
Wavefront Reconstruction in Adaptive Optics Systems

using Nonlinear Multivariate Splines

Cornelis de Visser,1,∗ and Michel Verhaegen2

1Department of Control & Simulation, Delft University of Technology,

Kluyverweg 1, 2629 HS, Delft, The Netherlands

2Delft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD, Delft, The Netherlands

∗Corresponding author: c.c.devisser@tudelft.nl

This paper presents a new method for zonal wavefront reconstruction with

application to adaptive optics systems. This new method, indicated as SABRE,

uses bivariate simplex B-spline basis functions to reconstruct the wavefront

using local wavefront slope measurements. The SABRE enables wavefront re-

construction on non-rectangular and partly obscured sensor grids, and is not

subject to the waffle mode. The performance of SABRE is compared to that

of the finite difference method in numerical experiments using data from a

simulated Shack-Hartmann lenslet array. The results show that SABRE offers

superior reconstruction accuracy and noise rejection capabilities compared to

the finite difference method.
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1. Introduction

Active control of the phase of the photon wavefront for aberration compensation is essential

to many photonics applications in science and engineering. It is the field of adaptive optics

(AO) that is concerned with measuring and reshaping the wavefront phase in real-time. One

of the most important applications of AO is in the field of astronomy, where AO systems

are used in optical telescopes to compensate for atmospheric turbulence induced wavefront

aberrations which degrade the quality of scientific observations [2].

Any AO system can be divided into three parts. The first is the wavefront sensing part

in which a wavefront sensor (WFS) measures the slopes or curvature of the wavefront. The
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second part is the wavefront reconstruction (WFR) part which uses the WFS measurements

to reconstruct the global wavefront. The third part is the control part which uses the recon-

structed wavefront to generate control laws for the actuators of a deformable mirror (DM).

Wavefront reconstruction is a complicated process because current wavefront sensors

(WFS) cannot measure the wavefront directly, but rather its slope or its curvature

[12,15,27,29]. This means that the global wavefront must be estimated from WFS measure-

ments, which are often contaminated with sensor noise and biased due to unmodelled parts

in the sensor-phase relationship. The WFR estimation problem, together with the large scale

of modern WFS arrays lead to a computationally expensive process which is challenging to

implement in real-time control systems. The three most important aspects of any WFR

method are its reconstruction accuracy, its computational efficiency, and its ability to deal

with real-life sensor and actuator geometries. There exist many different WFR methods,

which can roughly be divided into zonal (local) methods and modal (global) methods.

One of the best known and most widely used zonal WFR methods is the finite difference

(FD) method, which comes in a number of different forms [12, 15, 29]. The FD method is

characterized by the fact that it assumes that the wavefront is defined on a rectangular

grid with linear polynomials interpolating between grid points (phase points). Fueled by the

development of a new generation of extremely large optical telescopes, innovations in FD

methods are mainly focused on increasing their computational efficiency [18, 19]. Examples

of such innovations are a computationally efficient sparse matrix inversion method by Vo-

gel and Ellerbroek [11, 30], and a multigrid preconditioned conjugate-gradient method by

Gilles et al. and Vogel and Yang [13, 31]. More recently, Rosensteiner presented a cumu-

lative reconstruction method based on line integrals which further reduces computational

complexity [28].

Modal methods based on polynomials in polar coordinates, such as the Zernike polynomials

and Karhoenen-Loève (KL) functions, are widely used in AO systems [5,23]. A more recent

type of modal methods are the Fourier domain methods, which have been developed for

the purpose of improving the computational efficiency of the WFR problem [25, 26]. More

recently, Hampton et al. introduced a modal WFR method based on Haar wavelets which

was shown to have a linear computational complexity [14].

While current WFR methods are well established and proven in practice, they suffer from a

lack of generality. FD methods on the one hand are relatively straightforward to implement on

rectangular WFS arrays, but are essentially linear while the physical wavefront is certainly

not linear. Additionally, it is not trivial to implement FD methods on AO systems with

non-rectangular WFS arrays and obstructions in the field of view of the telescope pupil

(e.g. spiders). Modal methods based on Zernike and Karhoenen-Loève polynomials have a

limited approximation power and are subject to oscillations on the edges of the domain
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(i.e. Runge’s phenomenon). Additionally, the polar nature of Zernike and Karhoenen-Loève

polynomial methods makes their implementation on non-circular WFS arrays non-trivial [5].

Fourier methods on the other hand have a transparent implementation on rectangular WFS

grids. However, on non-rectangular, non-homogeneous, or partially obscured WFS grids,

their implementation becomes more complex [25].

The objective of this paper is to present a new method for wavefront reconstruction from

wavefront slope measurements that uses bivariate simplex B-splines inside a linear regression

framework [1, 8–10, 21]. This new method, which we call SABRE (Spline based ABerration

REconstruction) aims to be a truly general WFR method. In essence, SABRE locally mod-

els the wavefront with linear and nonlinear simplex B-spline basis functions on triangular

subpartitions of the WFS domain using local WFS measurements. While this paper presents

only a least squares estimator for the simplex spline coefficients (i.e. B-coefficients), it is

compatible with any more advanced linear regression parameter estimation technique.

SABRE has five important advantages over other WFR methods. Firstly, SABRE is in-

variant of WFS geometry in the sense that it can be used without any modification on

non-rectangular, non-homogeneous (misaligned), and partially obscured sensor grids. This

is a significant advantage in real life AO setups, where non-rectangular WFS grids with

misaligned lenslet images are often encountered. Secondly, SABRE allows wavefront recon-

struction using nonlinear basis functions resulting in a more accurate approximation of the

physical wavefront. Thirdly, SABRE has an inherent noise smoothing capability which makes

it highly resilient to sensor noise. Fourthly, in contrast to the Fried-geometry based FD

method, the SABRE is not subject to the waffle mode [24, 32]. Finally, the local nature of

SABRE means that it can be implemented on multi-core hardware resulting in a distributed

SABRE (D-SABRE) that can significantly increase computational efficiency. This paper will

focus primarily on the first four of these advantages, while the distributed SABRE will be

explored in a forthcoming paper.

