.2 and 4.4.3 are moved to the appendices.

Notation

Here is a partial notation list which will be also explained in more details later in the chapter:

• The symbols N and R+ denote the set of natural and nonnegative real numbers, respectively.

• Let A ∈ Rn×m be an n×m matrix with real values. Then, the transpose of the matrix A is

denoted by Aᵀ ∈ Rm×n.

• Let v := [v1, · · · , vn]ᵀ be a vector in Rn. Then ‖v‖2 :=
√∑n

i=1 v
2
i is the Euclidean vector

norm. The infinity norm of v is also denoted by ‖v‖∞ := maxi≤n |vi|.
• Given A ∈ Rn×m, ‖A‖2 := σ(A), where σ is the maximum singular value of the matrix.

• Wn denotes the set of piece-wise continuous (p.w.c.) functions taking values in Rn.

• Wn
T is the restriction of Wn into the time interval [0, T ], which is endowed with the L2-inner

product, i.e., 〈e1, e2〉 :=
∫ T

0 eᵀ1(t)e2(t)dt with associated L2-norm ‖e‖L2 :=
√
〈e, e〉.

• The linear operator p :Wn →Wn is the distributional derivative operator. In particular, if

e : R+ → Rn is a smooth mapping then p[e(t)] := d
dte(t).

• Let G be a linear matrix transfer function. Then ‖G‖H∞ := supω∈R σ
(
G(jω)

)
, where σ is

the maximum singular value of the matrix G(jω).

• Given a probability space (Ω,F,P), we denote by Pn the n-fold product probability measure

on (Ωn,Fn).

4.2 Problem Statement and Outline of the Proposed Approach

In this section, we provide the formal description of the FDI problem as well as our new design

perspective. We will also outline our methodology to tackle the proposed perspective.
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4.2.1 Formal Description

The objective of the FDI design is to use all information to generate a diagnostic signal to

alert the operators to the occurrence of a specific fault. Consider a general dynamical system

as in Figure 4.1 with its inputs categorized into (i) unknown inputs d, (ii) fault signal f ,

and (iii) known inputs u. The unknown input d represents unknown disturbances that the

dynamical system encounters during normal operation. The known input u contains all known

signals injected to the system which together with the measurements y are available for FDI

tasks. Finally, the input f is a fault (or an intrusion) which cannot be directly measured and

represents the signal to be detected.

System Dynamics FDI Filter

Figure 4.1: General configuration of the FDI filter

The FDI task is to design a filter whose input are the known signals (u and y) and whose

output (known as the residual and denoted by r) differentiates whether the measurements are a

consequence of some normal disturbance input d, or due to the fault signal f . Formally speak-

ing, the residual can be viewed as a function r(d, f), and the FDI design is ideally translated

as the mapping requirements

d 7→ r(d, 0) ≡ 0, (4.1a)

f 7→ r(d, f) 6= 0, ∀d (4.1b)

where condition (4.1a) ensures that the residual of the filter, r, is not excited when the system

is perturbed by normal disturbances d, while condition (4.1b) guarantees the filter sensitivity

to the fault f in the presence of any disturbance d.

The state of the art in FDI concentrates on the system dynamics, and imposes restrictions

to provide theoretical guarantees for the required mapping conditions (4.1). For example,

the authors in [NF06] restrict the system to linear dynamics, whereas [HKEY99, PI01] treat

nonlinear systems but impose necessary conditions in terms of a certain distribution connected

to their dynamics. In an attempt to relax the perfect decoupling condition, one may consider

the worst case scenario of the mapping (4.1) in a robust formulation as follows:

RP :





min
γ

γ

s.t.
∥∥r(d, 0)

∥∥ ≤ γ, ∀d ∈ D
f 7→ r(d, f) 6= 0, ∀d ∈ D,

(4.2)

where D is set of normal disturbances, γ is the alarm threshold of the designed filter, and the

minimization is running over a given class of FDI filters. In view of formulation (4.2), an alarm

is only raised whenever the residual exceeds γ, i.e., the filter avoids any false alarm. This,

however, comes at the cost of missed detections of the faults whose residual is not bigger than
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the threshold γ. In the literature, the robust perspective RP has also been studied in order for a

trade-off between disturbance rejection and fault sensitivity for a certain class of dynamics, e.g.,

see [CP82, Section 9.2] for bilinear dynamics and [FF12] for multivariate polynomial systems.

4.2.2 New Design Perspective

Here we shift our attention from the system dynamics to the class of unknown inputs D. We

assume that the disturbance signal d comes from a prescribed probability space and relax

the robust formulation RP by introducing probabilistic constraints instead. In this view, the

performance of the FDI filter is characterized in a probabilistic fashion.

Assume that the signal d is modeled as a random variable on the prescribed probability

space (Ω,F ,P), which takes values in a metric space endowed with the corresponding Borel

sigma-algebra. Assume further that the class of FDI filters ensures the measurability of the

mapping d 7→ r where r also belongs to a metric space. In light of this probabilistic framework,

one may quantify the filter performance from different perspectives; in the following we propose

two of them:

AP :





min
γ

γ

s.t. E
[
J
(
‖r(d, 0)‖

)]
≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D,
CP :





min
γ

γ

s.t. P
(
‖r(d, 0)‖ ≤ γ

)
≥ 1− ε

f 7→ r(d, f) 6= 0, ∀d ∈ D,
(4.3)

where E[ · ] in AP is meant with respect to the probability measure P, and ‖ · ‖ is the corre-

sponding norm in the r space. The function J : R+ → R+ in AP and ε ∈ (0, 1) in CP are design

parameters. To control the filter residual generated by d, the payoff function J is required to be

in class K∞, i.e., J is strictly increasing and J(0) = 0 [Kha92, Def 4.2, p. 144]. Minimizations

in the above optimization problems are over a class of FDI filters which is chosen a priori, as

detailed in subsequent sections.

Two formulations provide different probabilistic interpretations of fault detection. The

program AP stands for “Average Performance” and takes all possible disturbances into account,

but in accordance with their occurrence probability in an averaging sense. The program CP

stands for “Chance Performance” and ignores an ε-fraction of the disturbance patterns and

only aims to optimize the performance over the rest of the disturbance space. Note that in the

CP perspective, the parameter ε is an additional design parameter to be chosen a priori.

Let us highlight that the proposed perspectives rely on the probability distribution P,

which requires prior information about possible disturbance patterns. That is, unlike the

existing literature, the proposed design prioritizes between disturbance patterns in terms of

their occurrence likelihood. From a practical point of view this requirement may be natural;

in Section 4.5 we will describe an application of this nature.

4.2.3 Outline of the Proposed Methodology

We employ randomized algorithms to tackle the formulations in (4.3). We generate n indepen-

dent and identically distributed (i.i.d.) scenarios (di)
n
i=1 from the probability space (Ω,F ,P),

73



Chapter 4. A Tractable Approach with Probabilistic Performance Index

and consider the following optimization problems as random counterparts of those in (4.3):

ÃP :





min
γ

γ

s.t. 1
n

∑n
i=1 J

(
‖r(di, 0)‖

)
≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D
C̃P :





min
γ

γ

s.t. max
i≤n
‖r(di, 0)‖ ≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D,

(4.4)

Notice that the optimization problems ÃP and C̃P are naturally stochastic as they depend on

the generated scenarios (di)
n
i=1, which is indeed a random variable defined on n-fold product

probability space (Ωn,Fn,Pn). Therefore, their solutions are also random variables. In this

work, we first restrict the FDI filters to a class of linear operators in which the random pro-

grams (4.4) are effectively convex, and hence tractable. In this step, the FDI filter is essentially

robustified to n signatures of the dynamic nonlinearity. Subsequently, invoking existing results

on randomized optimization (e.g., [CG08, Cal10, Han12]) we will provide probabilistic guar-

antees on the relation of programs (4.3) and their probabilistic counterparts in (4.4), whose

precision is characterized in terms of the number of scenarios n. We should highlight that the

design parameter ε of CP in (4.3) does not explicitly appear in the random counterpart C̃P

in (4.4). However, as we will clarify in 4.4.3, the parameter ε contributes to the probabilistic

guarantees of the design.

4.3 Model Description and Basic Definitions

In this section we introduce a class of nonlinear models along with some basic definitions, which

will be considered as the system dynamics in Figure 4.1 throughout the chapter. Consider the

nonlinear differential-algebraic equation (DAE) model

E(x) +H(p)x+ L(p)z + F (p)f = 0, (4.5)

where the signals x, z, f are assumed to be piece-wise continuous (p.w.c.) functions from

R+ into Rnx ,Rnz ,Rnf , respectively; we denote the spaces of such signals by Wnx ,Wnz ,Wnf ,

respectively. Let nr be the number of rows in (4.5), and E : Rnx → Rnr be a Lipschitz contin-

uous mapping. The operator p is the distributional derivative operator [Ada75, Section I], and

H,L, F are polynomial matrices in the operator p with nr rows and nx, nz, nf columns, respec-

tively. In the setup of Figure 4.1, the signal x represents all unknowns signals, e.g., internal

states of the system dynamics and unknown disturbances d. The signal z contains all known

signals, i.e., it is an augmented signal including control input u and available measurements y.

The signal f stands for faults or intrusion which is the target of detection. We refer to [Shc07]

and the references therein for general theory of nonlinear DAE systems and the regularity of

their solutions.

One may extend the space of functions x, z, f to Sobolev spaces, but this is outside the

scope of our study. On the other hand, if these spaces are restricted to the (resp. right) smooth

functions, then the operator p can be understood as the classical (resp. right) differentiation

operator. Throughout this chapter we will focus on continuous-time models, but one can

obtain similar results for discrete-time models by changing the operator p to the time-shift

74



4.4 Fault Detection and Isolation Filters

operator. We will think of the matrices H(p), L(p) and F (p) above either as linear operators

on the function spaces (in which case p will be interpreted as a generalized derivative operator

as explained above) or as algebraic objects (in which case p will be interpreted as simply a

complex variable). The reader is asked to excuse this slight abuse of the notation, but the

interpretation should be clear from the context.

Let us first show the generality of the DAE framework of (4.5) by the following example.

Consider the classical nonlinear ordinary differential equation

{
GẊ(t) = EX

(
X(t), d(t)

)
+AX(t) +Buu(t) +Bdd(t) +Bff(t)

Y (t) = EY
(
X(t), d(t)

)
+ CX(t) +Duu(t) +Ddd(t) +Dff(t)

(4.6)

where u( · ) is the input signal, d( · ) the unknown disturbance, Y ( · ) the measured output,

X( · ) the internal variables, and f( · ) a faults (or an attack) signal to be detected. Parameters

G,A,Bu, Bd, Bf , Du, Dd, Df are constant matrices and functions EX , EY are Lipschitz contin-

uous mappings with appropriate dimensions. One can easily fit the model (4.6) into the DAE

framework of (4.5) by defining

x :=

[
X

d

]
, z :=

[
Y

u

]
,

E(x) :=

[
EX(x)

EY (x)

]
, H(p) :=

[
−pG+A Bd

C Dd

]
, L(p) :=

[
0 Bu
−I Du

]
, F (p) :=

[
Bf
Df

]
.

Following [NF06], with a slight extension to a nonlinear dynamics, let us formally characterize

all possible observations of the model (4.5) in the absence of the fault signal f :

M :=
{
z ∈ Wnz

∣∣ ∃x ∈ Wnx : E(x) +H(p)x+ L(p)z = 0
}

; (4.7)

This set is known as the behavior of the system [PW98].

Definition 4.3.1 (Residual Generator). A proper linear time invariant filter r := R(p)z is a

residual generator for (4.5) if for all z ∈M, it holds that lim
t→∞

r(t) = 0.

Note that by Definition 4.3.1 the class of residual generators in this study is restricted to a

class of linear transfer functions where R(p) is a matrix of proper rational functions of p.

Definition 4.3.2 (Fault Sensitivity). The residual generator introduced in Definition 4.3.1 is

sensitive to fault fi if the transfer function from fi to r is nonzero, where fi is the ith elements

of the signal f .

One can inspect that Definition 4.3.1 and Definition 4.3.2 essentially encode the basic

mapping requirements (4.1a) and (4.1b), respectively.

4.4 Fault Detection and Isolation Filters

The main objective of this section is to establish a scalable framework geared towards the design

perspectives AP and CP as explained in Section 4.2. To this end, we first review a polynomial
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characterization of the residual generators and its linear program formulation counterpart for

linear systems (i.e., the case where E(x) ≡ 0). We then extend the approach to the nonlinear

model (4.5) to account for the contribution of E( · ) to the residual, and subsequently provide

probabilistic performance guarantees for the resulting filter.

4.4.1 Residual Generators for Linear Systems

In this subsection we assume E(x) ≡ 0, i.e., we restrict our attention to the class of linear

DAEs. One can observe that the behavior set M can alternatively be defined as

M =
{
z ∈ Wnz

∣∣ NH(p)L(p)z = 0
}
,

where the collection of the rows of NH(p) forms an irreducible polynomial basis for the left

null-space of the matrix H(p) [PW98, Section 2.5.2]. This representation allows one to describe

the residual generators in terms of polynomial matrix equations. That is, by picking a linear

combination of the rows of NH(p) and considering an arbitrary polynomial a(p) of sufficiently

high order with roots with negative real parts, we arrive at a residual generator in the sense of

Definition 4.3.1 with transfer operator

R(p) = a−1(p)γ(p)NH(p)L(p) := a−1(p)N(p)L(p). (4.8)

The above filter can easily be realized by an explicit state-space description with input z and

output r. Multiplying the left hand-side of (4.5) by a−1(p)N(p) leads to

r = −a−1(p)N(p)F (p)f.

Thus, a sensitive residual generator, in the sense of Definition 4.3.1 and Definition 4.3.2, is

characterized by the polynomial matrix equations

N(p)H(p) = 0, (4.9a)

N(p)F (p) 6= 0, (4.9b)

where (4.9a) implements condition (4.1a) above (cf. Definition 4.3.1) while (4.9b) implements

condition (4.1b) (cf. Definition 4.3.2). Both row polynomial vector N(p) and denominator

polynomial a(p) can be viewed as design parameters. Throughout this study we, however, fix

a(p) and aim to find an optimal N(p) with respect to a certain objective criterion related to

the filter performance.

In case there are more than one faults (nf > 1), it might be of interest to isolate the impact

of one fault in the residual from the others. The following remark implies that the isolation

problem is effectively a detection problem.

Remark 4.4.1 (Fault Isolation). Consider model (4.5) and suppose nf > 1. In order to detect

only one of the fault signals, say f1, and isolate it from the other faults, fi, i ∈ {2, · · · , nf},
one may consider the detection problem for the same model but in new representation

E(x) + [H(p) F̃ (p)]

[
x

f̃

]
+ L(p)z + F1(p)f = 0,
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where F1(p) is the first column of F (p), and F̃ (p) := [F2(p), · · · , Fnf (p)], and f̃ := [f2, · · · , fnf ],

see [FKA09, Thm. 2] for more details on fault isolation.

Next, we show how to transform the possibly complex matrix polynomial equations (4.9)

into a linear programming framework.

Lemma 4.4.2 (Linear Programming Characterization). Let N(p) be a feasible polynomial

matrix of degree dN for the inequalities (4.9), where

H(p) :=

dH∑

i=0

Hip
i, F (p) :=

dF∑

i=0

Fip
i, N(p) :=

dN∑

i=0

Nip
i,

and Hi ∈ Rnr×nx, Fi ∈ Rnr×nf , and Ni ∈ R1×nr are constant matrices. Then, the polynomial

matrix inequalities (4.9) are equivalent, up to a scalar, to

N̄H̄ = 0, (4.10a)
∥∥N̄ F̄

∥∥
∞ ≥ 1, (4.10b)

where ‖ · ‖∞ is the infinity vector norm, and

N̄ :=
[
N0 N1 · · · NdN

]

H̄ :=




H0 H1 · · · HdH 0 · · · 0

0 H0 H1 · · · HdH 0
...

...
. . .

. . .
. . . 0

0 · · · 0 H0 H1 · · · HdH



,

F̄ :=




F0 F1 · · · FdF 0 · · · 0

0 F0 F1 · · · FdF 0
...

...
. . .

. . .
. . . 0

0 · · · 0 F0 F1 · · · FdF



.

Proof. It is easy to observe that

N(p)H(p) = N̄H̄[I pI · · · piI]ᵀ, i := dN + dH ,

N(p)F (p) = N̄ F̄ [I pI · · · pjI]ᵀ, j := dN + dF .

Moreover, in light of the linear structure of equations (4.9), one can scale the inequality (4.9b)

and arrive at the assertion of the lemma.

Remark 4.4.3. Strictly speaking, the formulation in Lemma 4.4.2 is not a linear program,

due to the non-convex constraint (4.10b). It is, however, easy to see that if N̄ is a solution to

(4.10), then so is −N̄ . Hence, the inequality (4.10b) can be understood as a family of m linear

programs where m = nf (dF + dN + 1) is the number of columns of F̄ , and nf is the dimension
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of signal f in (4.5). Each of these linear programs focuses on a component of the vector N̄ F̄ ,

replacing the inequality (4.10b) with

N̄ F̄ v ≥ 1, v := [0, · · · , 1, · · · , 0]ᵀ.

Fact 4.4.4. There exists a solution N(p) to (4.9) if and only if Rank [H(p) F (p)] > Rank H(p).

Fact 4.4.4 provides necessary and sufficient conditions for the feasibility of the linear pro-

gram formulation in Lemma 4.4.2; proof is omitted as it is an easy adaptation of the one in

[FKA09, Corollary 3].

4.4.2 Extension to Nonlinear Systems

In the presence of nonlinear terms E(x) 6= 0, it is straightforward to observe that the residual

of filter (4.8) consists of two terms:

r := R(p)z = − a−1(p)N(p)F (p)f︸ ︷︷ ︸
(i)

− a−1(p)N(p)E(x)︸ ︷︷ ︸
(ii)

. (4.11)

Term (i) is the desired contribution of the fault f and is in common with the linear setup.

Term (ii) is due to the nonlinear term E( · ) in (4.5). Our aim here will be to reduce the impact

of E(x) while increasing the sensitivity to the fault f . To achieve this objective, we develop

two approaches to control each of the two terms separately; in both cases we assume that the

degree of the filter (i.e., dN in Lemma 4.4.2) and the denominator (i.e., a(p) in (4.11)) are

fixed, and the aim is to design the numerator coefficients (i.e., N(p) in (4.11)).

Approach (I): Fault Sensitivity

We first focus on fault sensitivity and neglect the contribution of the nonlinear term. To this

end, we assume that the system operates close to an equilibrium point xe ∈ Rnx . Even though

in case of a fault the system may eventually deviate substantially from its nominal operating

point, if the FDI filter succeeds in identifying the fault early, this assumption may still be valid

over the time horizon relevant for fault detection. We assume, without loss of generality, that

lim
x→xe

∥∥E(x)
∥∥

2

‖x− xe‖2
= 0,

where ‖ · ‖2 stands for the Euclidean norm of a vector. If this is not the case, the linear part

of E( · ) can be extracted and included in the linear part of the system.

To increase the sensitivity of the linear filter to the fault f , we revisit the linear programming

formulation (4.10) and seek a feasible numerator N(p) such that the coefficients of the transfer

function N(p)F (p) attain maximum values within the admissible range. This gives rise to the

following optimization problem:




max
N̄

∥∥N̄ F̄
∥∥
∞

s.t. N̄H̄ = 0
∥∥N̄
∥∥
∞ ≤ 1

(4.12)
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where the objective function targets the contribution of the signal f to the residual r. Let

us recall that N̄ F̄ is the vector containing all numerator coefficients of the transfer function

f 7→ r. The second constraint in (4.12) is added to ensure that the solutions remain bounded;

note that thanks to the linearity of the filter this constraint does not influence the performance.

Though strictly speaking (4.12) is not a linear program, in view of Remark 4.4.3 it is easy to

transform it to a family of m different linear programs, where m is the number of columns of

F̄ .

The main problem with this approach is the lack of prior information when the linearization

technique is “precise enough”. That is, how well the filter designed by (4.12) will work depends

on the magnitude of the second term in (4.11), which is due to the nonlinearities E(x) and is

ignored in (4.12). If the term generated by E(x) is large enough for nominal excursions of x

from xe, the filter may lead to false alarms, whereas if we set our thresholds high to tolerate the

disturbance generated by E(x) in nominal conditions, the filter may lead to missed detections.

A direct way toward controlling this trade-off involving the nonlinear term will be the focus of

the second approach.

Approach (II): Robustify to Nonlinearity Signatures

This approach is the main step toward the theoretical contribution of the chapter, and provides

the principle ingredients to tackle the proposed perspectives AP and CP introduced in (4.3).

The focus is on term (ii) of the residual (4.11), in relation to the mapping (4.1a). The idea is

to robustify the filter against certain signatures of the nonlinearity during nominal operation.

In the following we restrict the class of filters to the feasible solutions of polynomial matrix

equations (4.9), characterized in Lemma 4.4.2.

Let us denote the space of all p.w.c. functions from the interval [0, T ] to Rn by Wn
T . We

equip this space with the L2-inner product and the corresponding norm

‖e‖L2 :=
√
〈e, e〉, 〈e, g〉 :=

∫ T

0
eᵀ(t)g(t)dt, e, g ∈ Wn

T .

Consider an unknown signal x ∈ Wnx
T . In the context of the ODEs (4.6) that means we excite

the system with the disturbance d( · ) for the time horizon T . We then stack d( · ) together with

the internal state X( · ) to introduce x := [Xd ]. We define the signals ex ∈ Wnr
T and rx ∈ W1

T

as follows:

ex(t) := E
(
x(t)

)
, rx(t) := −a−1(p)N(p)[ex](t), ∀t ∈ [0, T ]. (4.13)

The signal ex is the “nonlinearity signature” in the presence of the unknown signal x, and the

signal rx is the contribution of the nonlinear term to the residual of the linear filter. Our goal

now is to minimize ‖rx‖L2 in an optimization framework in which the coefficients of polynomial

N(p) are the decision variables and the denominator a(p) is a fixed stable polynomial with the

degree at least the same as N(p).

Lemma 4.4.5. Let N(p) be a polynomial row vector of dimension nr and degree dN , and

a(p) be a stable scalar polynomial with the degree at least dN . For any x ∈ Wnx
T there exists
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ψx ∈ Wnr(dN+1)
T such that

rx(t) = N̄ψx(t), ∀t ∈ [0, T ] (4.14a)

‖ψx‖L2 ≤ C‖ex‖L2 , C :=
√
nr(dN + 1)‖a−1‖H∞ , (4.14b)

where N̄ is the vector collecting all the coefficients of the numerator N(p) as introduced in

Lemma 4.4.2, and the signals ex and rx are defined as in (4.13).

Proof. See Appendix 4.7.1.

Given x ∈ Wnx
T and the corresponding function ψx as defined in Lemma 4.4.5, we have

‖rx‖2L2 = N̄QxN̄
ᵀ, Qx :=

∫ T

0
ψx(t)ψᵀx(t)dt. (4.15)

We call Qx the “signature matrix” of the nonlinearity signature t 7→ ex(t) resulting from the

unknown signal x. Given x and the corresponding signature matrix Qx, the L2-norm of rx in

(4.13) can be minimized by considering an objective which is a quadratic function of the filter

coefficients N̄ subject to the linear constraints in (4.10):




min
N̄

N̄QxN̄
ᵀ

s.t. N̄H̄ = 0
∥∥N̄ F̄

∥∥
∞ ≥ 1

(4.16)

The program (4.16) is not a true quadratic program due to the second constraint. Following

Remark 4.4.3, however, one can show that the optimization program (4.16) can be viewed as

a family of m quadratic programs where m = nf (dF + dN + 1).

In the rest of the subsection, we establish an algorithmic approach to approximate the

matrix Qx for a given x ∈ Wnx
T , with an arbitrary high precision. We first introduce a finite

dimensional subspace of W1
T denoted by

B := span{b0, b1, · · · , bk}, (4.17)

where the collection of bi : [0, T ]→ R is a basis for B. Let Bnr :=
⊗nr

i=1 B be the nr Cartesian

product of the set B, and TB :Wnr
T → Bnr be the L2-orthogonal projection operator onto Bnr ,

i.e.,

TB(ex) =

k∑

i=0

β?i bi, β? := arg min
β

∥∥ex −
k∑

i=0

βibi
∥∥
L2 (4.18)

Let us remark that if the basis of B is orthonormal (i.e., 〈bi, bj〉 = 0 for i 6= j), then β?i =
T∫
0

bi(t)ex(t)dt; we refer to [Lue69, Sec. 3.6] for more details on the projection operator.

Assumption 4.4.6. We stipulate that

(i) The basis functions bi of subspace B are smooth and B is closed under the differentiation

operator p, i.e., for any b ∈ B we have p[b] = d
dtb ∈ B.
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(ii) The basis vectors in (4.17) are selected from an L2-complete basis for W1
T , i.e., for any

e ∈ Wnr
T , the projection error

∥∥e−TB(e)
∥∥
L2 can be made arbitrarily small by increasing

the dimension, k, of subspace B.

The requirements of Assumptions 4.4.6 can be fulfilled for subspaces generated by, for

example, the polynomial or Fourier basis. Thanks to Assumption 4.4.6(i), the linear operator

p can be viewed as a matrix operator. That is, there exists a square matrix D with dimension

k + 1 such that

p[B(t)] =
d

dt
B(t) = DB(t), B(t) := [b0(t), · · · , bk(t)]ᵀ. (4.19)

In Section 4.5.2 we will provide an example of such matrix operator for the Fourier basis. By

virtue of matrix representations of (4.19) we have

N(p)TB(ex) =

dN∑

i=0

Nip
iβ?B =

dN∑

i=0

Niβ
?DiB = N̄D̄B, D̄ :=




β?

β?D
...

β?DdN



, (4.20)

where the vector β? := [β?0 , · · · , β?k] is introduced in (4.18). Let us define the positive semidefi-

nite matrix G := [Gij ] of dimension k + 1 by

Gij :=
〈
a−1(p)[bi], a

−1(p)[bj ]
〉

(4.21)

Therefore, with the aid of equations (4.20) and (4.21) we arrive at

∥∥a−1(p)N(p)TB(e)
∥∥2

L2 = N̄QBN̄ᵀ, QB := D̄GD̄ᵀ, (4.22)

where D̄ and G are defined in (4.20) and (4.21), respectively. Note that the matrices G and

D are built by the data of the subspace B and denominator a(p), whereas the nonlinearity

signature only influences the coefficient β?. The above discussion is summarized in Algorithm

1 with an emphasis on models described by the ODE (4.6). The precision of the algorithm

output is quantified in Theorem 4.4.7.

Theorem 4.4.7. Consider an unknown signal x : [0, T ]→ Rnx in Wnx
T and the corresponding

nonlinearity signature ex and signature matrix Qx as defined in (4.13) and (4.15), respectively.

Let (bi)i∈N ⊂ W1
T be a family of basis functions (bi)i∈N ⊂ W1

T satisfying Assumptions 4.4.6,

and let B be the finite dimensional subspace in (4.17). If ‖ex−TB(ex)‖L2 < δ, where TB is the

projection operator onto Bnr , then

∥∥Qx −QB
∥∥

2
< C̄δ, C̄ :=

(
1 + 2‖ex‖L2

)
C‖a−1‖H∞ , (4.23)

where QB is obtained by (4.22) (the output of Algorithm 1), and C is the same constant as in

(4.14b).

Proof. See Appendix 4.7.1.
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Algorithm 1 Computing the signature matrix Qx in (4.15)

(i) Initialization of the Filter Paramters:

1. Set the filter denominator a(p), the numerator degree dN , and horizon T

2. Set the basis {bi}ki=1 ⊂ W1
T satisfying Assumptions 4.4.6

3. Compute the differentiation matrix D (see (4.19))

4. Compute the matrix G (see (4.21))

(ii) Identification of the Nonlinearity Signature:

1. Input the disturbance pattern d( · ) for time horizon T

2. Set f ≡ 0 in (4.6) and run the system by d( · ) to obtain the internal state X( · )
3. Set the unknown signal x(t) := [Xᵀ(t), dᵀ(t)]ᵀ

4. Set the nonlinearity signature ex(t) :=
[
EᵀX
(
x(t)

)
, EᵀY

(
x(t)

)]ᵀ

(iii) Computation of the Signature Matrix

1. Compute β? from (4.18) (in case of orthonormal basis β?i =
T∫
0

bi(t)ex(t)dt)

2. Compute D̄ from (4.20)

3. Ouput QB := D̄GD̄ᵀ (see (4.22))

We close this subsection with a following remark, a natural extension to robustify the filter

to multiple nonlinearity signatures.

Remark 4.4.8 (Multi Signatures Training). In order to robustify the FDI filter to more than

one unknown signal, say {xi( · )}ni=1, one may introduce an objective function as an average

cost N̄
(

1
n

∑n
i=1Qxi

)
N̄ᵀ or the worst case viewpoint maxi≤n N̄QxiN̄

ᵀ, where Qxi is the signature

matrix corresponding to xi as defined in (4.15).

4.4.3 Proposed Methodology and Probabilistic Performance

The preceding subsection proposed two optimization-based approaches to enhance the FDI

filter design from linear to nonlinear system dynamics. Approach (I) targets the fault sensitivity

while neglecting the nonlinear term of the system dynamics, and Approach (II) offers a QP

framework to robustify the residual with respect to signatures of the dynamic nonlinearities.

Here our aim is to achieve a reconciliation between these two approaches. We subsequently

provide theoretical results from the proposed solutions to the original design perspectives (4.3).

Let (di)
n
i=1 ⊂ D be i.i.d. disturbance patterns generated from the probability space (Ω,F ,P).

For each di, let xi be the corresponding unknown signal with the associated signature matrix

Qxi as defined in (4.15). In regard to the average perspective AP, we propose the two-stage
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(random) optimization program

ÃP1 :





min
γ,N̄

γ

s.t. N̄H̄ = 0
∥∥N̄ F̄

∥∥
∞ ≥ 1

1
n

n∑
i=1

J
(√

N̄QxiN̄
ᵀ
)
≤ γ

(4.24a)

ÃP2 :





max
N̄

∥∥N̄ F̄
∥∥
∞

s.t. N̄H̄ = 0
∥∥N̄
∥∥
∞ ≤ 1

1
n

n∑
i=1

J
(
‖N̄?

1 ‖∞
√
N̄QxiN̄

ᵀ
)
≤ γ?1

(4.24b)

where J : R+ → R+ is an increasing and convex payoff function, and in the second stage

(4.24b) N̄?
1 and γ?1 are the optimizers of the first stage (4.24a), i.e., the programs (4.24) need to

be solved sequentially. Let us recall that the filter coefficients can always be normalized with

no performance deterioration. Hence, it is straightforward to observe that the main goal of the

second stage is only to improve the coefficients of N̄ F̄ (concerning the fault sensitivity) while

the optimality of the first stage (concerning the robustification to nonlinearity signatures) is

guaranteed. Similarly, we also propose the following two-stage program for the perspective CP:

C̃P1 :





min
γ,N̄

γ

s.t. N̄H̄ = 0
∥∥N̄ F̄

∥∥
∞ ≥ 1

max
i≤n

N̄QxiN̄
ᵀ ≤ γ

(4.25a)

C̃P2 :





max
N̄

∥∥N̄ F̄
∥∥
∞

s.t. N̄H̄ = 0
∥∥N̄
∥∥
∞ ≤ 1

‖N̄?
1 ‖2∞

(
max
i≤n

N̄QxiN̄
ᵀ
)
≤ γ?1

(4.25b)

On the computational side, in view of Remark 4.4.3, all the programs in (4.24) and (4.25) are

effectively convex, and hence tractable. In the rest of the subsection we establish a probabilistic

bridge between the solutions to the program (4.24) (resp. (4.25)) and the original perspective

AP (resp. CP) in (4.3) when the class of filters is confined to the linear residuals characterized

in Lemma 4.4.2. For this purpose, we need a technical measurability assumption which is

always expected to hold in practice.

Assumption 4.4.9 (Measurability). We assume that the mapping D 3 d 7→ x ∈ Wnx
T is

measurable.1 In particular, x can be viewed as a random variable on the same probability space

as d.
1The function spaces are endowed with the L2-topology and the respective Borel sigma-algebra.
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Assumption 4.4.9 is referred to the behavior of the system dynamics as a mapping from the

disturbance d to the internal states. In the context of ODEs (4.6), it is well-known that under

mild assumptions (e.g., Lipschitz continuity of EX) the mapping d 7→ X is indeed continuous

[Kha92, Chap. 5], which readily ensures Assumption 4.4.9.

Probabilistic performance of ÃP:

Here we study the asymptotic behavior of the empirical average of E
[
J(‖r‖)

]
uniformly in

the filter coefficients N̄ , which allows us to link the solutions of programs (4.24) to AP. Let

N :=
{
N̄ ∈ Rnr(dN+1) : ‖N̄‖∞ ≤ 1

}
and consider the payoff function of AP in (4.3) as the

mapping φ : N ×Wnx
T → R+:

φ(N̄ , x) := J
(
‖rx‖L2

)
= J

(
‖N̄ψx‖L2

)
, (4.26)

where the second equality follows from Lemma 4.4.5.

Theorem 4.4.10 (Average Performance). Suppose Assumption 4.4.9 holds and the random

variable x is almost surely bounded2. Then, the mapping N̄ 7→ φ(N̄ , x) is a random function.

Moreover, if (xi)
n
i=1 ⊂ Wnx

T are i.i.d. random variables and en is the uniform empirical average

error

en := sup
N̄∈N

{ 1

n

n∑

i=1

φ(N̄ , xi)− E
[
φ(N̄ , x)

]}
, (4.27)

then,

(i) the Strong Law of Large Numbers (SLLN) holds, i.e., lim
n→∞

en = 0 almost surely.

(ii) the Uniform Central Limit Theorem (UCLT) holds, i.e.,
√
nen converges in law to a

Gaussian variable with distribution N(0, σ) for some σ ≥ 0.

Proof. See Appendix 4.7.2 along with required preliminaries.

The following Corollary is an immediate consequence of the UCLT in Theorem 4.4.10 (ii).