This paper is outlined as follows. In Sec. 2 we provide preliminaries on bivariate simplex

B-splines as they are central to the new WFR method. Then, in Sec. 3 we introduce the

SABRE method, and present a least squares estimator for estimating the SABRE model

parameters. Additionally, we show in Sec. 3 that for fundamental reasons the SABRE is not

subject to the waffle mode. In Sec. 4 the results from a number of numerical experiments

utilizing a Fourier optics based Shack-Hartmann sensor simulation are presented. In the

experiments it is shown that SABRE can reconstruct nonlinear wavefronts that are closer

to physical reality than wavefronts produced by any FD method. Subsequently, the ability

of SABRE to reconstruct wavefronts on non-rectangular domains is demonstrated. In Sec. 5

we conclude the paper, and provide pointers for future research.
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Fig. 1: The principle of the multivariate simplex spline; a 5th degree spline function with

C1 continuity defined on 4 triangles with (left) the 4 individual spline pieces (p1(b), p2(b),

p3(b), and p4(b)), and (right) the global spline function p(b) formed by combining the 4 spline

pieces.
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2. Preliminaries on Multivariate Simplex B-Splines

To provide the reader with a basic understanding of the theory behind SABRE a brief

introduction into the theory of bivariate simplex B-splines is given. For a more complete and

general introduction into the theory of multivariate simplex B-splines we refer to [21].

2.A. The 2-Simplex and Barycentric Coordinates

Let t be a 2-simplex (triangle) formed by the convex hull of its 3 non-degenerate vertices

(v0,v1,v2) ∈ R
2 as follows:

t :=

〈[

v0x

v0y

]

,

[

v1x

v1y

]

,

[

v2x

v2y

]〉

∈ R
2 (1)

The basis polynomials of the simplex B-splines are functions in terms of barycentric

coordinates. The Barycentric coordinate system is a local coordinate system which is defined

on an individual simplex. If x ∈ R
2 is a point on the Cartesian plane, then the normalized

barycentric coordinate b ∈ R
3 of x with respect to the triangle t can be determined using

the following equations:

[

x1

x2

]

=

[

v0x v1x v2x

v0y v1y v2y

]







b0

b1

b2






, b0 + b1 + b2 = 1, (2)

The condition b0 + b1 + b2 = 1 is a normalization condition, which ensures that any

x ∈ R
2 has a unique representation b ∈ R

3 in barycentric coordinate space. Now define the

normalized simplex vertex matrix V as follows:

V :=

[

(v1x − v0x) (v2x − v0x)

(v1y − v0y) (v2y − v0y)

]

(3)

Using the matrix V from (3), the barycentric coordinate b = (b0, b1, b2) ∈ R
3 of the

Cartesian coordinate x ∈ R
2 is calculated as follows:

[

b1

b2

]

= V−1

[

x1

x2

]

(4)

b0 = 1− b1 − b2,

In the remainder of the paper, we shall use the following shorthand notation for the

Cartesian-to-barycentric coordinate transformation from x ∈ R
2 to b ∈ R

3 on the triangle t:

b(x) := (b0, b1, b2) ∈ R
3, x ∈ R

2 (5)
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2.B. Triangulations of Simplices

The approximation power of the multivariate simplex B-spline can be increased by combin-

ing many simplices into a structure called a triangulation. A triangulation T is a special

partitioning of a domain into a set of J non-overlapping simplices:

T :=
J
⋃

i=1

ti, ti ∩ tj ∈
{

∅, t̃
}

, ∀ti, tj ∈ T , (6)

with the edge simplex t̃ either a line (1-simplex), or a vertex (0-simplex) in the case of a

2-dimensional triangulation consisting of triangles.

A number of algorithms can be used to create triangulations from a given set of vertices.

The most widely known of these is the Delaunay triangulation method, which has a standard

implementation in Matlab. The triangulations used in this paper were all created with a

different (non-Delaunay) technique based on the grid cell subdivision scheme introduced

in [8].

2.C. Basis functions of the simplex B-splines

The basis polynomials of the simplex B-splines are Bernstein polynomials in terms of barycen-

tric coordinates. The basis polynomials are derived using the multinomial theorem, which

states that any polynomial of total degree d can be expanded into a sum of monomials. In

R
3 the result of the multinomial theorem is the following:

(b0 + b1 + b2)
d =

∑

κ0+κ1+κ2=d

d!

κ0!κ1!κ2!
bκ0
0 bκ1

1 bκ2
2 , (7)

with κ = (κ0, κ1, κ2) a multi-index with the properties:

|κ| = κ0 + κ1 + κ2 = d, κ0 ≥ 0, κ1 ≥ 0, κ2 ≥ 0 (8)

The Bernstein basis polynomials of the simplex B-splines are defined as the individual

monomials in (7), with the additional rule that they are equal to 0 by definition when the

evaluation point x is outside of the triangle t:

Bd
κ(b(x)) :=

{

d!
κ0!κ1!κ2!

bκ0
0 bκ1

1 bκ2
2 ,x ∈ t

0 ,x /∈ t
(9)

Any polynomial p(b(x)) of degree d on a simplex t can be written as a linear combination of

basis polynomials in what is known as the B-form as follows [7]:

p(b(x)) :=

{

∑

|κ|=d c
t
κB

d
κ(b(x)) ,x ∈ t

0 ,x /∈ t
(10)

6



vd

va

ve

vb vc

tj

tkti

cj004cj013cj022cj031cj040

cj103cj112cj121cj130

cj202cj211cj220

cj301cj310

cj400

ck004

ck013

ck022

ck031

ck040

ck103

ck112

ck121

ck130

ck202

ck211

ck220

ck301

ck310 ck400ci004

ci013

ci022

ci031

ci040

ci103

ci112

ci121

ci130

ci202

ci211

ci220

ci301

ci310

ci400

Fig. 2: B-net for a 4th degree spline function on a triangulation consisting of the 3 triangles

ti, tj and tk.

with ctκ the B-coefficients which uniquely determine the polynomial p(b(x)) on the triangle

t. The B-coefficients have a special geometric ordering inside their parent simplex, see Fig. 2.

This ordering is called the B-net, and is essential for defining continuity between simplices,

and for enforcing local external constraints on the simplex B-spline function [9, 10, 21].

The total number of B-coefficients and basis polynomials is equal to d̂, which for the

2-dimensional case and a given degree d is given by:

d̂ :=
(d+ 2)!

2d!
. (11)

2.D. Vector formulations of the B-form

In [9] a vector formulation of the B-form from (10) was introduced. With (5) the vector

formulation for a B-form polynomial p(b(x)) in barycentric R
3 is:

p(b(x)) :=

{

Bd(b(x)) · ct ,x ∈ t

0 ,x /∈ t
, (12)

with b(x) the barycentric coordinate of the Cartesian x according to (5).

The row vector Bd(b(x)) in (12) is a vector which is constructed from individual basis
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polynomials which are sorted lexicographically according to [16]:

Bd(b(x)) :=
[

Bd
d,0,0(b(x)) Bd

d−1,1,0(b(x)) · · ·

· · · Bd
0,1,d−1(b(x)) Bd

0,0,d(b(x))
]

∈ R
1×d̂.

(13)

The column vector ct the vector of lexicographically sorted B-coefficients on the triangle

t:

ct = [cd,0,0 cd−1,1,0 · · · c0,1,d−1 c0,0,d]
⊤ ∈ R

d̂×1. (14)

For example, for a B-form polynomial p(b(x)) of degree d = |κ| = 1 in Barycentric R
3 on

the triangle t we have κ ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. In this case the vector formulation of

the B-form from (12) is:

p(b(x)) = B1(b(x)) · ct

= [b10b
0
1b

0
2 b00b

1
1b

0
2 b00b

0
1b

1
2][c

t
1,0,0 ct0,1,0 ct0,0,1]

⊤.

The simplex B-spline function srd(b(x)) of degree d and continuity order r, defined on a

triangulation TJ consisting of J triangles, is defined as follows:

srd(b(x)) := Bd · c ∈ R,x ∈ TJ (15)

where the continuity order r, also denoted by Cr, signifies that all derivatives up to order r of

two B-form polynomials defined on two neighboring triangles are equal on the edge between

the two triangles. For example, C0 continuity means that only the values of the B-form

polynomials are equal on an edge between two neighboring triangles, while C1 continuity

means that both the first order derivatives and the values of the B-form polynomials match

on the edge.

In (15), Bd is the global vector of basis polynomials which is constructed using (13) as

follows:

Bd := [ Bd
t1
(b(x)) Bd

t2
(b(x)) · · · Bd

tJ
(b(x)) ] ∈ R

1×J ·d̂ (16)

Note that according to (12) we have Bd
tj
(b(x)) = 0 for all evaluation locations x that

are located outside of the triangle tj. The result of this is that the global vector of basis

polynomials Bd is a sparse vector.

The global vector of B-coefficients c in (15) is constructed as follows:

c :=
[

ct1
⊤

ct2
⊤ · · · ctJ

⊤
]⊤

∈ R
J ·d̂×1 (17)

with each ctj a per-simplex vector of lexicographically sorted B-coefficients from (14).
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2.E. Spline Spaces

A spline space is defined as the space of all spline functions srd of a given degree d and

continuity order r on a given triangulation T . Such spline spaces have been well studied in

the past, see e.g. [20–22]. We use the definition of the spline space from [21]:

Sr
d(T ) := {srd ∈ Cr(T ) : srd|t ∈ Pd, ∀t ∈ T } (18)

with Pd the space of polynomials of degree d.

2.F. Continuity between Simplices

By definition, a spline function is a piecewise defined polynomial function with a predefined

continuity order between its polynomial pieces. The continuity order r signifies that all mth

order derivatives, with 0 ≤ m ≤ r, of two B-form polynomials defined on two neighboring

triangles are equal on the edge between the two triangles. For simplex B-splines, continuity

between neighboring triangles is enforced by continuity conditions.

The principle of the continuity conditions in Cartesian R
2 is the following. Let two neigh-

boring triangles ti and tj, differing by only the vertex w, be defined as follows:

ti := 〈v0,v1,w〉 , tj := 〈v0,v1,v2〉 (19)

Then ti and tj meet along the line t̃ given by:

t̃ := ti ∩ tj = 〈v0,v1, 〉 (20)

The formulation for the continuity conditions for Cr continuity between ti and tj is the

following [1, 21]:

−cti(κ0,κ1,m) +
∑

|γ|=m

c
tj
(κ0,κ1,0)+γ

Bm
γ (b(w)) = 0, 0 ≤ m ≤ r (21)

with γ = (γ0, γ1, γ2) a multi-index independent of κ.

It was shown in [9] that the formulation provided in (21) is only accurate for specific B-net

orientations, such as that of ti and tj in Fig. 2. A more general formulation of the continuity

conditions requires the utilization of a B-net orientation rule such as that introduced in [8].

For Cr continuity there are a total of Q continuity conditions of the form (21) per edge:

Q :=
r

∑

m=0

(d−m+ 1) (22)

The continuity conditions for all E edges are collected into a single set of linear equations:

Hc = 0 (23)
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In (23), the matrix H ∈ R
EQ×Jd̂ is the so-called global smoothness matrix. Each row in H

contains a single continuity condition. The vector c is the global vector of B-coefficients from

(17). Constructing H is not a trivial task; for particular details on its construction we refer

the reader to [8, 9, 21].

2.G. The matrix form of the directional derivative

In [10] a novel formulation of the directional derivatives of B-form polynomials in matrix

form was presented. Because of its crucial role in wavefront reconstruction with splines, this

formulation will be repeated here to increase the understanding of the reader.

Before introducing the formulation, however, the concept of the directional coordinate

must be explained. First, let u be a unit vector in Cartesian R
2, then we define a ∈ R

3 as

the directional coordinate of u with respect to the triangle t. The directional coordinate a

should be seen as the barycentric representation of the Cartesian unit vector u ∈ R
2 with

respect to a given triangle. That is, if u = v − w, with v and w vectors in Cartesian R
2,

then using the short-hand notation from (5), the directional coordinate is defined as follows:

a := b(v)− b(w) ∈ R
3, (24)

with b(v) and b(w) the barycentric coordinates with respect to t of v and w, respectively.

Using the formulation from [10], the directional derivative of order m in the direction u of

a B-form polynomial p(b(x)) on a single triangle t can be expressed in terms of the original

vector of B-coefficients as follows:

Dm
u p(b(x)) =

d!

(d−m)!
Bd−m(b(x))Pd,d−m(a) · ct, (25)

with Pd,d−m(a) ∈ R
(d−m+2)!
2(d−m)!

×d̂ the de Casteljau matrix of degree d to d−m from [10] expressed

in terms of the directional coordinate a of u with respect to the triangle t. In (25),Bd−m(b(x))

is the vector of basis polynomials from (13) for degree d − m, and ct is the vector of B-

coefficients for a single triangle from (14).