Corollary 4.4.11. Let assumptions of Theorem 4.4.10 hold, and en be the empirical average

error (4.27). For all ε > 0 and k < 1
2 , we have

lim
n→∞

Pn
(
nken ≥ ε

)
= 0,

where Pn denotes the n-fold product probability measure on Ωn.

2This assumption may be relaxed in terms of the moments of x, tough this will not be pursued further here.
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Probabilistic performance of C̃P:

The formulation CP in (4.3) is known as chance constrained program which has received

increasing attention due to recent developments toward tractable approaches, in particular via

the scenario counterpart (cf. C̃P in (4.4)) [CC05, CC06, CG08, Cal10]. The crucial requirement

to invoke these results is the convexity of the optimization program to the decision variables.

Due to the non-convexity arising from the constraint ‖N̄ F̄‖∞ ≥ 1, these studies are not directly

applicable to our problem. Here our aim is to exploit the specific structure of this non-convexity

and adapt the aforesaid results accordingly.

Let
(
N̄?
n, γ

?
n

)
be the optimizer obtained through the two-stage programs (4.25) where N̄?

n

is the filter coefficients and γ?n represents the filter threshold; n is referred to the number of

disturbance patterns. Given the filter N̄?
n, let us denote the corresponding filter residual due

to the signal x by rx[N̄∗n]; this is a slight modification of our notation rx in (4.13) to specify

the filter coefficients. To quantify the filter performance, one may ask for the probability

that a new unknown signal x violates the threshold γ?n when the FDI filter is set to N̄?
n (i.e.,∥∥rx[N̄∗n]

∥∥2

L2
> γ∗n). In the FDI literature this violation is known as false alarm, and from the

CP standpoint its occurrence probability is allowed at most to the ε level. In this view the

performance of the filter can be quantified by the event

E
(
N̄?
n, γ

∗
n

)
:=
{
P
(∥∥rx[N̄∗n]

∥∥2

L2 > γ∗n
)
> ε
}
. (4.28)

The event (4.28) accounts for the feasibility of the C̃P solution from the original perspective

CP. Note that the measure P in (4.28) is referred to x whereas the stochasticity of the event

stems from the random solutions
(
N̄?
n, γ

∗
n

)
.3 We proceed with the main result of this part in

regard to the likelihood of the event (4.28).

Theorem 4.4.12 (Chance Performance). Suppose Assumption 4.4.9 holds and (xi)
n
i=1 are

i.i.d. random variables on (Ω,F ,P). Let N̄?
n ∈ Rnr(dN+1) and γ∗n ∈ R+ be the solutions of C̃P,

and measurable in Fn. Then, the set (4.28) is Fn-measurable, and for every β ∈ (0, 1) and

any n such that

n ≥ 2

ε

(
ln
nf (dF + dN + 1)

β
+ nr(dN + 1) + 1

)
,

where dN is the degree of the filter and nf , nr, dF are the system size parameters of (4.5), then

we have

Pn
(
E
(
N̄?
n, γ

∗
n

))
< β.

Proof. See Appendix 4.7.2.

4.5 Cyber-Physical Security of Power Systems: AGC Case Study

In this section, we illustrate the performance of our theoretical results to detect a cyber intrusion

in a two-area power system. Motivated by our earlier studies [MEVM+10, MEVM+11], we

3The measure P is, with slight abuse of notation, the induced measure via the mapping addressed in As-

sumption 4.4.9
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consider the IEEE 118-bus power network equipped with primary and secondary frequency

control, whose essential objective is to regulate frequency and power exchange between the

controlled areas. While the primary frequency control is implemented locally, the secondary

loop, referred also as AGC (Automatic Generation Control), is closed over the SCADA system

without human operator intervention. As investigated in [MEVM+10], the aforesaid interaction

with IT infrastructure may give rise to cyber intrusion that causes unacceptable frequency

deviations with potential consequences toward load shedding or generation tripping. If the

intrusion is, however, detected on time, one may prevent further damage by disconnecting the

AGC. Thus, the FDI scheme may offer a protection layer to address this security concern.

To achieve this goal, invoking the proposed FDI methodology, we construct an FDI filter to

utilize the available measurements to diagnose the AGC intrusion sufficiently fast, despite the

presence of unknown load deviations.

4.5.1 Mathematical Model Description

In this section a multi-machine power system, based only on frequency dynamics, is described

[Andb]. The system is arbitrarily divided into two control areas. The generators are equipped

with primary frequency control and each area is under AGC which adjusts the generating

setpoints of specific generators so as to regulate frequency and maintain the power exchange

between the two areas to its scheduled value.

A. System description

We consider a system comprising of n buses and g number of generators. Let G = {i}g1 denote

the set of generator indices and A1 = {i ∈ G | i in Area 1}, A2 = {i ∈ G | i in Area 2}
the sets of generators that belong to Area 1 and Area 2, respectively. Let also Lktie =

{(i, j)|i, j edges of a tie line from area k to the other areas} where a tie line is a line connect-

ing the two independently controlled areas and let also K = {1, 2} be the set of the indices of

the control areas in the system.

Using the classical generator model every synchronous machine is modeled as constant

voltage source behind its transient reactance. The dynamic states of the system are the rotor

angle δi (rad), the rotor electrical frequency fi (Hz) and the mechanical power (output of the

turbine) Pmi (MW ) for each generator i ∈ G. We also have one more state that represents the

output of the AGC ∆Pagck for each control area k ∈ K.

We denote by EG ∈ Cg a vector consisting of the generator internal node voltages EGi =

|E0
Gi|∠δi for i ∈ G. The phase angle of the generator voltage node is assumed to coincide with

the rotor angle δi and |E0
Gi| is a constant. The voltages of the rest of the nodes are included in

VN ∈ Cn, whose entries are VNi = |VNi|∠θi for i = 1, . . . , n. To remove the algebraic constraints

that appear due to the Kirchhoff’s first law for each node, we retain the internal nodes (behind

the transient reactance) of the generators and eliminate the rest of the nodes. This could be

achieved only under the assumption of constant impedance loads since in that way they can be

included in the network admittance matrix. The node voltages can then be linearly connected

to the internal node voltages and hence to the dynamic state δi. Moreover, this results in a
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reduced admittance matrix that corresponds only to the internal nodes of the generators. The

power flows, which are a function of the node voltages, can be now expressed directly by the

dynamic states of the system. The resulting model of the two area power system is described

by the following set of equations.

δ̇i = 2π(fi − f0),

ḟi =
f0

2HiSBi
(Pmi − Pei(δ)−

1

Di
(fi − f0)−∆Ploadi),

Ṗm,ak =
1

Tch,ak
(P 0

m,ak
+ vak∆P satp,ak

+ wak∆P satagc,k − Pm,ak),

∆Ṗagc,k =
∑

j∈Ak
ckj(fj − f0) +

∑

j∈Ak
bkj(Pmj − Pej (δ)−∆Ploadj )

− 1

TNk
gk(δ, f)− Cpkhk(δ, f)− Kk

TNk
(∆Pagc,k −∆P satagc,k).

where i ∈ G, ak ∈ Ak for k ∈ K. Supperscript sat on the AGC output signal ∆Pagc,k and on

the primary frequency control signal ∆Pp,ak highlights the saturation to which the signals are

subjected. The primary frequency control is given by ∆Pp,i = −(fi − f0)/Si. Based on the

reduced admittance matrix, the generator electric power output is given by

Pei =

g∑

j=1

EGiEGj (G
red
ij cos(δi − δj) +Bred

ij sin(δi − δj)).

Moreover, gk =
∑

(i,j)∈Lktie(Pij − PT 0
12

) and hk = dgk/dt, where the power flow Pij , based on

the initial admittance matrix of the system, is given by

Pij = |VNi ||VNj |(Gij cos(θi − θj) +Bij sin(θi − θj))

All undefined variables are constants, and details on the derivation of the models can be found

in [MEVAL12]. The AGC attack is modeled as an additive signal to the AGC signal. For

instance, if the attack signal is imposed in Area 1, the mechanical power dynamics of Area 1

will be modified as

Ṗm,a1 =
1

Tch,a1
(P 0

m,a1 + va1∆P satp,a1 + wa1
(
∆P satagc1 + f(t)

)
− Pm,a1),

The described model above can be compactly written as

{
Ẋ(t) = h(X(t)) +Bdd(t) +Bff(t)

Y (t) = CX(t)
, (4.29)

where X :=
[
{δi}1:g, {fi}1:g, {Pm,i}1:g, {∆Pagci}1:2

]ᵀ ∈ R3g+2 denotes the internal states vector
comprising rotor angles δi, generators frequencies fi, generated mechanical powers Pm,i, and the
AGC control signal ∆Pagci for each area. The external input d :=

[
{∆Ploadi}1:g

]ᵀ
represents

the unknown load disturbances which will be discussed in the next subsection. The other
external input, f , represents the intrusion signal injected to the AGC of the first area, which
is the target to detect. We assume that the measurements of all the frequencies and generated
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mechanical power are available, i.e., Y =
[
{fi}1:g, {Pm,i}1:g]

ᵀ. The nonlinear function h( · )
and the constant matrices Bd, Bf and C can be easily obtained by the mapping between the
analytical model and (4.29). To transfer the ODE dynamic expression (4.29) into the DAE
(4.5) it suffices to introduce

x :=

[
X −Xe

d

]
, z := Y − CXe

E(x) :=

[
h(X)−A(X −Xe)

0

]
, H(p) :=

[−pI +A Bd
C 0

]
, L(p) :=

[
0

−I

]
, F (p) :=

[
Bf
0

]
,

where Xe is the equilibrium of (4.29), i.e., h(Xe) = 0, and A := ∂h
∂X

∣∣
X=Xe

.

B. Load Deviations and Disturbances

Figure 4.2: Stochastic load fluctuation and prediction error [Anda, p. 59]

In normal operation of power networks there are different sources with different time scales

that give rise to power imbalances, e.g., load fluctuation, load forecast errors, and trading on

electricity market. The high frequency fluctuation often refers to largely uncorrelated stochas-

tic noises on a second or minute time scale, whereas forecast errors usually stems from the

mismatch of predicted and actual consumption on a 15-minute time scale. Figure 4.2 demon-

strates two samples of stochastic load fluctuation and forecast error which may appear at two

different nodes of the network [Anda, p. 59]. The trading on the electricity market has also

impact on the AGC in an hourly framework due to schedule changes at the full hours.

Despite the inherent stochasticity of these disturbances, one may exploit these information

to model the behavior of the load deviations. For example, we can describe the disturbances

of the first two categories in Figure 4.2 via a family of sinusoidal functions concentrated on

different frequency regions, i.e., the high frequency modes correspond to the slower modes

concern the prediction mismatch. In regard to the electricity market, the hourly abrupt changes

in power imbalances can be captured by a step function with a random power. In this light,

the space of load deviations (i.e., the disturbance patterns D in our FDI setting) is described

by

∆Pload(t) := α0 +

η∑

i=1

αi sin(ωit+ φi), t ∈ [0, T ] (4.30)
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where the parameters (αi)
η
i=0, (ωi)

η
i=1 (φi)

η
i=1, and η are random variables whose distributions

induce the probability measure on D.

4.5.2 Diagnosis Filter Design

To design the FDI filter, we set the degree of the filter dN = 7, the denominator a(p) = (p+2)dN ,

and the finite time horizon T = 10 sec. Note that the degree of the filter is significantly less

than the dimension of the system (4.29), which is 59. This is a general advantage of the

residual generator approach in comparison to the observer-based approach where the filter

order is effectively the same as the system dynamics. To compute the signature matrix Qx, we

resort to the finite dimensional approximation QB in Theorem 4.4.7. Inspired by the class of

disturbances in (4.30), we first choose the Fourier basis

bi(t) :=

{
cos( i2ωt) i : even

sin( i+1
2 ωt) i : odd

, ω :=
2π

T
, i ∈ {0, 1, · · · , k} (4.31)

where the number of the basis is chosen k = 80. We should emphasize that there is no restriction

on the basis selection as long as Assumptions 4.4.6 are fulfilled; we refer to [MEVAL12, Sec.

V.B] for another example with a polynomial basis. Given the basis (4.31), it is easy to see that

the differentiation matrix D introduced in (4.19) is

D =




0 0 0 · · · 0 0

0 0 ω · · · 0 0

0 −ω 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 kω

0 0 0 · · · −kω 0




.

We can also compute offline (independent of x) the matrix G in (4.21) with the help of the basis

(4.31) and the denominator a(p). To proceed with Qx of a sample ∆Pload we need to run the

system dynamic (4.29) with the input d( · ) := ∆Pload and compute x(t) := [X(t)ᵀ,∆Pload(t)]
ᵀ

whereX is the internal states of the system. Given the signal x, we then project the nonlinearity

signature t 7→ ex(t) =: E
(
x(t)

)
onto the subspace B (i.e., TB(ex)), and finally obtain Qx from

(4.22). In the following simulations, we deploy the YALMIP toolbox [Lof04] to solve the

corresponding optimization problems.

4.5.3 Simulation Results

A. Test system

To illustrate the FDI methodology we employed the IEEE 118-bus system. The data of the

model are retrieved from a snapshot available at [ref]. It includes 19 generators, 177 lines, 99

load buses and 7 transmission level transformers. Since there were no dynamic data available,

typical values provided by [AF02] were used for the simulations. The network was arbitrarily

divided into two control areas whose nonlinear frequency model was developed in the preceding
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Area 1

Area 2

Figure 4.3: IEEE 118-bus system divided into two control areas
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Figure 4.4: Performance of the FDI filters with step inputs

subsections. Figure 4.3 depicts a single-line diagram of the network and the boundaries of the

two controlled areas where the first and second area contain, respectively, 12 and 7 generators.

B. Numerical results

In the first simulation we consider the scenario that an attacker manipulates the AGC signal of

the first area at Tack = 10 sec. We model this intrusion as a step signal equal to 14 MW injected

into the AGC in Area 1. To challenge the filter, we also assume that a step load deviation

occurs at Tload = 1 sec at node 5. In the following we present the results of two filters: Figure

4.4(a) shows the filter based on formulation (4.12) in Approach (I), which basically neglects

the nonlinear term; Figure 4.4(b) shows the proposed filter in (4.24) based on AP perspective

where the payoff function is J(α) := α2.
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Figure 4.5: The indicator ρ defined in (4.32)

We validate the filters performance with two sets of measurements: first the measurements

obtained from the linearized dynamic (i.e. E(x) ≡ 0); second the measurements obtained from

the full nonlinear model (4.29). As shown in Fig. 4.4(a)(ii) and Fig. 4.4(b)(ii), both filters

work perfectly well with linear dynamics measurements. One can even inspect that the first

filter seems more sensitive. However, Fig. 4.4(a)(iii) and Fig. 4.4(b)(iii) demonstrate that in

the nonlinear setting the first filter fails whereas the robustified filter works effectively similar

to the linear setting.

In the second simulation, to evaluate the filter performance in more realistic setup, we

robustify the filter to random disturbance patterns, and then verify it with new generated

samples. To measure the performance in the presence of the attack, we introduce the following

indicator:

ρ :=

max
t≤Tack

‖r(t)‖∞
max
t≤T
‖r(t)‖∞

, (4.32)

where r is the residual (4.11), and Tack is when the attack starts. Observe that ρ ∈ [0, 1], and

the lower ρ the better performance for the filter, e.g., in Fig. 4.4(a)(iii) ρ = 1, and in Fig.

4.4(b)(iii) ρ ≈ 0.

In the training phase, we randomly generate five sinusoidal load deviations as described in

(4.30), and excite the dynamics for T = 10 sec in the presence of each of the load deviations

individually. Hence, in total we have n = 19×5 = 95 disturbance signatures. Then, we compute

the filter coefficients by virtue of ÃP in (4.24) and these 95 samples. In the operation phase, we

generate two new disturbance patterns with the same distribution as in the training phase and

run the system in the presence of both load deviations simultaneously at two random nodes for

the horizon T = 120 sec. Meanwhile, we inject an attack signal at Tack = 110 sec in the AGC,

and compute the indicator ρ in (4.32) for each of the scenarios. Figure 4.5 demonstrates the

result of this simulation for 1000 experiments.
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4.6 Summary and Outlook

In this chapter, we proposed a novel perspective toward the FDI filter design, which is tack-

led via an optimization-based methodology along with probabilistic performance guarantees.

Thanks to the convex formulation, the methodology is applicable to high dimensional non-

linear systems in which some statistical information of exogenous disturbances are available.

Motivated by our earlier works, we deployed the proposed technique to design a diagnosis filter

to detect the AGC malfunction in two-area power network. The simulation results validated

the filter performance, particularly when the disturbance patterns are different from training

to the operation phase.

The central focus of the work in this chapter is to robustify the filter to certain signatures of

dynamic nonlinearities in the presence of given disturbance patterns. As a next step, motivated

by applications that the disruptive attack may follow certain patterns, a natural question is

whether the filter can be trained to these attack patterns. From the technical standpoint, this

problem in principle may be different from the robustification process since the former may

involve maximization of the residual norm as opposed to the minimization for the robustification

discussed in this chapter. Therefore, this problem offers a challenge to reconcile the disturbance

rejection and the fault sensitivity objectives.

The methodology studied in this chapter is applicable to both discrete and continuous-

time dynamics and measurements. In reality, however, we often have different time-setting

in different parts, i.e., we only have discrete-time measurements while the system dynamics

follows a continuous-time behavior. We believe this setup introduces new challenges to the

field. We recently reported heuristic attempts toward this objective in [ETMEL13], though

there is still a need to address this problem in a rigorous and systematic framework.

4.7 Appendix

4.7.1 Proofs of Section 4.4.2

Let us start with a preliminary required for the main proof of this section.

Lemma 4.7.1. Let N(p) :=
∑dN

i=0Nip
i be an Rnr row polynomial vector with degree dN , and

a(p) be a stable polynomial with the degree at least dN . Let N̄ := [N0 N1 · · · NdN ] be the

collection of the coefficients of N(p). Then,

∥∥a−1N
∥∥
H∞ ≤ C̃‖N̄‖∞, C̃ :=

√
nr(dN + 1) ‖a−1‖H∞ .

Proof. Let b(p) :=
∑dN

i=0 bip
i be a polynomial scaler function. By H∞-norm definition we have

∥∥a−1b
∥∥2

H∞ = sup
ω∈(−∞,∞)

∣∣∣ b(jω)

a(jω)

∣∣∣
2
≤ sup

ω∈[0,∞)

∑dN
i=0 |bi|2ω2i

|a(jω)|2 . (4.33)

92



4.7 Appendix

Let b̄ :=
[
b0 b1 · · · bdN

]
. It is then straightforward to inspect that

dN∑

i=0

|bi|2ω2i ≤
{

(dN + 1)‖b̄‖2∞ if ω ∈ [0, 1]

(dN + 1)‖b̄‖2∞ω2dN if ω ∈ (1,∞)
(4.34)

Therefore, (4.33) together with (4.34) yields to

∥∥a−1b
∥∥2

H∞ ≤ (dN + 1)
∥∥a−1

∥∥2

H∞‖b̄‖
2
∞.

Now, taking the dimension of the vector N(p) into consideration, we conclude the desired

assertion.

Proof of Lemma 4.4.5. Let ` ≥ dN be the degree of the scalar polynomial a(p). Then, taking

advantage of the state-space representation of the matrix transfer function a−1(p)N(p), in

particular the observable canonical form [ZD97, Sec. 3.5], we have

rx(t) =

∫ t

0
C e−A(t−τ)Bex(τ)dτ +Dex(t),

where C ∈ R1×` is a constant vector, A ∈ R`×` is the state matrix depending only on a(p),

and B ∈ R`×nr and D ∈ R1×nr are matrices that depend linearly on all the coefficients of the

numerator N̄ ∈ Rnr(dN+1). Therefore, it can be readily deduced that (4.14a) holds for some

function ψx ∈ Wnr(dN+1)
T . In regard to (4.14a) and the definition (4.13), we have

‖N̄ψx‖L2 = ‖rx‖L2 =
∥∥a−1(p)N(p)ex

∥∥
L2 ≤

∥∥a−1N
∥∥
H∞‖ex‖L2 ≤ C̃‖N̄‖∞‖ex‖L2 , (4.35)

where the first inequality follows from the classical result that the L2-gain of a matrix transfer

function is the H∞-norm of the matrix [ZD97, Thm. 4.3, p. 51], and the second inequality

follows from Lemma 4.7.1. Since (4.35) holds for every N̄ ∈ Rnr(dN+1), then

‖ψx‖L2 ≤
√
nr(dN + 1) C̃‖ex‖L2 ,

which implies (4.14b).

Proof of Theorem 4.4.7. Observe that by virtue of the triangle inequality and linearity of the

projection mapping we have

∣∣‖rx‖L2 −
∥∥a−1(p)N(p)TB(ex)

∥∥
L2
∣∣ ≤

∥∥a−1(p)N(p)
(
ex −TB(ex)

)∥∥
L2 ≤ C̃‖N̄‖∞δ,

where the second inequality follows in the same spirit as (4.35) and ‖ex−TB(ex)‖L2 ≤ δ. Note

that by definitions of Qx and QB in (4.15) and (4.22), respectively, we have

∣∣N̄(Qx −QB)N̄ᵀ
∣∣ =

∣∣‖rx‖2L2 −
∥∥a−1(p)N(p)TB(ex)

∥∥2

L2
∣∣ ≤ C̃‖N̄‖∞δ

(
C̃‖N̄‖∞δ + 2‖rx‖L2

)

≤ C̃2‖N̄‖2∞δ
(
δ + 2‖ex‖L2

)
≤ C‖a−1‖H∞‖N̄‖22δ

(
1 + 2‖ex‖L2

)

where the inequality of the first line stems from the simple inequality |α2 − β2| ≤ |α− β|
(
2|α|+

|α− β|
)
, and C is the constant as in (4.14b).
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4.7.2 Proofs of Section 4.4.3

To prove Theorem 4.4.10 we need a preparatory result addressing the continuity of the mapping

φ in (4.26).

Lemma 4.7.2. Consider the function φ as defined in (4.26). Then, there exists a constant

L > 0 such that for any N̄1, N̄2 ∈ N and x1, x2 ∈ Wnx
T where ‖xi‖L2 ≤M , we have

∣∣φ(N̄1, x1)− φ(N̄2, x2)
∣∣ ≤ L

(∥∥N̄1 − N̄2

∥∥
∞ + ‖x1 − x2‖L2

)
.

Proof. Let LE be the Lipschitz continuity constant of the mapping E : Rnx → Rnr in (4.13).

We modify the notation of rx in (4.13) with a new argument as rx[N̄ ], in which N̄ represents

the filter coefficients. Then, with the aid of (4.35), we have

sup
‖x‖L2≤M

sup
N̄∈N

‖rx[N̄ ]‖L2 ≤ sup
‖x‖L2≤M

sup
N̄∈N

C̃LE‖N̄‖∞‖x‖L2 ≤ M̃, M̃ := C̃LEM,

where the constant C̃ is introduced in Lemma 4.7.1. As the payoff function J is convex, it is

then Lipschitz continuous over the compact set [0, M̃ ] [Ber09, Prop. 5.4.2, p. 185]; we denote

this Lipschitz constant by LJ . Then for any N̄i ∈ N and ‖xi‖L2 ≤M , i ∈ {1, 2}, we have,

∣∣φ(N̄1, x1)− φ(N̄2, x2)
∣∣ ≤ LJ

∣∣∥∥rx1 [N1]
∥∥
L2 −

∥∥rx2 [N2]
∥∥
L2
∣∣

≤ LJ
(∥∥rx1 [N1]− rx1 [N2]

∥∥
L2 +

∥∥rx1 [N2]− rx2 [N2]
∥∥
L2

)

≤ LJ
(
C̃‖ex1‖L2‖N1 −N2‖∞ + C̃‖ex1 − ex2‖L2‖N2‖∞

)
(4.36)

≤ LJ C̃LE
(
M‖N1 −N2‖∞ + ‖x1 − x2‖L2

)
.

where (4.36) follows from (4.35) and the fact that the mapping (N̄ , ex) 7→ rx[N̄ ] is bilinear.

Proof of Theorem 4.4.10. By virtue of Lemma 4.7.2, one can infer that for every N̄ ∈ N the

mapping x 7→ φ(N̄ , x) is continuous, and hence measurable. Therefore, φ(N̄ , x) can be viewed

as a random variable for each N̄ ∈ N , which yields to the first assertion, see [Bil99, Chap. 2,

p. 84] for more details.

By uniform (almost sure) boundedness and again Lemma 4.7.2, the mapping N̄ 7→ φ(N̄ , x)

is uniformly Lipschitz continuous (except on a negligible set), and consequently first moment

continuous in the sense of [Han12, Def. 2.5]. We then reach (i) by invoking [Han12, Thm. 2.1].

For assertion (ii), note that the compact set N is finite dimensional, and thus admits

a logarithmic ε-capacity in the sense of [Dud99, Sec. 1.2, p. 11]. Therefore, the condition

[Dud99, (6.3.4), p. 209] is satisfied. Since the other requirements of [Dud99, Thm. 6.3.3, p.

208] are readily fulfilled by the uniform boundedness assumption and Lemma 4.7.2, we arrive

at the desired UCLT assertion in (ii).

Proof of Theorem 4.4.12. The measurability of E is a straightforward consequence of the mea-

surability of [N̄?
n, γ

?
n] and Fubini’s Theorem [Bil95, Thm. 18.3, p. 234]. For notational sim-

plicity, we introduce the following notation. Let ` := nr(dN + 1) + 1 and define the function
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f : R` ×Wnx
T → R

f(θ, x) := N̄QxN̄
ᵀ − γ, θ := [N̄ , γ]ᵀ ∈ R`,

where Qx is the nonlinearity signature matrix of x as defined in (4.15), and θ is the augmented

vector collecting all the decision variables. Consider the convex sets Θj ⊂ R`

Θj :=
{
θ = [N̄ , γ]ᵀ

∣∣ N̄H̄ = 0, N̄ F̄ vj ≥ 1
}
, vj :=

↓ jth[
0, · · · , 1, · · · , 0

]ᵀ
,

where the size of vj is m := nf (dF + dN + 1). We then express the program CP in (4.3) and

its random counterpart C̃P1 in (4.25a) as follows:

CP :





min
θ∈

m⋃
j=1

Θj

cᵀθ

s.t. P
(
f(θ, x) ≤ 0

)
≥ 1− ε

C̃P1 :





min
θ∈

m⋃
j=1

Θj

cᵀθ

s.t. max
i≤n

f(θ, xi) ≤ 0,

where c is the constant vector with 0 elements except the last which is 1. It is straightforward

to observe that the optimal threshold γ?n of the two-stage program C̃P in (4.25) is the same

as the optimal threshold obtained in the first stage C̃P1. Thus, it suffices to show the desired

assertion considering only the first stage. Let θ?n := [N̄?
n, γ

?
n] denote the optimizer of C̃P1. Now,

consider m sub-programs denoted by CP (j) and C̃P (j) for j ∈ {1, · · · ,m}:

CP (j) :

{
min
θ∈Θj

cᵀθ

s.t. P
(
f(θ, x) ≤ 0

)
≥ 1− ε

C̃P1 :





min
θ∈Θj

cᵀθ

s.t. max
i≤n

f(θ, xi) ≤ 0,

Let us denote the optimal solution of C̃P1 (j) by θ∗n,j . Note that for all j, the set Θj is convex

and the corresponding random program C̃P1 (j) is feasible if Θj 6= ∅. Therefore, we can readily

employ the existing results of the random convex problems. Namely, by [CG08, Thm. 1] we

have

Pn
(
E(θ∗n,j)

)
<

`−1∑

i=0

(
n

i

)
εi(1− ε)n−i, ∀j ∈ {1, · · · ,m}

where E is introduced in (4.28). Furthermore, it is not hard to inspect that θ∗n ∈
(
θ∗n,j
)m
j=1

.

Thus, E(θ∗n) ⊆ ⋃m
j=1 E(θ∗n,j) which yields

Pn
(
E(θ∗n)

)
≤ Pn

( m⋃

j=1

E(θ∗n,j)
)
≤

m∑

j=1

Pn
(
E(θ∗n,j)

)
< m

`−1∑

i=0

(
n

i

)
εi(1− ε)n−i.

Now, considering β as an upper bound, the desired assertion can be obtained by similar calcu-

lation as in [Cal09] to make the above inequality explicit for n in terms of ε and β.
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CHAPTER5
Performance Bound for Random Programs

In Chapter 4, we proposed the chance constrained perspective to relax the robust formulation of

the original FDI problem. Employing randomized algorithms, we provided a (random) solution

to the relaxed problem whose performance is guaranteed with high probability. Along this way

an alarm threshold is introduced which may be violated with probability at most an ε ∈ (0, 1)

(a design parameter). This violation probability is allowed from the relaxed perspective and

known in literature as the false alarm rate. In this chapter we aim to study the behavior of

the false alarm rate as the threshold level obtained via the random programs changes.

In more general setting, we consider the Scenario Convex Program (SCP) for two classes of

optimization problems that are not tractable in general: Robust Convex Programs (RCPs) and

Chance-Constrained Programs (CCPs). We establish a probabilistic bridge from the optimal

value of SCP to the optimal values of RCP and CCP in which the uncertainty takes values in

a general, possibly infinite dimensional, metric space. We then extend our results to a certain

class of non-convex problems that includes, for example, binary decision variables. In the

process, we also settle a measurability issue for a general class of scenario programs, which to

date has been addressed by an assumption. Finally, we demonstrate the applicability of our

results on a benchmark problem and a problem in fault detection and isolation.

5.1 Introduction

Optimization problems under uncertainty have considerable applications in disciplines ranging

from mathematical finance to control engineering. For example most control systems involve

some level of uncertainty; the aim of a robust control design is to provide a guaranteed level

of performance for all admissible values of the uncertain parameters. In the convex case, two

well-known approaches for dealing with such uncertain programs are robust convex programs

(RCPs) and chance-constrained programs (CCPs). RCPs consider constraint satisfaction for

all, possibly infinitely many, realizations of the uncertainty. While it is known that certain

classes of RCPs can be solved as effectively as their non-robust counterparts [BS06] in other

cases RCPs can be intractable [BtN98, BtN99, GOL98, BtNR01]. For example, the class

of parametric linear matrix inequalities, which occur in many control problems, is NP-hard

[BGFB94, Gah96]. CCPs, on the other hand, allow constraint violation with a low probability.

The resulting optimization problem, however, is in general non-convex [Pré95, SDR09].
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Computationally tractable approximations to the aforesaid optimization problems can be

obtained through the scenario convex programs (SCPs) in which only finitely many uncertainty

samples are considered. A natural question in this case is how many samples would be “enough”

to provide a good solution. To answer this question, one may view the problem from two

perspectives: feasibility and objective performance. The literature mainly focuses on the first

perspective. In this direction, the authors in [CC05, CC06] initialized a feasibility theory for

CCP refined subsequently in [CG08, Cal10]. They established an explicit probabilistic lower

bound for the sample size to guarantee the feasibility of the SCP solutions from a chance-

constrained perspective. By contrast, the issue of performance bounds for both RCP and CCP

via SCP has not been settled up to now. [CG11] provides a novel perspective in this direction

that leads to optimal performance bounds for CCPs. However, it involves the problem of

optimal constraint removal, which in general is computationally intractable.

The first contribution of this chapter is to address the SCP performance issue from the

objective viewpoint. The key element of our analysis relies on the concept of the worst-case

violation inspired by the recent work [KT12]. The authors of [KT12] derived an upper bound of

the worst-case violation for the SCPs where the uncertainty takes values in a finite dimensional

Euclidean space. This result leads to a performance bound for a particular class of RCPs where

the uncertainly appears in the objective function, e.g., min-max optimization problems. Moti-

vated by different applications such as control problems with saturation constraints [CGP09],

fault detection and isolation in dynamical systems [MEL13], and approximate dynamic pro-

gramming [DPR13], in this chapter we first extend this result to infinite dimensional uncertainty

spaces. In the sequel, we establish a theoretical bridge from the optimal values of SCP to the

optimal values of both RCP and CCP. Along this direction, under mild assumptions on the

constraint function (measurability with respect to the uncertainty and lower semicontinuity

with respect to the decision variables), we shall also rigorously settle a measurability issue of

the SCP optimizer, which to date has been addressed in the literature by an assumption, e.g.

[CC06, CG08]. Our second contribution is to extend these results to a class of non-convex pro-

grams that, in particular, allows for binary decision variables. In the context of mixed integer

programs, the recent work [CLF12] investigates the feasibility perspective of CCPs, which leads

to a bound of the required number of scenarios with exponential growth rate in the number of

integer variables, whereas our proposed bound scales linearly.

The layout of this chapter is as follows: In Section 5.2 we formally introduce the optimiza-

tion problems that will be addressed. Our results on probabilistic objective performance for

both RCPs and CCPs based on SCPs are reported in Section 5.3. In Section 5.4 we extend

our results to a class of non-convex programs, including mixed-integer programs with binary

variables. To illustrate the proposed methodology, in Section 5.5 the theoretical results are ap-

plied to two examples: a benchmark problem whose solution can be computed explicitly, and

a fault detection and isolation study with an application to the security of power networks.

We conclude in Section 5.6 with a summary of our work and comment on possible subjects of

further research. For better readability, some of the technical proofs and details are given in

the appendices.
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Notation

Let R+ denote the non-negative real numbers. Given a metric space D, its Borel σ-algebra

is denoted by B(D). Throughout this chapter, measurability is always referred to Borel mea-

surability. Given a probability space
(
D,B(D),P

)
, we denote the N -Cartesian product set of

D by DN and the respective product measure by PN . An open ball in D with radius r and

center v is denoted by Br(v) := {d ∈ D : ‖d− v‖ < r}. The symbol |= refers to the feasibility

satisfaction, i.e., x |= RCP implies that x is a feasible solution for the program RCP. Similarly,

x 6|= RCP implies that x is not a feasible solution for the optimization problem RCP.

5.2 Problem Statement

Let X ⊂ Rn be a compact convex set and c ∈ Rn a constant vector. Let
(
D,B(D),P

)

be a probability space where D is a metric space with the respective Borel σ-algebra B(D).