It will be shown in the next section that (25) is the key to spline based wavefront re-

construction, because it directly relates the spline function model of the wavefront to its

directional derivatives modeling the slopes and curvatures in terms of ct.

For example, in the case of the first order directional derivative of a simplex B-spline

p(b(x)) of degree 1 on a single triangle, (25) can be simplified as follows:

D1
up(b(x)) = B0(b(x))P1,0(a) · ct, (26)

which for b, a ∈ R
3 reduces to:

D1
up(b(x)) =

{

[

a0 a1 a2

]

· ct ,x ∈ t,

0 ,x /∈ t.
(27)
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Before continuing, a full-triangulation formulation of de Casteljau matrix for a triangula-

tion TJ of the form (6) consisting of J triangles needs to be defined. For a single observation,

this full-triangulation formulation is a block diagonal matrix with a total of J blocks of the

form Pd,d−m(au) on the main diagonal, with j = 1, 2, . . . , J :

Pd,d−m
u := diag

(

P
d,d−m
j (au)

)J

j=1
∈ R

J
(d−m+2)!
2(d−m)!

×Jd̂, (28)

where au is the directional coordinate of the derivative direction u with respect to the triangle

tj.

The full triangulation form of the directional derivative of the simplex B-spline for a single

observation b(x) then follows from the combination of (16), (28), and (17):

Dm
u s

r
d(b(x)) =

d!

(d−m)!
Bd−mPd,d−m

u · c, (29)

3. Wavefront reconstruction with simplex B-splines

In this section the SABRE method for wavefront reconstruction is introduced and connected

to the literature. Additionally, we show that the SABRE is not subject to the waffle mode.

Finally, the steps that make up the SABRE algorithm are presented, its computational

aspects are discussed, and a tutorial example is given.

3.A. Wavefront reconstruction from slope measurements

The relationship between the slopes of the wavefront phase and the wavefront phase can be

described in the form of the following system of first order partial differential equations [15]:

σx(x, y) =
∂φ(x, y)

∂x
,

σy(x, y) =
∂φ(x, y)

∂y
, (30)

with φ(x, y) the unknown wavefront, and with σx(x, y) and σy(x, y) the wavefront slopes at

(x, y) in the directions x and y, respectively.

3.B. Wavefront reconstruction with the finite difference method

One of the best known zonal methods for the reconstruction of wavefronts from wavefront

slopes is the finite difference (FD) method. The FD method comes in a number of different

specific forms which depend on the sampling geometry, such as the Fried [12], Hudgin [17],

and Southwell [29] geometries. All FD methods have in common that they reduce (30) into

a discrete form which solution is approximated with linear interpolating polynomials [15].

In order to connect the SABRE method with the literature we shall compare it directly

with the Fried form of the FD method [12,29]. The Fried FD sensor model assumes that the
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average slope in a grid cell formed by four phase points is equal to the average difference in

phase between the phase points, see Fig. 3. The Fried sensor model is:

σx(i, j) = [(φ(i+ 1, j)− φ(i, j))+

(φ(i+ 1, j + 1)− φ(i, j + 1))] /(2h) + nx(i, j)

σy(i, j) = [(φ(i, j + 1)− φ(i, j))+

(φ(i+ 1, j + 1)− φ(i+ 1, j))] /(2h) + ny(i, j)

(31)

with h the step size between phase points, with nx(i, j) and ny(i, j) residual terms that

contain both noise and modeling errors. The indices i = 1, 2, . . . ,M−1, and j = 1, 2, . . . , N−

1 are grid coordinates on the grid domain Ω(M,N), which is defined as follows:

Ω(M,N) ∈ R
2, M,N ∈ N (32)

By enumerating all M ·N phase points φ(i, j) into a single row vector φ, and by using all

slope measurements, the following matrix equation can be constructed:

σ = Gφ+ n (33)

with σ =
[

σ⊤
x σ⊤

y

]⊤
the vector of slope measurements which is constructed by appending

the vector of all slopes in the x-direction with the vector of all slopes in the y-direction. The

matrix G is the geometry matrix which is constructed such that each row multiplied with φ

results in a single expression of the form (31).

Based on (33), an estimate for the global wavefront φ̂ can now be obtained using any

parameter estimation technique, see e.g. [11, 15, 30, 31]. For example, the ordinary least

squares estimator for φ is:

φ̂FD = G+σ (34)

with G+ the Moore-Penrose pseudo inverse of G as G⊤G is singular in general [2]. In

particular, for the Southwell FD geometry, the nullspace of G⊤G has dimension 1 (piston

mode), while for the Fried FD geometry, the nullspace has dimension 2 (piston mode and

waffle mode) [24, 32]. The matrix G+ is the FD reconstruction matrix, which is computed

only once for a given FD sensor geometry.

3.C. Wavefront reconstruction with the SABRE

The main contribution of this paper is the SABRE, which is a new method for wavefront

reconstruction that uses the basis functions of bivariate simplex B-splines to locally model

the wavefront using local WFS measurements. The SABRE can be seen as a generalization

of the FD method to the nonlinear case, see Sec. 6.
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The approach taken with the SABRE method differs from the FD method in the sense that

it is assumed that the unknown wavefront φ(x, y) can be approximated with a parametrized

model in the form of a bivariate simplex B-spline of degree d ≥ 1 and continuity order r

from (15):

φ(x, y) ≈ sdr(b(x, y)) = Bd(b(x, y)) · c, d ≥ 1, (x, y) ∈ t (35)

The right hand side of (35) then is the SABRE model that approximates the wavefront

φ(x, y).

Under the assumption that (35) holds, we can then use (25) to rewrite (30) into the

following slope sensor model:

σx(x, y) =
d!

(d−1)!
Bd−1(b(x, y))Pd,d−1(ax) · c

t + νx(x, y),

σy(x, y) =
d!

(d−1)!
Bd−1(b(x, y))Pd,d−1(ay) · c

t + νy(x, y),

(36)

with d ≥ 1 the polynomial degree of the spline, and with ax and ay the directional coordinates

respectively of ux and uy with respect to the triangle t. The terms νx(x, y) and νy(x, y) in

(36) are residual terms which contain both the sensor noise as well as the modeling errors.