Consider the measurable function f : X×D → R, which is convex in the first argument for each

d ∈ D, and bounded in the second argument for each x ∈ X. We then consider the following

optimization problems:

RCP :





min
x

cᵀx

s.t. f(x, d) ≤ 0, ∀d ∈ D
x ∈ X

, CCPε :





min
x

cᵀx

s.t. P[f(x, d) ≤ 0] ≥ 1− ε
x ∈ X

, (5.1)

where ε ∈ [0, 1] is the constraint violation level for the chance-constrained program. We denote

the optimal value of the program RCP (resp. CCPε) by J?RCP (resp. J?CCPε
). Suppose (di)

N
i=1 are

N independent and identically distributed (i.i.d.) samples drawn according to the probability

measure P. The centerpiece of this study is the scenario program

SCP :





min
x

cᵀx

s.t. f(x, di) ≤ 0, ∀i ∈ {1, · · · , N}
x ∈ X

, (5.2)

where the optimal solution and optimal value of SCP are denoted, respectively, by x?N and J?N .

Notice that SCP is naturally random as it depends on the random samples (di)
N
i=1.

We assume throughout our subsequent analysis that the following measurability assumption

holds, though we shall show in Subsection 5.3.3 how one may rigorously address this issue

without any assumption for a large class of optimization programs (not necessarily convex).

Assumption 5.2.1. The SCP optimizer generates a Borel measurable mapping from
(
DN ,B(DN )

)

to
(
X,B(X)

)
that associates each (di)

N
i=1 with a unique x?N .

The optimization program SCP in (5.2) is convex and hence tractable even for cases where

the problems (5.1) are NP-hard. Motivated by this, a natural question is whether there exist

theoretical links from SCP to RCP and CCPε. As mentioned in the introduction, this question

can be addressed from two different perspectives: feasibility and objective performance. From

the feasibility perspective, we recall the explicit bound of [CG08] which measures the finite

sample behavior of SCP:
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Figure 5.1: Pictorial representation of Definition 5.3.1

Theorem 5.2.2 (CCPε Feasibility). Let β ∈ [0, 1] and N ≥ N(ε, β) where

N(ε, β) := min

{
N ∈ N

∣∣∣
n−1∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
. (5.3)

Then, the optimizer of SCP is a feasible solution of CCPε with probability at least 1− β.

With “|=” notation, the assertion of Theorem 5.2.2 is alternatively stated by PN
[
x?N |=

CCPε
]
≥ 1− β, where PN stands for the N -fold product probability measure.1

To the best of our knowledge, there is no clear connection between the feasibility of RCP

and the solution of SCP. Furthermore, in Subsection 5.3.2 we provide an example to challenge

the possibility of such a connection. The focus of our study is on the second perspective to

seek a (probabilistic) bound for the optimal values J?RCP and J?CCPε
in terms of J?N .

5.3 Probabilistic Objective Performance

5.3.1 Confidence interval for the objective functions

The following definition inspired by the recent work [KT12] is the key object for our analysis.

Definition 5.3.1. The tail probability of the worst-case violation is the function p : X×R+ →
[0, 1] defined as

p(x, δ) := P
[

sup
v∈D

f(x, v)− δ < f(x, d)
]
.

We call h : [0, 1]→ R+ a uniform level-set bound (ULB) of p if for all ε ∈ [0, 1]

h(ε) ≥ sup
{
δ ∈ R+

∣∣ inf
x∈X

p(x, δ) ≤ ε
}
.

1Note that P is the probability measure on B(D); for simplicity we slightly abuse the notation, and will be

doing so hereinafter. Strictly speaking, one has to define a new probability measure, say Q, which is the induced

measure on B(X) via the mapping introduced in Assumption 5.2.1.
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A pictorial representation of Definition 5.3.1 is given in Figure 5.1. Note that from a

statistical perspective the ULB function may be alternatively viewed as an upper bound for the

quantile function of the R-valued random variable d 7→
(

supv∈D f(x, v) − f(x, d)
)

uniformly

in decision variable x ∈ X (cf. [Sha03, Section 5.2]). Proposition 5.3.8 at the end of this

subsection provides sufficient conditions under which a candidate ULB can be constructed.

If the uncertainty set D is a specific compact subset of a Euclidean space, namely a norm-

constrained or more generally a star-shaped set, the authors in [KT12] provide a constructive

approach to obtain an admissible ULB.

Consider the relaxed version of the program RCP for γ > 0:

RCPγ :





min
x

cᵀx

s.t. f(x, d) ≤ γ, ∀d ∈ D
x ∈ X

, (5.4)

with the optimal value J?RCPγ
.

Lemma 5.3.2. Let h : [0, 1]→ R+ be a ULB. Then,

x |= CCPε =⇒ x |= RCPh(ε)

that is, the feasible set of the program CCPε with constraint violation level ε is a subset of the

feasible set of the relaxed program RCPγ with γ := h(ε).

Proof. See Appendix 5.7.1.

Assumption 5.3.3 (Slater Point). There exists an x0 ∈ X such that sup
d∈D

f(x0, d) < 0.

Under Assumption 5.3.3, we define the constant

LSP :=
minx∈X cᵀx− cᵀx0

supd∈D f(x0, d)
. (5.5)

The following lemma is a classical result in perturbation theory of convex programs, which is

a significant ingredient for the first result of this chapter.

Lemma 5.3.4. Consider the relaxed program RCPγ and its optimal value J?RCPγ
as introduced

in (5.4). Under Assumption 5.3.3, the mapping R+ 3 γ 7→ J?RCPγ
∈ R is Lipschitz continuous

with constant bounded by LSP in (5.5), i.e., for all γ2 ≥ γ1 ≥ 0 we have

0 ≤ J?RCPγ1
− J?RCPγ2

≤ LSP(γ2 − γ1).

Proof. See Appendix 5.7.1.

Assumption 5.3.3 requires the existence of a strictly feasible solution x0 which, in general,

may not exist. However, in applications where a “risk-free” decision is available such an

assumption is not really restrictive; the portfolio selection problem is an example of this kind

[PRC12]. In addition, for the class of min-max problems, as a particular case of the program

RCP, it is not difficult to see that Assumption 5.3.3 holds; see the following remark for more

details and Section 5.5.2 for an application to the problem of fault detection and isolation.
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Remark 5.3.5 (LSP for Min-Max Problems). In min-max problems, one may inspect that

there always exists a Slater point (in the sense of Assumption 5.3.3) with the corresponding

constant LSP arbitrarily close to 1. In fact, it is straightforward to observe that for min-max

problems J?RCPγ
= J?RCP − γ, which readily implies that the Lipschitz constant of Lemma 5.3.4

is 1.

The following results are the main contributions of the first part of the chapter.

Theorem 5.3.6 (RCP Confidence Interval). Consider the programs RCP and SCP in (5.1) and

(5.2) with the associated optimal values J?RCP and J?N , respectively. Suppose Assumption 5.3.3

holds and LSP is the constant in (5.5). Given a ULB h and ε, β in [0, 1], for all N ≥ N(ε, β)

as defined in (5.3), we have

PN
[
J?RCP − J?N ∈

[
0, I(ε)

]]
≥ 1− β, (5.6)

where

I(ε) := min
{
LSPh(ε), max

x∈X
cᵀx−min

x∈X
cᵀx
}
. (5.7)

Proof. Due to the definition of the optimization problems RCP and SCP, the second term of

the confidence interval (5.7) is a trivial bound. It then suffices to establish the bound for the

first term of (5.7). By Theorem 5.2.2, we know PN
[
x?N |= CCPε

]
≥ 1 − β that in view of

Lemma 5.3.2 implies

PN
[
x?N |= RCPh(ε)

]
≥ 1− β =⇒ PN

[
J?RCPh(ε)

≤ J?N
]
≥ 1− β,

where h is the ULB, and J?RCPh(ε)
is the optimal value of the relaxed robust program (5.4) with

γ := h(ε). By virtue of Lemma 5.3.4, we have J?RCP ≤ J?RCP
h(ε)

+LSPh(ε), that in conjunction

with the above implication leads to

PN
[
J?RCP ≤ J?N + LSPh(ε)

]
≥ 1− β.

Since the program SCP is just a restricted version of RCP, it is trivial that J?N ≤ J?RCP pointwise

on ΩN , which concludes (5.6).

In accordance with the optimization problem CCPε, the following theorem provides similar

performance assessment but in both a priori and a posteriori fashions.

Theorem 5.3.7 (CCPε Confidence Interval). Consider the programs CCPε and SCP in (5.1)

and (5.2) with the associated optimal values J?CCPε
and J?N , respectively. Suppose Assumption

5.3.3 holds and LSP is the constant in (5.5). Let h be a ULB and λ?N the dual optimizer of

SCP. Given β in [0, 1], for all N ≥ N(ε, β) defined in (5.3), we have

A Priori Assessment: PN
[
J?CCPε − J?N ∈

[
− I(ε), 0

]]
≥ 1− β, (5.8a)

A Posteriori Assessment: PN
[
J?CCPε − J?N ∈

[
− IN (ε), 0

]]
≥ 1− β, (5.8b)

where the a priori interval I(ε) is defined as in (5.7), and the a posteriori interval is

IN (ε) := min
{∥∥λ?N

∥∥
1
h(ε), max

x∈X
cᵀx−min

x∈X
cᵀx
}
. (5.9)
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Proof. Similar to the proof of Theorem 5.3.6, we only need to show the first term of the

confidence interval (5.9). In light of Theorem 5.2.2 and Lemma 5.3.2, we know that

PN
[
J?RCPh(ε)

≤ J?CCPε ≤ J?N
]
≥ 1− β. (5.10)

In the same spirit as the previous proof, Lemma 5.3.4 ensures J?N ≤ J?RCP ≤ J?RCPh(ε)
+LSPh(ε)

everywhere on ΩN , which together with (5.10) arrives at (5.8a).

To show (5.8b), let us consider the scenario counterpart of the relaxed program RCPγ
in (5.4) with γ := h(ε). We denote the optimal value of this scenario program by J?N,h(ε).

Thus, we have J?N,h(ε) ≤ J?RCPh(ε)
with probability 1. Notice that Assumption 5.3.3 also holds

for the scenario program SCP, and consequently Lemma 5.3.4 is applicable to SCP as well.

In fact, following the proof of Lemma 5.3.4 [BV04, p. 250], one can infer that the Lipschitz

constant of the perturbation function can be over approximated by the `1-norm of a dual

optimizer of the optimization program. Therefore, applying Lemma 5.3.4 to SCP yields to

J?N − ‖λ?N‖1h(ε) ≤ J?N,h(ε) ≤ J?RCPh(ε)
pointwise on ΩN . Substituting into (5.10) leads to

(5.8b).

The parameter ε in Theorem 5.3.6 is a design choice which can be tuned to shrink the

confidence interval [0, I(ε)]. On the contrary, in Theorem 5.3.7 the parameter ε is part of the

problem data associated with the program CCPε. That is, in Theorem 5.3.7 I(ε) is indeed fixed

and the number of scenarios N in SCP only improves the confidence level β. In a same spirit

but along a different approach, [Cal10, Theorem 6.1] bounds J?N by the optimal solutions of two

chance-constrained programs associated with different constraint violation levels, say ε̄ < ε.

This value gap between the chance-constrained program and its scenario counterpart (either as

explicitly derived in Theorem 5.3.7 or implicitly by two chance-constrained programs in [Cal10,

Theorem 6.1]) represents an inherent difference. To arbitrarily reduce the gap for CCPε, one

may resort to optimally discarding a fraction of scenarios, which is in general computationally

intractable; see for example [CG11, Theorem 6.1] and [Cal10, Theorem 6.2].

By virtue of Theorem 5.3.6, the gap between J?RCP and J?N is effectively quantified by a

ULB h(ε) as introduced in Definition 5.3.1. To control the behavior of h(ε) as ε→ 0, one may

require more structure on the measure P defined on
(
D,B(D)

)
. Proposition 5.3.8 addresses

this issue by introducing sufficient conditions concerning the measure of open balls in B(D)

and the continuity of the constraint mapping in the uncertainty argument.

Proposition 5.3.8. Assume that the mapping D 3 d 7→ f(x, d) ∈ R is Lipschitz continuous

with constant Ld uniformly in x ∈ X. Suppose there exists a strictly increasing function g :

R+ → [0, 1] such that

P
[
Br(d)

]
≥ g(r), ∀d ∈ D,

where Br(d) ⊂ D is an open ball centered at d with radius r. Then, h(ε) := Ld g
−1(ε) is a ULB

in the sense of Definition 5.3.1, where g−1 is the inverse function of g.

Proof. See Appendix 5.7.1.

Proposition 5.3.8 generalizes the corresponding result of [KT12, Lemma 3.1] by allowing

the uncertainty space D to be possibly an infinite dimensional space. Note that the required
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assumptions in Proposition 5.3.8 implicitly require D to be bounded, though in practice this

may not be really restrictive.

Remark 5.3.9. Two remarks regarding the function g in Proposition 5.3.8 are in order:

(i) Explicit expression: Under the hypotheses of Proposition 5.3.8, Theorem 5.3.6 can be

expressed in more explicit form. Let ε and β be in [0, 1], Ld be the Lipschitz constant of

the constraint function f in d, LSP be the constant (5.5), and N( · , · ) be as defined in

(5.3). Then, for any N ≥ N
(
g( ε
LSPLd

), β
)

we have

PN
[
J?RCP − J?N ∈

[
0, ε
]]
≥ 1− β.

(ii) Curse of dimensionality: For an nd-dimensional uncertainty set D, the number of

disjoint balls in D with radius r grows proportional to r−nd as r decreases. Thus, the

assumptions of Proposition 5.3.8 imply that g(r) is of the order of rnd. Therefore, for the

desired precision ε, as detailed in the preceding remark, the required number of samples

N grows exponentially as ε−nd. This appears to be an inherent feature when one seeks

to bound the optimal value via scenario programs; see [LVLM08, LVLM10] for similar

observations.

5.3.2 Feasibility of RCP via SCP

In this subsection we provide an example to show the inherent difficulty of the feasibility

connection from SCP to the original problem RCP. Consider the following RCP with its SCP

counterpart in which both decision and uncertainty space are compact subsets of R:




min
x

−x
s.t. x− d ≤ 0, ∀d ∈ D := [0, 1]

x ∈ X := [−1, 1]





min
x

−x
s.t. x− di ≤ 0, ∀i ∈ {1, · · · , N}

x ∈ X := [−1, 1]

.

It is not difficult to see that the feasible set of the robust program is [−1, 0] with the optimizer

x? = 0, whereas the optimizer of its scenario program is x?N = mini≤N di. If the probability

measure P does not have atoms (point measure), we have PN
[

mini≤N di > 0
]

= 1. Thus, one

can deduce that

PN
[
x?N |= RCP

]
= 0, ∀P ∈ P, ∀N ∈ N,

where P is the family of all nonatomic measures on
(
D,B(D)

)
. More generally, if the set

arg maxd∈D f(x, d) has measure zero for any x |= RCP (e.g., when f is convex in d and the

boundary of D has zero measure), then the program SCP will almost surely return infeasible

solutions to the program RCP, as the worst-case scenarios are almost surely neglected.

5.3.3 Measurability of the SCP optimizer

The objective of this subsection is to address the standing Assumption 5.2.1. The measurability

of the optimizer x?N for the scenario program SCP is a rather involved technical issue. In fact,
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to the best of our knowledge, in the literature this issue is always resolved by introducing an

assumption. Let us highlight that the measurability of optimal values and the set of optimizers

as well as the existence of a measurable selection are classical results in this context, see for

instance [RW10, Theorem 14.37, p. 664]. However, there is no a priori guarantee that the

obtained optimizer of the program SCP can be viewed as a measurable mapping from DN to

X. Toward this issue, we propose a “two-stage” optimization program, in the lexicographic sense

in the context of multi-objective optimization problems [MA04], in which the measurability of

this mapping is ensured for a large class of programs (not necessarily convex).

For the rest of this section we assume that X ⊂ Rn is closed and the mapping x 7→ f(x, d)

is lower semicontinuous. Consider the scenario program SCP as defined in (5.2) with the

corresponding optimal value J?N ; SCP is assumed to be feasible with probability one. Given

the same uncertainty samples (di)
N
i=1 as in SCP, we introduce the second program





min
x

φ(x)

s.t. f(x, di) ≤ 0, ∀i ∈ {1, · · · , N}
cᵀx ≤ J?N
x ∈ X

, (5.11)

where φ : Rn → R is a strictly convex function. Let us denote the optimizer of the above

program by x̃?N . It is straightforward to observe that x̃?N is indeed an optimizer of the program

SCP.

Proposition 5.3.10 (Measurability of the Optimizer). Consider the sequential two-stage pro-

grams SCP and (5.11), with the optimizer x̃?N for the latter program. Then, the mapping

DN 3 (di)
N
i=1 7→ x̃?N ∈ X is a singleton and measurable.

Proof. See Appendix 5.7.1 along with some preparatory lemmas.

The above two-stage program may be viewed as a tie-break rule [CC05] or a regularization

procedure [Cal10, Section 2.1], which was proposed to resolve the uniqueness property of the

SCP optimizer. Proposition 5.3.10 indeed asserts that the same trick ensures the measurability

of the optimizer as well.

Remark 5.3.11 (Measurability of the Feasible Set). The measurability of the feasibility event

x̃?N |= CCPε (equivalently the measurability of the mapping x 7→ P[f(x, d) ≤ 0]) is a straight-

forward consequence of Proposition 5.3.10 and Fubini’s Theorem [Bil95, Thm. 18.3, p. 234].

5.4 Extension to a Class of Non-Convex Programs

This section extends the results developed in Section 5.3.1 to a class of non-convex problems.

Consider a family of programs introduced in (5.1) in which the program data are indexed by

k, i.e., (Xk, fk, εk)mk=1. We assume that each tuple (Xk, fk, εk) satisfies the required conditions

in Section 5.2 (i.e., Xk is a compact convex set and the mapping x 7→ fk(x, d) is convex for
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every d ∈ D), and the corresponding programs are denoted by RCP(k) and CCP
(k)
εk as defined

in (5.1). Consider the following (non-convex) optimization problems:

RP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

RCP(k)
CP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

CCP
(k)
εk

, (5.12)

where x |= ⋃m
k=1 RCP(k)

(
resp. x |= ⋃m

k=1 CCP
(k)
εk

)
indicates that there exists k ∈ {1, · · · ,m}

such that x |= RCP(k)
(
resp. x |= CCP

(k)
εk

)
. In other words, the programs (5.12) seek an

optimal solution which is feasible for at least one of the subprograms indexed by k, while the

uncertainty space D as well as the associated measure P is shared between all the subprograms.

Similarly, given i.i.d. samples (di)
N
i=1 ⊂ D with respect to the probability measure P, consider

the scenario (non-convex) program

SP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

SCP(k)
. (5.13)

Each subprogram SCP(k) is defined according to the scenario convex program (5.2) associated

with the program data (Xk, fk) while the uncertainty samples (di)
N
i=1 are the same for all

k ∈ {1, · · · ,m}. Before proceeding with the main result of this section, let us point out

that the programs (5.12) contain, for example, a class of mixed integer programs. Let f :

Rn × {0, 1}` × D → R be the constraint function in (5.1). It is straightforward to see that a

chance-constrained mixed integer program can be formulated as





min
x,y

cᵀx

s.t. P[f(x, y, d) ≤ 0] ≥ 1− ε
x ∈ X, y ∈ {0, 1}`

⇐⇒





min
x

cᵀx

s.t. max
k∈{1,··· ,2`}

P[fk(x, d) ≤ 0] ≥ 1− ε

x ∈ X

,

where fk(x, d) := f(x, yk, d) for each selection of the binary variables yk ∈ {0, 1}`. Then, by

setting m := 2`, Xk := X, εk := ε, the right-hand side of the above relation is readily in the

framework of (5.12). A similar argument also holds for the robust mixed integer problems

counterparts.

As a first step, we extend the feasibility result of Theorem 5.2.2 to the non-convex setting

in (5.12).

Theorem 5.4.1 (CP Feasibility). Let ~ε := (ε1, · · · , εm), β ∈ (0, 1], and N ≥ Ñ(~ε, β) where

Ñ(~ε, β) := min

{
N ∈ N

∣∣∣
m∑

k=1

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i ≤ β

}
. (5.14)

Then, the optimizer of SP is a feasible solution of CP with probability at least 1− β.

Proof. Let x?N,k be the optimizer of the subprogram SCP(k). By virtue of Theorem 5.2.2, one

can infer that

PN
[
x?N,k 6|= CCP(k)

εk

]
<

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i.
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On the other hand, it is straightforward to observe that the optimizer of the program SP,

denoted by x?N , belongs to the set (x?N,k)
m
k=1. Therefore,

PN
[
x?N 6|= CP

]
≤ PN

[
∃k ∈ {1, · · · ,m}

∣∣ x?N,k 6|= CCP(k)
εk

]
≤

m∑

k=1

PN
[
x?N,k 6|= CCP(k)

εk

]

<

m∑

k=1

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i,

leading to the desired assertion.

Remark 5.4.2 (Growth rate). Notice that the number of subprograms, m, contributes to the

confidence level β in a linear fashion. As an illustration, suppose εk := ε. In this case, one

can easily verify that the confidence level of the non-convex program SP can be set equal to
β
m , where β is the confidence level of each of the subprograms SCP(k). From a computational

perspective, one can follow the same calculation as in [Cal09], and deduce that the contribution

of m to the number of the required samples Ñ appears in a logarithm. Thus, in our example of

mixed integer programming above, the required number of samples grows linearly in the number

of binary variables, which for most of applications could be considered a reasonable growth rate.

The literature on computational schemes on non-convex problems is mainly based on statis-

tical learning methods. A recent example of this nature is [ATC09], which considers a class of

problems involving Boolean expressions of polynomial functions. Given the degree and number

of polynomial functions (α and k, respectively), the explicit sample bounds of [ATC09] scale

with ε−1 log(αkε−1) as opposed to our result in (5.14) which grows proportional to ε−1 log(m).

We now proceed to extend the main results of Subsection 5.3.1, i.e., Theorems 5.3.6 and 5.3.7,

to the non-convex settings (5.12) and (5.13) at once.

Theorem 5.4.3 (RP & CP Confidence Intervals). Consider the programs RP, CP, and SP

in (5.12) and (5.13) with the corresponding optimal values J?RP, J?CP, and J?N . Given k ∈
{1, · · · ,m} and the program data (Xk, fk), let Assumption 5.3.3 hold and I(k) and I

(k)
N be the a

priori and a posteriori confidence intervals of the kth subprogram as defined in (5.7) and (5.9).

Then, given β ∈ [0, 1] and ~ε := (ε1, · · · , εm) ∈ [0, 1]m, for all N ≥ Ñ(~ε, β) as defined in (5.14)

we have

A Priori Assessment:





PN
[
J?RP − J?N ∈

[
0, max

k≤m
I(k)(ε)

]]
≥ 1− β,

PN
[
J?CP − J?N ∈

[
−max

k≤m
I(k)(ε), 0

]]
≥ 1− β,

A Posteriori Assessment: PN
[
J?CP − J?N ∈

[
−max

k≤m
I

(k)
N (ε), 0

]]
≥ 1− β.

Sketch of the proof. The proof effectively follows the same lines as in the proofs of Theorems

5.3.6 and 5.3.7. To adapt the required preliminaries, let us recall again that the optimizer of

the programs (5.12) is one of the optimizers of the respective subprograms. The same assertion

holds for the random program (5.13) as well. Moreover, since each subprogram of (5.13) fulfills

the assumptions of Subsection 5.3.1, Lemmas 5.3.2 and 5.3.4 also hold for each subprogram

with the corresponding data (Xk, fk). Therefore, in light of Theorem 5.4.1, it only suffices to

consider the worst-case possibility among all the subprograms.

107



Chapter 5. Performance Bound for Random Programs

�

�

�
�

�

θ

{x ∈ X | cᵀx = J�
CCPε

}
{x ∈ X | cᵀx = J�

RCP}

x1

x2

1

1

θ = 2πε

1

Figure 5.2: Analytical solutions of Example 1
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5.5 Numerical Examples

This section presents two examples to illustrate the theoretical results developed in the pre-

ceding sections and their performance. We first apply the results to a simple example whose

analytical solution is available.

5.5.1 Example 1: Quadratic Constraints via Infinite Hyperplanes

Let x = [x1, x2]ᵀ be the decision variables selected in the compact set X := [0, 1]2 ⊂ R2,

the linear objective function defined by c := [−1,−1]ᵀ, and the constraint function f(x, d) :=

x1 cos(d) + x2 sin(d)− 1 where the uncertainty d comes from the set D := [0, 2π]. Consider the

optimization problems introduced in (5.1) where P is the uniform probability measure on D.

It is not difficult to infer that the infinitely many hyperplane constraints can be replaced by a

simple quadratic constraint. That is, for any γ ≥ 0

max
d∈[0,2π]

x1 cos(d) + x2 sin(d)− 1 ≤ γ ⇐⇒ x2
1 + x2

2 ≤ (γ + 1)2.

In the light of the above observation, we have the analytical solutions

J?RCPγ = max
{
−
√

2(γ + 1),−2
}
, J?CCPε = max

{ −
√

2

cos(πε)
,−2

}
, (5.15)

where J?RCPγ
and J?CCPε

are the optimal values of the optimization problems RCPγ and CCPε
as defined in (5.4) and (5.1), respectively. The pictorial representation of the solutions is in

Figure 5.2.

Let us fix the number of scenarios N for SCP in (5.2) with the optimal value J?N . Given N

and ε ∈ [0, 1], the confidence level β ∈ [0, 1] associated with our theoretical results is

β∗(ε) :=

n−1∑

i=0

(
N

i

)
εi(1− ε)N−i = (1− ε)N +Nε(1− ε)N−1,
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where n = 2 in this example. Figure 5.3 depicts the behavior of β∗(ε) for different values of N .

Note that x0 = [0, 0]ᵀ is a Slater point in the sense of Assumption 5.3.3 with the corresponding

constant LSP := −2−0
−1 = 2 (cf. (5.5)). Moreover, it is easy to see that the mapping d 7→ f(x, d)

has the Lipschitz constant Ld =
√

2 over the compact set X = [0, 1]2. Thanks to Proposition

5.3.8 (and periodicity of the constraint function over the interval [0, 2π]), it is straightforward

to introduce g(r) = r
π , and consequently obtain the ULB candidate h(ε) :=

√
2πε. Then, the

confidence interval defined in (5.7) is I(ε) := max{2
√

2πε, 2}. As shown in Theorem 5.3.6

(resp. Theorem 5.3.7) we know that J?RCP − J?N ∈ [0, I(ε)]
(
resp. J?CCPε

− J?N ∈ [−I(ε), 0]
)

with probability at least 1 − β∗(ε) for any ε ∈ [0, 1]. To validate this result, we solve the

program SCP for M different experiments. For each experiment k ∈ {1, · · · ,M}, we draw N

scenarios
(
di(k)

)N
i=1
⊂ [0, 2π] with respect to the uniform probability distribution P and solve

the program SCP. Let J?N (k) be the optimal value of the kth experiment. Given β ∈ [0, 1], the

empirical confidence interval of the program RCP can be represented by the minimal Ĩ(β) so

that the interval [0, Ĩ(β)] contains J?N (m)−J?RCP for at least m experiments where m
M ≥ 1−β,

i.e.,

Ĩ(β) := min
{
Ĩ ∈ R+

∣∣ ∃A ⊂ {1, · · · ,M} :

|A| ≥ (1− β)M and J?RCP − J?N (k) ∈ [0, Ĩ] ∀k ∈ A
}
.

Regarding the program CCPε, notice that the empirical confidence interval depends on both

parameters ε and β since the analytical optimal values J?CCPε
depends on ε as well. Hence, we

define

Ĩε(β) := min
{
Ĩ ∈ R+

∣∣ ∃A ⊂ {1, · · · ,M} :

|A| ≥ (1− β)M and J?CCPε − J?N (k) ∈ [−Ĩ , 0] ∀k ∈ A
}
.

The sets Ĩ(β) and Ĩε(β) are in close relation with sample quantiles in the sense of [Sha03,

Section 5.3.1]. In the following simulations the number of experiments is set to M = 2000.

Figures 5.4(a) and 5.4(b) depict our theoretical performance bound I(ε) for N = 6 and N = 60

in comparison with the empirical bounds Ĩ
(
β∗(ε)

)
and Ĩε

(
β∗(ε)

)
where β∗(ε) is the confidence

level in Figure 5.3. As our theoretical results suggest, the confidence interval [0, I(ε)] (resp.

[−I(ε), 0]) contains the empirical interval
[
0, Ĩ
(
β∗(ε)

)]
(resp.

[
− Ĩε

(
β∗(ε)

)
, 0
]
). Moreover,

to demonstrate the a posteriori confidence interval in Theorem 5.3.7, we choose one of the

experiments and depict the corresponding confidence interval IN (ε) versus β∗(ε) as well. Note

that in both cases of Figure 5.4 the a posteriori confidence interval proposes a tighter bound

than the a priori confidence interval. With this observation, we conjecture that in general

the dual optimizer of SCP may happen to be a better approximation in comparison with the

constant LSP introduced in (5.5).

5.5.2 Example 2: Fault Detection and Isolation

In the second example we illustrate the theoretical results developed in this chapter to the

problem of fault detection and isolation (FDI) discussed in Chapter 4. Let us recall that the
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Figure 5.4: Numerical results for Example 1

FDI problem is essentially designing a filter fed by available signals as inputs (e.g., control

signals and given measurements) whose output implements a non-zero mapping from the fault

to the residual while decoupling unknown disturbances (cf. the mapping requirements (4.1)

and the robust version RP in (4.2)).

As a particular subclass of DAEs, consider the nonlinear differential equation
{
Ẋ(t) = E

(
X(t)

)
+AX(t) +Bdd(t) +Bff(t)

Y (t) = CX(t)
, (5.16)

where the matrices A,Bd, Bf , C and the function E( · ) describe the linear and nonlinear dynam-

ics of the model, respectively (see (4.6) and the following discussion). Restricting the class of

FDI filters to linear operator, we obtain a residual consisting of two terms: r = G[x](f)+r[x](d)

where G[x] is a linear time invariant transfer function expressing the mapping from the fault

f( · ) to the residual, and r[x](d) is the contribution of the unknown disturbance d( · ), and

x ∈ Rn denotes the coefficients of the FDI filter to be designed (cf. (4.11)2). In this light, to

minimize the impact of nonlinearities and disturbances on the residual, an optimal FDI filter

can be obtained by the min-max program




min
x,γ

γ

s.t. xᵀQdx ≤ γ, ∀d ∈ D
Hx = 0∥∥Fx

∥∥
∞ ≥ 1

, (5.17)

where the quadratic term xᵀQdx represents the L2-norm of r[x](d) over a given receding hori-

zon, D is the space of possible disturbance patterns, and the last (non-convex) constraint is

2Note that the decision variable x here corresponds to the filter coefficients N̄ in (4.11).
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concerned with the norm of G[x] as an operator (cf. (4.16)). The matrices H and F are deter-

mined by the linear terms of the system dynamics (5.16), and the positive semidefinite matrix

Qd reflects the nonlinearity signature of the system dynamics in the presence of a disturbance

pattern d; it depends on d and the nonlinear term E( · ) of (5.16) (cf. the signature matrix

(4.15)). We refer to Approach (II) in Section 4.4.2 for details of the derivation of the above

program.

For numerical case study, we consider an application of the above FDI design to detect a

cyber intrusion in a two-area power network discussed in Section 4.5. The setup in this example

is a simplified version of the test system in Section 4.5.3 where each power area contains one

generator (g := 2). Thus, the state in (5.16) is described by

X :=
[
∆φ, {∆fi}1:2, {∆Pmi}1:2, {∆Pagci}1:2

]ᵀ
,

where ∆φ is the voltage angle difference between the ends of the tie line, ∆fi the generator

frequency, ∆Pmi the generated mechanical power, and ∆Pagci the automatic generation control

(AGC) signal in each area.3 The system dynamics is modeled in the framework of (5.16); the

details are provided in Appendix 5.7.2. The disturbance signal d( · ) represents a load deviation

that may occur in the first area. The signal f models the intrusion signal in the AGC of the

first area, and the measurement signals are the frequencies and output power of the turbines,

i.e., Y =
[
{∆fi}1:2, {∆Pmi}1:2

]ᵀ
.

For a given horizon T > 0, we consider the class of disturbance patterns

D :=

{
d : [0, T ]→ R

∣∣∣ ∃α ∈ [0, 1], d(t) :=

p∑

k=0

ak(α) cos(
2π

T
kt)

}
,

where ak(α) are the constant coefficients parametrized by α (cf. (4.30)). The choice of D allows

one to exploit available spectrum information of the disturbance signals. In this example,

motivated by the emphasis on both low and high frequency regions, we assume ak(α) :=

5
(
α0.5k + (1 − α)0.5|10−k|), p = 30, and T = 4 sec. For scenario generation, we consider

a uniform probability distribution for the parameter α ∈ [0, 1], which in fact induces the

probability measure P on D. Let d0 ∈ D be a disturbance signature with the corresponding

parameter α0. It is straightforward to observe that

P
[
‖d− d0‖L2 < r

]
= P

[
T

2

p∑

k=0

∣∣ak(α)− ak(α0)
∣∣2 < r2

]

= P

[
|α− α0| <

√
2 r

5
√
T
∑p

k=0

(
0.5k − 0.5|10−k|)2

]

= P
[
|α− α0| < 0.142r

]
≥ 0.142r =: g(r),

where the function g, denoted in view of Proposition 5.3.8, is an invertible lower bound for the

measure of open balls in D. For the particular set of parameters in this example and specific

operating region of interest, one can show that the mapping d 7→ Qd is Lipschitz continuous

3The symbol ∆ stands for the deviation from the nominal value.
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Figure 5.5: Numerical results for Example 2

with the constant Ld = 0.02; see Appendix 5.7.2 for more details. By virtue of Proposition

5.3.8 and normalizing4 the optimizer of the SCP counterpart of the program (5.17), we can

introduce the ULB candidate

h(ε) := Ld g
−1(ε) = 0.14ε.