Use of the SABRE method requires the introduction of a new sensor geometry that is

triangular in nature. In Fig. 3 the basic SABRE sensor geometry is compared to that of

the Southwell and Fried FD sensor geometries. In Table 1 the properties of the different

SABRE geometries are shown. The fundamental difference between the FD and the SABRE

methods is that for all FD methods the wavefront phase is defined only at the grid locations

(m,n) ∈ N
2, while for the SABRE method the phase is defined at any location (x, y) ∈ T .

The result is that the SABRE method allows for the decoupling between slope measurement

locations and phase point locations.

3.D. The anchor constraint

Before continuing with the definition of the SABRE, a new type of constraint is introduced

in the form of the anchor constraint. Effectively, the anchor constraint predefines the value of

the unknown constant of integration (i.e. the piston mode) that arises when solving the first

order PDE from (30). The anchor constraint is essential for producing a well-conditioned

parameter estimation problem for the B-coefficients of the SABRE model.

The anchor constraint is derived as follows. First, we reformulate (29) with m = 1 in

integral form as follows:
∫

T

D1
us

d
r(b(x))du =

∫

T

dBd−1Pd,d−mcdu,

= Bdc+ k, (37)
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Simplex Type-IGSimplex Type-IIB

Simplex Type-IISimplex Type-I

FriedSouthwell

Fig. 3: Southwell geometry (top left) and Fried (top right) sensor geometries compared with

4 different SABRE geometries (middle and bottom rows). Black dots are the phase point

locations, horizontal and vertical lines are the slope measurements in the x and y directions,

respectively. The open circles are the locations of the slope measurements. Gray lines in the

SABRE geometries are the triangle edges, while the shaded area inside the triangulations is

the area in which φ(x, y) is defined.
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Sensor

geometry

Triangulation

Type

Rectangular

domain

Data at

vertices

Type-I I yes yes

Type-IG I yes no

Type-IB I no yes

Type-IBG I no no

Type-II II yes yes

Type-IIG II yes no

Type-IIB II no yes

Type-IIBG II no no

Table 1: Properties of SABRE geometries

with k an unknown constant that is proportional to the piston mode. The resulting spline

model for the wavefront then is:

srd(b(x)) = Bdc+ k. (38)

The affine property of the B-coefficients allows us to rewrite (38) as follows:

srd(b(x)) = Bd(c+ k · 1). (39)

with 1 ∈ R
J ·d̂×1 a row vector containing only 1’s.

The global B-coefficient vector can be partitioned into two parts; the first part containing

only the first B-coefficient, and the second part the remainder of B-coefficients:

c =

[

ct1d,0,0 + k

c̃+ k · 1

]

, (40)

with 1 ∈ R
(J ·d̂−1)×1.

The anchor constraint then is the following:

k = −ct1d,0,0, (41)

Substitution of (41) in (39) then results in the SABRE model with fixed piston mode:

srd(b(x)) = Bd ·

[

0

c̃− ct1d,0,0 · 1

]

, (42)
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In the following, we require a vector form of the anchor constraint. If h = [1 0 · · · 0] is

the anchor vector, the anchor constraint becomes:

h ·
[

(ct1d,0,0 + k) (c̃+ k · 1)⊤
]⊤

= 0. (43)

3.E. Linear SABRE

The linear SABRE problem for a total of K slope measurements on a complete triangulation

consisting of J triangles is derived from (36) as follows:

σ = B0P1,0
u c+ n,

0 = Ac, (44)

with σ ∈ R
K×1 the vector of measured wavefront slopes, with B0 ∈ R

K×J the global matrix

of basis polynomials from (16) of polynomial degree 0, with P1,0
u ∈ R

J×3J the de Casteljau

matrix from (28), and with c ∈ R
3J×1 the global vector of B-coefficients from (17). The

matrix A in (44) is a constraint matrix defined as follows:

A :=

[

H

h

]

∈ R
(EV+1)×Jd̂ (45)

with H ∈ R
(EV )×Jd̂ the smoothness matrix from (23), and with h ∈ R

1×Jd̂ the anchor

constraint from (43).

For a single triangle t, the slope equation from (44) can be simplified using (27):

σx(x, y) = ax0c1,0,0 + ax1c0,1,0 + ax2c0,0,1 + nx(x, y),

σy(x, y) = ay0c1,0,0 + ay1c0,1,0 + ay2c0,0,1 + ny(x, y),

(46)

with (ax0 , ax1 , ax2) the directional coordinates of a vector ux = (1, 0) in the x-direction, and

with (ay0 , ay1 , ay2) the directional coordinates of a vector uy = (0, 1) in the y direction, all

with respect to t. Note that the SABRE model does not depend on the location (x, y); the

wavefront slope is assumed to be constant over the complete triangle.

3.F. Nonlinear SABRE

The nonlinear SABRE problem follows from extending the per-triangle nonlinear sensor

model from (36) into the following full triangulation form for all K slope and L curvature

measurements:

σ = dBd−1Pd,d−1
u c+ n,

0 = Ac, (47)
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with σ ∈ R
K×1 the vector of measured wavefront slopes, and with c ∈ R

Jd̂×1 the global

vector of B-coefficients from (17). The matrices of basis functions in (47) are constructed

according to (16), while the de Casteljau matrices are constructed using (28). Finally, the

constraint matrix A in (47) is constructed using (45).

An important implication of nonlinear SABRE is that the SABRE model is a function of

the geometric location of the slope measurements (i.e. (x, y)). The reason for this is that the

matrix with B-form regressors Bd−1 in (47) for d ≥ 2 depends on the (barycentric) location

of the slope measurement b(x, y).

For example, if we assume a quadratic polynomial model structure for the wavefront, that

is, φ(x, y) ≈ B2ct, the slope equation in (47) becomes:

σ = 2B1P2,1
u c+ n. (48)

For a single triangle t, (48) can be expanded as follows:

σx(x, y) = 2b0 (ax0c2,0,0 + ax1c1,1,0 + ax2c1,0,1)

+2b1 (ax0c1,1,0 + ax1c0,2,0 + ax2c0,1,1)

+2b2 (ax0c1,0,1 + ax1c0,1,1 + ax2c0,0,2)

+nx(x, y),

σy(x, y) = 2b0 (ay0c2,0,0 + ay1c1,1,0 + ay2c1,0,1)

+2b1 (ay0c1,1,0 + ay1c0,2,0 + ay2c0,1,1)

+2b2 (ay0c1,0,1 + ay1c0,1,1 + ay2c0,0,2)

+ny(x, y), (49)

with b(x, y) = (b0, b1, b2) the barycentric coordinate of the Cartesian point (x, y) with respect

to t. Clearly, (49) is dependent on the actual location of the slope measurement inside the

triangle.