Notice that the Infinite norm constraint in (5.17) is in fact a non-convex constraint. However,

one may view it as the union of a finite number of constraint sets, see Remark 4.4.3. Therefore,

the optimization problem (5.17) is already in the framework of RP as introduced in (5.12)

where m is the number of rows in matrix F . It is remarkable that m− 1 equals the degree of

the FDI filter chosen a priori. Thanks to the min-max structure of the robust program (5.17),

the Lipschitz constant of Lemma 5.3.4 for each subprogram of (5.17) is LSP = 1, see Remark

5.3.5.

In this example, the dimension of the decision variable x is n = 55, the number of rows in

F is m = 5, and the confidence level is set to β = 0.01. Therefore, to achieve the confidence

interval I(ε) = h(ε) = 5× 10−4, we need to set ε = 3.57× 10−3 which, due to Theorem 5.4.1,

requires to generate N disturbance signatures d ∈ D so that

N ≥ min

{
N ∈ N

∣∣∣
n−1∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ β

m

}
= 22618.

Figures 5.5 demonstrate the numerical results of Example 2 over the course of 15 seconds.

In Figure 5.5(a), 30 different realizations of disturbance inputs as well as an intrusion signal

starting from t = 10 are shown in solid and dash curves, respectively. Figure 5.5(b) depicts

the energy of the filter residual for the last T = 4 seconds (solid), and the threshold level

associated with confidence β = 0.01 (dash). Notice that the proposed threshold is γ? + 0.0005,

where γ? is the optimal solution of the random counterpart of the program (5.17) with N =

22618 scenarios. Figure 5.5(c) presents the filter response which is the same figure as 5.5(b)

but zoomed in on the period prior to the intrusion.

4Due to the linearity of the filter operator, one can always normalize the filter coefficients with no performance

deterioration; see Section 4.4.3.
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5.6 Summary and Outlook

In this chapter we presented probabilistic performance bounds for both RCP and CCPε via

SCP. The proposed bounds are based on considering the tail probability of the worst-case

constraint violation of the SCP solution as introduced in [KT12] together with some classical

results from perturbation theory of convex optimization. In contrast to earlier approaches, this

methodology is, to the best of our knowledge, the first confidence bounds for the objective

performance of RCPs and CCPs based on scenario programs. Subsequently, we extended our

results to a certain class of non-convex programs allowing for binary decision variables.

For future work, in light of Theorems 5.3.6 and 5.3.7, we aim to study the derivation of

ULBs as introduced in Definition 5.3.1. Meaningful ULBs may depend highly on the individual

structure of the optimization problems, in particular the uncertainty set and the constraint

functions. For certain classes of problems, [KT12] provides a constructive approach to obtain

ULBs. Another potential direction is the estimation of constant LSP in Theorems 5.3.6 and

5.3.7, see Remark 5.3.5. This problem may be closely related to the estimation of the dual

optimizers of RCPs.

5.7 Appendix

5.7.1 Proofs

This section collects the technical proofs skipped throughout the chapter.

Proof of Lemma 5.3.2. Let h is a ULB as introduced in Definition 5.3.1, x0 |= CCPε, and

f∗(x0) := supv∈D f(x0, v). By definition of CCPε and p, the tail probability of the worst-case

violation, we have

p
(
x0, f

∗(x0)
)
≤ ε =⇒ inf

x∈X
p
(
x, f∗(x0)

)
≤ ε =⇒ f∗(x0) ≤ h(ε) =⇒ x0 |= RCPh(ε)

Proof of Proposition 5.3.8. Given x ∈ X, let (vi)i∈N be a sequence in D so that

lim sup
i∈N

f(x, vi) = sup
v∈D

f(x, v).

Thus, in light of Definition 5.3.1 we have

p(x, δ) = P
[

sup
v∈D

f(x, v)− f(x, d) < δ
]

= P
[

lim sup
i∈N

f(x, vi)− f(x, d) < δ
]

≥ P
[

lim sup
i∈N

Ld‖vi − d‖ < δ
]
≥ lim sup

i∈N
P

[
‖vi − d‖ <

δ

Ld

]
(5.18)

= lim sup
i∈N

P
[
B δ
Ld

(vi)
]
≥ g
( δ
Ld

)
,

where the first inequality in (5.18) follows from the Lipschitz continuity of f with respect to d,

and the second inequality in (5.18) is due to Fatou’s lemma [Rud87, p. 23]. Hence, in view of
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the ULB definition and the above analysis, we arrive at

sup
{
δ ∈ R+

∣∣ inf
x∈X

p(x, δ) ≤ ε
}
≤ sup

{
δ ∈ R+

∣∣ g
( δ
Ld

)
≤ ε
}

= Ldg
−1(ε).

Proof of Lemma 5.3.4. It is well-known that under the strong duality condition the mapping

γ 7→ RCPγ , the so-called perturbation function, is Lipschitz continuous with the constant ‖λ?‖1
where λ? is a dual optimizer of the program RCP; see [BV04, p. 250] for the proof and [Roc97,

Section 28] for more details in this direction. Now Lemma 5.3.4 follows from [NO08, Lemma

1], which essentially implies ‖λ?‖1 ≤ LSP where LSP is the constant (5.5) corresponding to

any Slater point in the sense of Assumption 5.3.3.

To prove Proposition 5.3.10, we need some preliminaries.

Lemma 5.7.1. Let C be the set of all lower semicontinuous functions from X ⊂ Rn to R.

Consider the mapping J : C → R defined by the optimization program




J(g) := min
x

cᵀx

s.t. g(x) ≤ 0

x ∈ X
. (5.19)

Then, the function J is measurable where the space of C is endowed with the infinite norm and

the respective Borel σ-algebra.5

Proof. The proof is an application of [RW10, Theorem 14.37, p. 664]. Let us define the set-

valued mapping S : C ⇒ X× R as follows:

S(g) :=
{

(x, α) ∈ X× R
∣∣ {g(x) ≤ 0} & {cᵀx ≤ α}

}
.

We first show that S is a normal integrand in the sense of [RW10, Definition 14.27, p. 661].

Since g is lower semicontinuous, then S is clearly closed-valued. We then only need to show

that S is measurable according to [RW10, Definition 14.1, p. 643]. Let O ⊂ X × R be an

open set, (x0, α0) ∈ O and g0 ∈ S−1(x0, α0). Observe that for sufficiently small ε > 0 we

have Bε(g0) ⊂ S−1(O) where Bε(g0) := {g ∈ C | supx∈X ‖g(x) − g0(x)‖ ≤ ε}, that implies

that S−1(O) is open, and in particular measurable. Thereby, S is measurable and hence a

normal integral. Now the desired measurability readily follows from [RW10, Theorem 14.37,

p. 664].

Lemma 5.7.2. Let φ : Rn → R be a strictly convex function, and J̃ : C → R defined as follows:





J̃(g) := min
x

φ(x)

s.t. g(x) ≤ 0

cᵀx ≤ J(g)

x ∈ X

, (5.20)

5Under assumptions of Section 5.2, one can show a stronger assertion that the mapping g 7→ J(g) is indeed

lower semicontinuous; see for instance [BGK+83, Theorem 4.3.2, p. 67]. Thanks to a personal communication

with Diethard Klatte, it turns out that the statement can be even extended to continuity if Assumption 5.3.3

also holds.
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where J(g) is the function introduced in (5.19). Let x̃?(g) denote the set of optimizers of the

program (5.20). Then, the mapping C 3 g 7→ x̃? ∈ Rd is a measurable singleton.

Proof. Let us define the set-valued mapping S : C ⇒ X× R

S(g) :=
{

(x, α) ∈ X× R
∣∣ {g(x) ≤ 0} & {cᵀx− J(g) ≤ 0} & {φ(x) ≤ α}

}
.

By virtue of the measurability of the mapping g 7→ J(g) in Lemma 5.7.1 and along the same line

of its proof, we know that S is a normal integral. Now, by [RW10, Theorem 14.37, p. 664] the

existence of a measurable selection for the optimizer x̃?(g) as a function of g ∈ C is guaranteed.

On the other hand, since φ : Rn → R is strictly convex, the minimizer of the program (5.20)

is unique. Therefore, x̃?(g) is a singleton and the desired measurability property follows at

once.

We now have all the required results to prove Proposition 5.3.10:

Proof of Proposition 5.3.10. Let g : DN → C defined as

g(d1, · · · , dN ) := max
i∈{1,··· ,N}

f(x, di). (5.21)

The measurability of the mapping (5.21) is ensured by the measurability assumption of the

mapping d 7→ f(x, d) for each x. It is straightforward to observe that the optimizer of the

program (5.11) can be viewed as the composition x̃?N = x̃? ◦ g(d1, · · · , dN ) where x̃? is the

optimizer of the program (5.20) and g is defined as in (5.21). Hence, the desired implication

follows directly from the measurability of the mapping (5.21) and Lemma 5.7.2.

5.7.2 Details of Example 2

This appendix provides details of Example 2 in Subsection 5.5.2.

A. Mathematical model description

The two-area power network is described by the set of nonlinear ordinary differential equations

∆φ̇ = 2π(∆f1 −∆f2),

∆ḟi =
f0

2HiSBi

(
− 1

Di
∆fi − PT sin ∆φ+ ∆Pmi −∆Ploadi

)
,

∆Ṗmi =
1

Tchi

(
− 1

Si
∆fi −∆Pmi + ∆Pagci

)
,

∆Ṗagci =
( 1

Di

Cif0

2SiHiSBi
− 1

Si

1

TNi

)
∆fi

− Cif0

2SiHiSBi

(
∆Pmi −∆Ploadi

)
− Cif0

2SiHiSBi
∆Pagci

−
( 1

TNi
− Cif0

2SiHiSBi

)
PT sin ∆φ− 2πCiPT (∆f1 −∆f2) cos ∆φ,
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where i ∈ {1, 2} is the index of each area, X :=
[
∆φ, {∆fi}1:2, {∆Pmi}1:2, {∆Pagci}1:2

]ᵀ ∈ R7 is the

state vector, and the constant parameters in this example are chosen the same for both areas

as Tchi = 5 sec, SBi = 1.8 GW, f0 = 50 Hz, Hi = 6.5 sec, Di = 428.6 Hz/GW, Si = 1.389 Hz/GW,

Ci = 0.1, TNi = 30, PT = 0.15 GW. We refer to [MEVM+10] for physical interpretation of

these parameters and more details on the model equations. In the example, we assume that

∆Pload1 = d where d ∈ D is the disturbance signal and ∆Pload2 ≡ 0.

B. Lipschitz constant of the mapping d 7→ Qd

This mapping can be viewed in two steps: d 7→ E(X) and E(X) 7→ Qd where X is the solution

process in the presence of the disturbance input d, and E the nonlinear term of the ODE

(5.16). The key step is to approximate the Lipschitz constant of the first mapping d 7→ E(X).

The classical result of the continuity of the ODEs solution, obtained by Lipschitz continuity

of the vector field and Gronwall’s inequality, turns out to be too conservative in this case. We

then invoke a Lyapunov-like approach to address this issue more efficiently. Let us define the

shorthand h(X, d) := E(X) + AX + Bdd. Suppose there exist a function V : R7 × R7 → R+

and positive constants κ, ρ so that for every X, X̃ ∈ R7 and d, d̃ ∈ R
∥∥E(X)− E(X̃)

∥∥2 ≤ V (X, X̃) (5.22a)

∂XV (X, X̃)h(X, d) + ∂
X̃
V (X, X̃)h(X̃, d̃) ≤ −κV (X, X̃) + ρ

∣∣d− d̃
∣∣. (5.22b)

Using standard Gronwall’s inequality, one can show that under conditions (5.22) we have

∥∥E(X)− E(X̃)
∥∥2

L2 ≤
T∫

0

∥∥E
(
X(t)

)
− E

(
X̃(t)

)∥∥2
dt ≤

T∫

0

V
(
X(t), X̃(t)

)
dt

≤ ρ
T∫

0

e−κt
t∫

0

∣∣d(s)− d̃(s)
∣∣dsdt ≤ 2ρ

3
T
√
T‖d− d̃‖L2 .

In [ZMEM+13b, Theorem 3.3], a similar technique is discussed in more detail to establish a

connection between the Lyapunov function and continuity of the solution trajectories. In order

to find a Lyapunov function in the above sense, we limit our search domain to the quadratic

functions, i.e., V (X, X̃) = (X − X̃)ᵀQ(X − X̃) for some positive semidefinite matrix Q. It is not

difficult to deduce that the nonlinear term E effectively depends only on the state ∆φ. Hence,

to fulfill the requirement (5.22a) it suffices to guarantee Q � vvᵀ where v = [0, 0, 1, 0, 0, 0, 0]ᵀ.

Setting κ = 0.01, we then solve the set of linear matrix inequalities (LMIs)





min
σ,Q

σ

s.t. QAᵀ +AQ � −κQ
vvᵀ � Q � σI

,

which provides a local Lyapunov function in the sense of (5.22). Note that one can always

extract the linear part of E and add it to the matrix A. Now, by numerical inspection, it turns

out that for the specific system parameters of this example, V obtained from the above LMIs is
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5.7 Appendix

a Lyapunov function in the domain of ∆fi ∈ [−0.1, 0.1] Hz, ∆φ ∈ [−10◦, 10◦], ∆pmi ∈ [−10, 10] MW,

∆pagci ∈ [−15, 15] MW. Therefore, the parameter ρ in (5.22b) can be numerically approximated

via the optimal σ in the LMIs together with matrix Bd and the region of interest described

above. Besides, since the FDI filter is a stable linear time invariant transfer function with

normalized coefficients, the Lipschitz constant of the second mapping E(X) 7→ Qd can be

explicitly computed based on the filter denominator which is fixed prior to the design procedure;

see [MEL13, Lemma 4.5].
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CHAPTER6
Conclusions and Future Directions

In this thesis we studied two problems: first, the motion planning of controlled diffusions, and

second the problem of fault detection for large scale nonlinear systems. The motion planning

problem is an extension to the reachability problem which is well known in the context of safety

problems in the dynamics and control literature, and the fault detection problem is a crucial

concept in the design of reliable control systems. These problems were addressed separately in

Part I and II, respectively.

6.1 Part I: Stochastic Motion Planning for Diffusions

6.1.1 Chapter 2: Stochastic Reach-Avoid Problem

As a first step toward the main objective of this part, in Chapter 2 we studied a class of

stochastic reach-avoid problems with state constraints in the context of SDEs. We proposed a

framework to characterize the set of initial conditions based on discontinuous viscosity solutions

of a second order PDE. In contrast to earlier approaches, this methodology is not restricted

to almost-sure notions and one can compute the desired set with any non-zero probability by

means of off-the-shelf PDE solvers.

6.1.2 Chapter 3: Stochastic Motion Planning

In Chapter 3, continuing our studies of Chapter 2, we extended the class of reachability maneu-

vers as well as the stochastic process dynamics to different notions of stochastic motion planning

problems which involve a controlled process, with possibly discontinuous sample paths, visiting

certain subsets of the state-space while avoiding others in a sequential fashion. We established

a weak DPP comprising auxiliary value functions defined in terms of discontinuous payoff func-

tions. Subsequently, we focused on a case of diffusions as the solution of a controlled SDE,

and investigated the required conditions to apply the proposed DPP. It turned out that the

proposed DPP leads to a sequence of PDEs, for which the first one has a known boundary con-

dition, while the boundary conditions of the subsequent ones are determined by the solutions

to the preceding steps. Finally, the performance of the proposed stochastic motion planning

notions was illustrated for a biological switch network.
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Chapter 6. Conclusions and Future Directions

For potential directions to pursue research toward the motion planning problem, one may

consider the following questions:

(i) Note that full-state measurement is one of the standing assumptions in the problems

discussed in Part I. Motivated by the fact that in some applications only partial and

possibly imperfect measurements may be available, a natural question is to address the

motion planning objective under measurement constraints, i.e., an admissible control

policy would be only allowed to utilize the information of the process Ys := h(Xs) where

h : Rd → Rdy is a given measurable mapping.

(ii) In light of Proposition 2.3.5 (resp. Proposition 2.3.7), we know that all the classes of

stochastic optimal control problems in (2.4) (resp. (2.5)) have a close connection to the

reach-avoid problem. Chapter 2 only studied the exit-time formulation which was also

exploited in Chapter 3 to address the motion planning objectives. As an alternative

step, however, it would be interesting to study the other formulations that possible may

shed light on other features of the problem. In particular that the other value functions

basically reflect a dynamic game between two players with different authorities, e.g., a

stopper versus a controller in (2.5c).

(iii) Theorem 3.4.3 holds for the broad class of stochastic processes whose sample paths are

right continuous with left limits. Therefore, as a step toward the generalization of the

process dynamics, a potential research would be to investigate the required conditions

of the proposed DPP (Assumptions 3.4.1) for a larger class of stochastic processes, e.g.,

controlled Markov jump-diffusions.

6.2 Part II: Fault Detection for Large Scale Nonlinear Systems

6.2.1 Chapter 4: A Tractable Approach with Probabilistic Performance In-

dex

In Chapter 4 we proposed a novel perspective toward the FDI filter design along with a tractable

optimization-based methodology. Previous approaches on FDI problems are either confined to

linear systems or they are only applicable to low dimensional dynamics with specific structures.