3.G. Generalized SABRE

As a final generalization, the SABRE method enables the use of the resultant directional

derivative instead of the set of directional derivatives in the x and y directions, see Fig. 4.

In this case, the two-component PDE from (36) can be replaced with a single PDE defined

in the general direction u as follows:

σu(x, y) =
d!

(d− 1)!
Bd−1(b(x, y))Pd,d−1(au) · c

t + n(x, y), (50)

with u a Cartesian vector in R
2, and with au the corresponding directional coordinate in

barycentric R
3. The advantage of (50) is that compared to the two-component PDE from
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Simplex Type-IGSimplex Type-IB

Fig. 4: General Simplex Type-IB geometry (left) and Simplex Type-IG geometry (right).

Open circles are the lenslet apertures.

(36) it requires only half the number of slope measurements. This translates into lower

computational and memory loads during the construction of the reconstruction matrix. The

disadvantage of (50), however, is that u will vary for time-varying wavefronts, requiring a

complete rebuild of the reconstruction matrix at each time step.

3.H. A least squares estimator for the B-coefficients

In this paragraph a least squares (LS) estimator is presented for the B-coefficients of the

SABRE model approximating a wavefront using wavefront slope measurements.

The LS estimator requires that the constraint equations in (44) and (47) are eliminated

from the system by projection on the nullspace of the constraint matrix A from (45). In that

case, the wavefront reconstruction problem can be formulated in the form of an unconstrained

linear regression problem as follows:

σ = Dc+ n, (51)

with n a vector containing Gaussian distributed white noise and with D the system matrix

given by:

D = dBd−1Pd,d−1
u NA (52)

with NA a basis for null(A). The matrix D in (51) is the SABRE equivalent of the FD

geometry matrix G from (33).
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The OLS cost function in terms of the B-coefficients is:

J(c) =
(

σ⊤ −Dc
)⊤ (

σ⊤ −Dc
)

, (53)

The LS estimator for the B-coefficients of the SABRE model is:

ĉLS = NA(D
⊤D)−1D⊤σ,

= Qσ, (54)

with Q = NA(D
⊤D)−1D⊤ the SABRE reconstruction matrix, which is computed only once

for a given geometry. MatrixD⊤D is guaranteed to be of full rank, and therefore has an empty

null-space. This is in contrast with the FD equivalent G⊤G from (33) which in general has

a rank deficiency of 2, and consequently a 2-dimensional null-space. As a result the SABRE

has a predefined piston mode through the anchor constraint, and is not subject to the waffle

mode through the action of the continuity constraints.

Note that the matrix D⊤D is invertible, which is a direct result of the use of the anchor

constraint from (43) together with the smoothness constraints from (23).

Using (54) the resulting least squares SABRE model is:

φ̂LS(x) = BdĉLS. (55)

3.I. The SABRE algorithm

The SABRE algorithm consists of two parts; an initialization part and a real-time part. The

SABRE algorithm differs from the FD reconstruction algorithm only during the initialization

part in which the SABRE reconstruction matrix is determined. The initialization part of the

SABRE algorithm consists of the following 4 steps:

Input The inputs to the algorithm are the SABRE model structure in the form of the triangu-

lation type (see Table 1), the spline degree d and the continuity order r. Additionally,

a reference WFS image is supplied, and the user specifies a parameter estimator.

Step 1 The reference centers of the SH lenslet array are determined using the reference WFS

image. A triangulation TJ of the type specified by the user is created by triangulating

the reference centers using a (Delaunay) triangulation algorithm.

Step 2 The system of equations from (47) are formulated. For this, the matrix with B-form

regressors Bd−1 from (16), and the global de Casteljau matrix Pd,d−1
u from (28) are

constructed. The constraint matrix A from (45) is assembled using the smoothness

matrix H from (23) and the anchor constraint h from (43). A basis for the null space

of A is calculated.

19



Step 3 The system matrix D is constructed using (52), and the problem is stated in the linear

regression form from (51).

Step 4 The SABRE reconstruction matrix Q is calculated based on the choice of parameter

estimator. In the case of an LS estimator, Q is constructed according to (54).

The real-time part of the SABRE algorithm uses the SABRE reconstruction matrix Q in

an matrix-vector-multiplication (MVM) operation to reconstruct the wavefront phase from

the SH slope measurements.

3.J. Computational aspects of the SABRE

An important aspect of any WFR method is its computational complexity. While it is not the

main emphasis of this paper, some basic indications of the computational complexity of the

SABRE method will be given here together with some pointers to a more efficient distributed

SABRE (i.e. D-SABRE) method. In the form presented in this paper, the SABRE method

has a computational complexity that is of the same order as that of the FD method, i.e.,

O(N3) for the construction of the reconstruction matrix, and O(N2) for the reconstruction

itself.

In particular, the computational complexity of the SABRE method is O((rank NA)
3)

for the construction of the reconstruction matrix, and O((rank NA)
2) for the wavefront

reconstruction operation, with NA a basis for the nullspace of the constraint matrix A from

(45). The rank of NA in turn is a function of the total number of triangles and internal

triangle edges in a triangulation and the degree and continuity order of the SABRE model.

However, the local nature of the basis functions of the simplex B-splines enable the defini-

tion of a D-SABRE method which solves the global N×N WFR problem by splitting it into

G parts. Each of the G parts is formed by a sub-triangulation of the global triangulation, and

the WFR problem is solved for each sub-triangulation individually using only local sensor

data. This would reduce the computational complexity of the reconstruction problem from

O(N2) to O(N2/G2) when run on G parallel processors, leading to a speedup factor of O(G2)

over the ordinary global SABRE method.

3.K. An example of the linear SABRE

In this paragraph we will present a tutorial example of the linear SABRE method. In the

example, we use the Simplex Type-I sensor geometry from Fig. 3. We assume that there are

two wavefront slope sensor apertures at which the local wavefront slope in the (x, y) directions

is measured. Furthermore, we assume a linear SABRE model structure of the form (44). The

corresponding spline function is defined on a triangulation consisting of 2 triangles, with a

symmetric B-net orientation, see Fig. 5. Furthermore, we assume a linear SABRE model of
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Fig. 5: A Simplex Type-I sensor geometry (left) and the triangulation and B-net for a linear

simplex B-spline function (right).

the form (44). The corresponding spline function is defined on a triangulation consisting of

2 triangles, with a symmetric B-net orientation, see Fig. 5.