In contrast, thanks to the convex formulation, the methodology is applicable to large scale

nonlinear systems in which some statistical information of exogenous disturbances are available.

From a technical viewpoint, the crucial step in the proposed approach is based on robustification

of the FDI filter to finitely many signatures of the dynamics nonlinearity. Motivated by our

earlier works, we deployed the proposed technique to design a diagnosis filter to detect the AGC

malfunction in two-area power network. The simulation results validated the filter performance,

particularly that the filter was encountered the disturbance patterns different than the training

ones. That is, the test disturbances only shared the same statistical properties with the training

disturbances.

For further research on the FDI problem discussed in Chapter 4, one may look into the

following directions:

122



6.2 Part II: Fault Detection for Large Scale Nonlinear Systems

(i) The central focus of the work in Chapter 4 is to robustify the filter to certain signatures

of dynamic nonlinearities in the presence of given disturbance patterns. As a next step,

motivated by applications that disruptive attacks may follow certain patterns, a natural

question is whether the filter can be trained for these attack patterns. From the technical

standpoint, this problem in principle may be different from the robustification phase since

the former may involve maximization of the residual norm as opposed to the minimization

for the robustification discussed in this chapter. Therefore, this problem may require a

reconciliation between the disturbance rejection and the fault sensitivity objectives.

(ii) The methodology studied in this chapter is applicable to both discrete and continuous-

time dynamics and measurements. In reality, however, we often have different time-

setting in different parts, i.e., we only have discrete-time measurements while the system

dynamics follows a continuous-time behavior. We believe this setup introduces new chal-

lenges to the problem. We recently reported heuristic attempts toward this objective

in [ETMEL13], though there is still a need to address the problem in a rigorous and

systematic framework.

(iii) Another standing assumption throughout Chapter 4 is the accessibility of perfect mea-

surements, i.e., the system dynamics in Figure 4.1 is deterministic and the output signal

y is noiseless. Another question to answer is how the model stochasticity as well as mea-

surements noise can be incorporated into the FDI design. We reported some preliminaries

in [SMEKL13] to address noisy measurements but effectively for linear systems where the

dynamic nonlinearities can be treated as auxiliary disturbances.

6.2.2 Chapter 5: Performance Bound for Random Programs

One of the motivation of the study in Chapter 5 is to quantify the behavior of the false alarm

rate of the proposed FDI in Chapter 4 with respect to the threshold level obtained via the

corresponding random programs. Chapter 5 presented probabilistic performance bounds for

both robust and chance constrained programs via the so-called scenario program (SCP). This

result is, to the best of our knowledge, the first confidence bounds for the objective performance

of RCPs and CCPs based on scenario programs. Subsequently, we extended our results to a

certain class of non-convex programs which, in particular, allows for binary decision variables

with linear growth rate for the required number of samples.

For potential research directions on the content of this chapter, one may think of the

following possibilities:

(i) In light of Theorem 5.3.6, one may look more closely into the derivation of ULBs as

introduced in Definition 5.3.1. Meaningful ULBs may depend highly on the individual

structure of the optimization problems, in particular the uncertainty set and the con-

straint functions. In fact, the probability measure P can also be viewed as a decision

variable to propose the most “informative” scenario program to tackle the robust formu-

lation RCP.

123



Chapter 6. Conclusions and Future Directions

(ii) Another potential direction is the estimation of the constant LSP in Theorems 5.3.6 and

5.3.7. This problem may be closely related to the estimation of the dual optimizers of

RCPs, and enables better theoretical bounds particularly for a posteriori assessments (cf.

Theorem 5.3.7).

(iii) The theoretical results developed in Chapter 5 essentially establishes a theoretical bridge

between a semi-infinite program (RCP) and a finite counterpart (SCP). Motivating

by different applications involving an infinite optimization programs (e.g., approximate

dynamic programming) a potential extension would be to complete this bridge up to a

class of full-infinite programs. This link, however, may need to resort to an asymptotic

as well as probabilistic performance index.
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[FF12] Giuseppe Franzè and Domenico Famularo, A robust fault detection filter for poly-

nomial nonlinear systems via sum-of-squares decompositions, Systems & Control

Letters 61 (2012), no. 8, 839–848.

[FG99] I. J. Fialho and T. Georgiou, Worst case analysis of nonlinear systems, IEEE

transactions on Automatic Control 44(6) (1999), 4292–4316.

[FKA09] Erik Frisk, Mattias Krysander, and Jan Aslund, Sensor placement for fault iso-

lation in linear differential-algebraic systems, Automatica 45 (2009), no. 6, 364–

371.

[FS06] W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity So-

lution, 3 ed., Springer-Verlag, 2006.

[Gah96] Pascal Gahinet, Explicit controller formulas for lmi-based h-infinity synthesis,

Automatica 32 (1996), no. 7, 1007–1014.

[GCC00] T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a genetic toggle

switch in Escherichia coli, Nature 403 (2000), no. 6767, 339–42.

[GKM10] C. Goerzen, Z. Kong, and B. Mettler, A survey of motion planning algorithms

from the perspective of autonomous uav guidance, Journal of Intelligent and

Robotic Systems 57 (2010), no. 1-4, 65–100 (English).

[GLQ06] Y. Gao, J. Lygeros, and M. Quincampoix, The Reachability Problem for Uncer-

tain Hybrid Systems Revisited: a Viability Theory Perspective, Hybrid systems:

computation and control, Lecture Notes in Comput. Sci., vol. 3927, Springer,

Berlin, 2006, pp. 242–256.

[GOL98] Laurent El Ghaoui, Francois Oustry, and Herv Lebret, Robust solutions to un-

certain semidefinite programs, SIAM Journal on Optimization 9 (1998), no. 1,

33–52.

[Han12] Lars Peter Hansen, Proofs for large sample properties of generalized method of

moments estimators, J. Econometrics 170 (2012), no. 2, 325–330. MR 2970318

[HKEY99] H. Hammouri, M. Kinnaert, and E.H. El Yaagoubi, Observer-based approach to

fault detection and isolation for nonlinear systems, Automatic Control, IEEE

Transactions on 44 (1999), no. 10, 1879 –1884.

130



Bibliography Bibliography

[HMEKL14] Flavio Heer, Peyman Mohajerin Esfahani, Maryam Kamgarpour, and John

Lygeros, Model based power optimisation of wind farms, European Control Con-

ference (ECC), Jun 2014.

[HP96] M. Hou and R.J. Patton, An lmi approach to H−/H∞ fault detection observers,

Control ’96, UKACC International Conference on (Conf. Publ. No. 427), vol. 1,

sept. 1996, pp. 305 – 310 vol.1.

[Jon73] H. L. Jones, Failure detection in linear systems, Ph.D. thesis, Massachusetts

Inst. Technol., Cambridge, MA, 1973.

[Kal97] O. Kallenberg, Foundations of Modern Probability, Probability and its Applica-

tions (New York), Springer-Verlag, New York, 1997.

[Kha] Mustafa Khammash, Modeling and analysis of stochastic biochemical networks,

Control Theory and System Biology.

[Kha92] Hassan K. Khalil, Nonlinear systems, Macmillan Publishing Company, New

York, 1992. MR 1201326 (93k:34001)

[KO10] B. N. Khoromskij and I. Oseledets, Quantics-TT collocation approximation of

parameter-dependent and stochastic elliptic PDEs, Computational Methods in

Applied Mathematics 10 (2010), no. 4, 376–394. MR 2770302 (2012c:65020)

[Kry09] N.V. Krylov, Controlled Diffusion Processes, Stochastic Modelling and Applied

Probability, vol. 14, Springer-Verlag, Berlin Heidelberg, 2009, Reprint of the

1980 Edition.

[KS91] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2 ed.,

Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991.

[KS11] Boris N. Khoromskij and Christoph Schwab, Tensor-structured Galerkin approx-

imation of parametric and stochastic elliptic PDEs, SIAM Journal on Scientific

Computing 33 (2011), no. 1, 364–385. MR 2783199 (2012e:65273)

[KT03] Vijay R. Konda and John N. Tsitsiklis, On actor-critic algorithms, SIAM Jour-

nal on Control and Optimization 42 (2003), no. 4, 1143–1166 (electronic). MR

2044789 (2004m:93151)

[KT12] Takafumi Kanamori and Akiko Takeda, Worst-case violation of sampled convex

programs for optimization with uncertainty, Journal of Optimization Theory and

Applications 152 (2012), no. 1, 171–197. MR 2872517

[Lof04] J. Lofberg, Yalmip : a toolbox for modeling and optimization in matlab, Com-

puter Aided Control Systems Design, 2004 IEEE International Symposium on,

sept. 2004, pp. 284 –289.

[LTS00] J. Lygeros, C. Tomlin, and S.S. Sastry, A game theorretic approach to controller

design for hybrid systems, Proceedings of IEEE 88 (2000), no. 7, 949–969.

131



Bibliography Bibliography

[Lue69] David G. Luenberger, Optimization by vector space methods, John Wiley & Sons

Inc., New York, 1969.

[LVLM08] Andrea Lecchini-Visintini, John Lygeros, and Jan M. Maciejowski, Approxi-

mate domain optimization for deterministic and expected value criteria, Tech.

report, March 2008, [Online]. Available: http://control.ee.ethz.ch/index.

cgi?page=publications;action=details;id=3048.

[LVLM10] , Stochastic optimization on continuous domains with finite-time guaran-

tees by Markov chain Monte Carlo methods, IEEE Trans. Automat. Control 55

(2010), no. 12, 2858–2863. MR 2767154 (2012b:90121)

[Lyg04] J. Lygeros, On reachability and minimum cost optimal control, Automatica. A

Journal of IFAC, the International Federation of Automatic Control 40 (2004),

no. 6, 917–927 (2005).

[MA04] R Timothy Marler and Jasbir S Arora, Survey of multi-objective optimiza-

tion methods for engineering, Structural and multidisciplinary optimization 26

(2004), no. 6, 369–395.

[Mas86] Mohammad-Ali Massoumnia, A geometric approach to the synthesis of failure

detection filters, IEEE Trans. Automat. Control 31 (1986), no. 9, 839–846.

[MB00] Timothy W. Mclain and Randal W. Beard, Trajectory planning for coordinated

rendezvous of unmanned air vehicles, Proc. GNC’2000, 2000, pp. 1247–1254.

[MECL11] Peyman Mohajerin Esfahani, Debasish Chatterjee, and John Lygeros, On a

problem of stochastic reach-avoid set characterization for diffusions, IEEE Con-

ference on Decision and Control, December 2011, pp. 7069 –7074.

[MECL12] , Motion planning via optimal control for stochastic processes, submitted

to IEEE Transactions on Automatic Control (2012), [Online]. Available: http:

//arxiv.org/abs/1211.1138.

[MECL13] , On a stochastic reach-avoid problem and set characterization, submitted

for publication (2013), [Online]. Available: http://arxiv.org/abs/1202.4375.

[MEL13] Peyman Mohajerin Esfahani and John Lygeros, A tractable fault detection and

isolation approach for nonlinear systems with probabilistic performance, sub-

mitted to IEEE Transactions on Automatic Control (2013), [Online]. Avail-

able: http://control.ee.ethz.ch/index.cgi?page=publications&action=

details&id=4344.

[MEMAC13] Peyman Mohajerin Esfahani, Andreas Milias-Argeitis, and Debasish Chatterjee,

Analysis of controlled biological switches via stochastic motion planning, Euro-

pean Control Conference, July 2013.

132

http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3048
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=3048
http://arxiv.org/abs/1211.1138
http://arxiv.org/abs/1211.1138
http://arxiv.org/abs/1202.4375
http://control.ee.ethz.ch/index.cgi?page=publications&action=details&id=4344
http://control.ee.ethz.ch/index.cgi?page=publications&action=details&id=4344


Bibliography Bibliography

[MESL13] Peyman Mohajerin Esfahani, Tobias Sutter, and John Lygeros, Performance

bounds for the scenario approach and an extension to a class of non-convex

programs, to appear in as a full paper in IEEE Transactions on Automatic

Control (2013), [Online]. Available: http://arxiv.org/abs/1307.0345.

[MEVAL] Peyman Mohajerin Esfahani, Maria Vrakopoulou, Goran Andersson, and John

Lygeros, Intrusion detection in electric power networks, Patent applied for EP-

12005375, filed 24 July 2012.

[MEVAL12] , A tractable nonlinear fault detection and isolation technique with ap-

plication to the cyber-physical security of power systems, 51th IEEE Conference

Decision and Control, 2012, [Online]. Full version: http://control.ee.ethz.

ch/index.cgi?page=publications;action=details;id=4196.

[MEVM+10] Peyman Mohajerin Esfahani, Maria Vrakopoulou, Kostas Margellos, John

Lygeros, and Goran Andersson, Cyber attack in a two-area power system: Impact

identification using reachability, American Control Conference, 2010, pp. 962 –

967.

[MEVM+11] , A robust policy for automatic generation control cyber attack in two area

power network, 49th IEEE Conference Decision and Control, 2011, pp. 5973 –

5978.

[Mit05] I. Mitchell, A toolbox of hamilton-jacobi solvers for analysis of nondetermin-

istic continuous and hybrid systems, Hybrid systems: computation and con-

trol (M. Morari and L. Thiele, eds.), Lecture Notes in Comput. Sci., no. 3414,

Springer-Verlag, 2005, pp. 480–494.

[ML11] Kostas Margellos and John Lygeros, Hamilton-Jacobi formulation for reach-

avoid differential games, IEEE Trans. Automat. Control 56 (2011), no. 8, 1849–

1861.

[MS90] R.M. Murray and S.S. Sastry, Steering nonholonomic systems using sinusoids,

Decision and Control, 1990., Proceedings of the 29th IEEE Conference on, 1990,

pp. 2097–2101 vol.4.

[MSSO+11] A. Milias, S. Summers, J. Stewart-Ornstein, I. Zuleta, D. Pincus, H. El-Samad,

M. Khammash, and J. Lygeros, In silico feedback for in vivo regulation of a gene

expression circuit, Nature Biotechnology 29 (2011), no. 12, 11141116.

[MT02] I. Mitchell and C. J. Tomlin, Level set methods for computation in hybrid sys-

tems, Hybrid systems: computation and control, Lecture Notes in Comput. Sci.,

vol. 1790, Springer-Verlag, New York, 2002, pp. 310–323.

[MVW89] Mohammad-Ali Massoumnia, G. C. Verghese, and A. S. Willsky, Failure de-

tection and identification, IEEE Transaction on Automatic Control 34 (1989),

no. 3, 316–321.

133

http://arxiv.org/abs/1307.0345
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=4196
http://control.ee.ethz.ch/index.cgi?page=publications;action=details;id=4196


Bibliography Bibliography

[NF06] Mattias Nyberg and Erik Frisk, Residual generation for fault diagnosis of system

described by linear differential-algebraic equations, IEEE Transaction on Auto-

matic Control 51 (2006), no. 12, 1995–2000.
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and Manfred Morari, Vanishing duality gap in large scale mixed-integer optimiza-

tion: a solution method with power system applications, submitted to Journal of

Mathematical Programming.

[VMEM+] Maria Vrakopoulou, Peyman Mohajerin Esfahani, Kostas Margellos, John

Lygeros, and Goran Andersson, Cyber-attacks in the automatic generation con-

trol, Cyber Physical Systems Approach to Smart Electric Power Grid.

[Wil06] Darren James Wilkinson, Stochastic modelling for systems biology, Chapman &

Hall/CRC, Boca Raton, FL, 2006. MR 2222876 (2006k:92040)

[WMEL12] Tony Wood, Peyman Mohajerin Esfahani, and John Lygeros, Hybrid Mod-

elling and Reachability on Autonomous RC-Cars, IFAC Conference on Analysis

and Design of Hybrid Systems (ADHS) (Eindhoven, Netherlands), June 2012,

[Videos]. https://sites.google.com/site/orcaracer/videos.

[ZD97] Kemin Zhou and John C. Doyle, Essentials of robust control, Prentice Hall,

September 1997.

[ZMEAL13] Majid Zamani, Peyman Mohajerin Esfahani, Alessandro Abate, and John

Lygeros, Symbolic models for stochastic control systems without stability assump-

tions, European Control Conference, July 2013.

136

http://www.phys.ethz.ch/~suttedav/789/789.pdf
https://sites.google.com/site/orcaracer/videos


Bibliography Bibliography

[ZMEM+13a] Majid Zamani, Peyman Mohajerin Esfahani, Rupak Majumdar, Alessandro

Abate, and John Lygeros, Bisimilar finite abstractions of stochastic control sys-

tems, 52th IEEE Conference Decision and Control, December 2013.

[ZMEM+13b] , Symbolic models for stochastic control systems, to appear as a full paper

in IEEE Transactions on Automatic Control (2013), [Online]. Available: http:

//arxiv.org/abs/1302.3868.

137

http://arxiv.org/abs/1302.3868
http://arxiv.org/abs/1302.3868


Bibliography Bibliography

138



Curriculum Vitae

Peyman Mohajerin Esfahani

born on March 21th, 1982 in Tehran, Iran

Jun 2008 – Jan 2014 ETH Zürich, Switzerland
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