Before starting with the reconstruction, the various entities in (44) must be declared. We

start with the vector of B-coefficients, which in this case consists of 6 B-coefficients:

c =
[

ct11,0,0 ct10,1,0 ct10,0,1 ct21,0,0 ct20,1,0 ct20,0,1
]⊤

The construction of the de Casteljau matrix P1,0 from (44) requires us to first define

directional coordinates for the x and y directions for each of the two triangles. Using (24),

we find for the directional coordinates at1
x and at1

y with respect to t1 and the directional

coordinates at2
x and at2

y with respect to t2:

at1
x =

[

0 1 −1
]⊤

, at1
y =

[

1 0 −1
]⊤

,

at2
x =

[

−1 0 1
]⊤

, at2
y =

[

0 −1 1
]⊤

,
(56)

Using (56), together with (27), the full-triangulation de Casteljau matrix P1,0 is:

P1,0 =











0 1 −1 0 0 0

−1 0 1 0 0 0

0 0 0 1 0 −1

0 0 0 0 −1 1











,

We have 2 continuity conditions of the form (21): −ct11,0,0+ct21,0,0 = 0 and −ct10,1,0+ct20,1,0 = 0,
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which lead to the smoothness matrix H given by:

H =

[

−1 0 0 1 0 0

0 −1 0 0 1 0

]

. (57)

The anchor constraint is constructed using (41):

h =
[

1 0 0 0 0 0
]

. (58)

The complete constraint matrix A is formed by combining (57) with (58) as shown in

(45). We now proceed with reformulating the constrained model structure from (44) into the

equivalent constrained form from (51) by use of the following basis for the null space of A:

NA =







0 0 −1 0 0 0

0 1 0 0 1 0

0 0 0 0 0 1







⊤

.

We are now ready to define the reduced regression matrix D from (51):

D = P1,0NA =











1 1 0

−1 0 0

0 0 −1

0 −1 1











,

which we can use to define a least squares estimator for c using (54).

4. Simulations with the SABRE

In this section the wavefront reconstruction performance of the SABRE method is compared

to that of the Southwell and Fried FD methods in three numerical experiments utilizing a

Fourier optics based Shack-Hartmann (SH) wavefront sensor simulation.

4.A. Setup of the numerical experiments

For the experiments, simulated turbulence phase screens are used in combination with

a Fourier optics based SH WFS simulation to generate simulated wavefront phase slope

measurements. The simulated SH WFS sensor effectively performs a local spatial averaging

of the wavefront at each lenslet.

A total of 100 simulated phase screens are created using a von Kármán turbulence model

[3, 4]. For the von Kármán turbulence model a turbulence outer scale of 50 m is used with

a Fried coherence length of 0.2 m. The diameter of the simulated aperture is 2 m. No

continuous inner scale is assumed. The average phase range for the 100 phase screens is 23

rad. The wavefront reconstruction takes place on the grid Xr which is of the same resolution
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as the simulated SH lenslet array used in the simulation, i.e. 17 × 17. The phase screen φ

is generated on a 272 × 272 grid indicated by Xwf such that each lenslet images a 16 × 16

segment of φ.

The overall quality of the reconstruction is calculated on the high resolution grid Xwf .

For this, the reconstructed wavefronts must be interpolated. For the SABRE method, this

interpolation is implicit, as the SABRE model is an analytical function which can be evalu-

ated at any point inside the model domain. For the FD method, two different interpolation

schemes are used; a linear and a cubic interpolation scheme.

Three performance metrics are defined. The first is the estimation error which is defined

as follows:

ǫ = ||φ̂− φ||, (59)

with φ̂ the estimated wavefront which is interpolated on Xwf . The normalized estimation

error ER is given by:

ER =
ǫ

||φ||
. (60)

The noise gain is the third performance metric:

Kν =
σν

ǫ
, (61)

with σν the standard deviation of the measurement noise.

4.B. Fourier optics based SH simulator

In the numerical experiments, a simulated SH lenslet array is used to produce slope measure-

ments, see Fig. 6. The SH lenslet array simulation is based on the Fresnel approxima-

tion to the Maxwell equations, and was taken from [6]. For the numerical experiments, a

K × L = 17 × 17 lenslet array was used for a total of 289 lenslets. Each (circular) lenslet

had a diameter of Dl = 150 µm and a focal distance of f = 5 · 10−3 m. The observation

wavelength was λ = 633 nm. For the non-rectangular WFS numerical experiments, a mask

was placed on the 17× 17 lenslet array, resulting in a non-rectangular array with a total of

240 lenslets.

A simulated CCD with M × N = 4352 × 4352 pixels is placed in the focal plane of the

lenslet array. It is assumed that the pupil plane function of each lenslet acts on a 16 × 16

pixel segment of the global wavefront. In order to increase the resolution of the focal plane

lenslet image, this segment is embedded at the center of a larger Mp ×Mp = 256× 256 grid

containing only zeros.

The focal plane intensity function Ikl for each of the lenslets is then calculated as follows:

Ikl =
∣

∣FF
{

Akl · e
i·φkl

}∣

∣ ∈ R
256×256, (62)
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with φkl ∈ R
256×256 the wavefront phase segment imaged by the lenslet (k, l), with Akl(m,n) ∈

R
256×256 the pupil mask of lenslet (k, l), and with FF the zero-shifted two-dimensional

discrete Fourier transform.

The complete SH-array focal intensity function I(x, y) ∈ R
4352×4352 is then constructed

using the lenslet intensity functions from (62) as follows:

I (k ·Mp +m, l ·Mp + n) = Ikl(m,n), m = 1, 2, . . . ,Mp, n = 1, 2, . . . ,Mp, (63)

with 0 ≤ k < K and 0 ≤ l < L.

The local wavefront slope is obtained by calculating the shift of the center of mass (COM)

of each lenslet image with respect to a reference COM. The COM for each lenslet image is

calculated as follows:

xckl =

∑Mp−1
m=0

∑Mp−1
n=0 m · I(k ·Mp +m, l ·Mp + n)

∑Mp−1
m=0

∑Mp−1
n=0 I(k ·Mp +m, l ·Mp + n)

,

yckl =

∑Mp−1
m=0

∑Mp−1
n=0 n · I(k ·Mp +m, l ·Mp + n)

∑Mp−1
m=0

∑Mp−1
n=0 I(k ·Mp +m, l ·Mp + n)

, (64)

Finally, the slopes at lenslet (k, l) are calculated using the result from (64) as follows:

σxkl
=

(xckl − x0kl)

f
+ wν

σykl =
(yckl − y0kl)

f
+ wν

(65)

with x0kl and y0kl the calibrated (reference) centroid locations, with 0.01 · ||σ|| ≤ w ≤ 10 · ||σ||

the variable noise magnitude, and with ν a uniformly distributed random number sequence

in the interval [−1 1].

4.C. Reconstruction performance on rectangular SH arrays

In the first numerical experiment a quantitative comparison is made between the reconstruc-

tion performance of the SABRE and the Fried and Southwell FD methods using wavefront

slope measurements obtained with the simulated 17×17 SH array described in Sec. 4.B. For

the SABRE a Type-II triangulation consisting of 1024 triangles and a Type-IIG triangula-

tion consisting of 256 triangles are used. Linear, quadratic and cubic polynomial SABRE

model structures are used in the experiment. The least squares estimator from Sec. 3.H is

used to estimate the B-coefficients of the SABRE models.

The reconstruction performance of the SABRE is compared with that of the Fried and

Southwell FD methods for 20 different noise standard deviation values. For every noise value,

the results from 100 turbulence realizations and 50 noise realizations are averaged. In total,
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Shack-Hartmann array (17x17 lenslets) image

Fig. 6: Shack-Hartmann array image for a turbulence phase screen realization used in the

numerical experiment.
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there are 100000 reconstructions for each reconstruction experiment. The quality of the

resulting WF models is assessed on the validation grid Xwf . In Fig. 8 an example is shown of

a quadratic SABRE and a linear Fried FD reconstruction of a single (zero noise) turbulence

realization.

In Table 2 the normalized error ER for the zero noise case is shown for all tested recon-

struction methods. These results show that only the quadratic SABRE model with first order

continuity has a lower ER than the linear Fried FD model. On the other hand, all SABRE

models have a lower ER than the bicubic interpolated Fried FD model and the Southwell

FD models.

In Fig. 9 the averaged noise gains Kν for the SABRE and FD reconstructions are shown.

A first observation shows that the quadratic and linear SABRE models outperform all FD

methods in terms of Kν for any noise level, but the difference is most pronounced for high

noise levels. The cubic SABRE model has a lower noise gain than the linear FD model

at low noise levels, but has a higher noise gain for σν > 10 radians. Note that the bicubic

interpolated Fried FD method has a lower performance than the linear interpolated Fried FD

method as well as the cubic SABRE model for all noise levels; this is due to the Lagrangian

bicubcic interpolation operation which effectively smooths the Fried FD phase points with

cubic polynomials of full continuity order and consequently lower approximation power than

the linear Fried FD and cubic SABRE models. Note also that in Fig. 9 only the results from

the linearly interpolated Southwell FD method are presented; it produced virtually identical

results to its bicubic interpolated counterpart.

SABRE / FD

space

rectangular

domain
min (ER) max (ER)

Southwell (linear) yes 0.2127 1.2152

Southwell (cubic) yes 0.2118 1.2738

Fried (linear) yes 0.0533 1.5751

Fried (cubic) yes 0.0630 1.9096

SABRE (d=1,r=0,J=1024) yes 0.0535 1.3801

SABRE (d=1,r=0,J=816) no 0.0523 1.4519

SABRE (d=2,r=1,J=1024) yes 0.0525 1.4335

SABRE (d=2,r=1,J=816) no 0.0510 1.4946

SABRE (d=3,r=1,J=256) yes 0.0579 1.6233

SABRE (d=3,r=1,J=208) no 0.0570 1.6929

Table 2: Results of the zero-noise experiments.
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Fig. 7: Four SABRE sensor geometries used in the numerical experiments: A Type II ge-

ometry (top left) containing 1024 triangles, Type-IIG geometry (top right) containing 256

triangles; A Type-IIB geometry containing 816 triangles (bottom left); A Type-IIBG ge-

ometry containing 208 triangles (bottom right). The open circles are the locations of the

SH-lenslets.
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Fig. 8: A linear Fried FD reconstruction (bottom left) and a quadratic SABRE reconstruction

(bottom right) of a turbulence phase screen.
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Fig. 9: The noise gain Kν as a function of the noise standard deviation σν for a number

of different linear and nonlinear SABRE reconstructors is compared to Fried and Southwell

FD-reconstructors. A total of 100 turbulence realizations and 50 noise realizations are used

for each noise setting.
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4.D. Reconstruction performance on non-rectangular SH arrays

In the second numerical experiment the reconstruction performance of the SABRE on non-

rectangular sensor arrays is investigated. For this experiment a octagonal mask with a central

obstruction is used on the 17×17 SH array described in Sec. 4.B, see Fig. 7. The non-obscured

lenslet reference centroids are triangulated with a Type-IIB consisting of 816 triangles and

a Type-IIBG triangulation consisting of 208 triangles. The same linear, quadratic and cubic

polynomial SABRE model structures are used as in the previous experiment. The least

squares estimator from Sec. 3.H is used to estimate the B-coefficients of the SABRE models.

It is important to note that the SABRE algorithm for the non-rectangular SH array is exactly

equal to that of the rectangular SH array.

In Table 2 the normalized estimation errors of the non-rectangular SABRE models for the

zero-noise case is presented. The SABRE models defined on the non-rectangular triangula-

tions result in a lower normalized estimation error than SABRE models of the same degree

and continuity order defined on rectangular triangulations. In Fig. 10 three plots are shown

which compare the noise gain of SABRE models of equal degree and continuity order defined

on rectangular and non-rectangular SH arrays. The plots show that the noise gain of SABRE

models on non-rectangular arrays exceeds that of SABRE models of the same degree defined

on rectangular SH arrays for all noise levels.

5. Conclusions

A new zonal method for wavefront reconstruction using multivariate simplex B-spline basis

functions in a linear regression framework is introduced. This new method, indicated as

the SABRE , approximates solutions to the first order partial differential equations that

relate wavefront slope to the wavefront phase using bivariate simplex B-splines. While the

current paper only introduces a least squares estimator for the B-coefficients of the SABRE

model, the SABRE is fully compatible with any more advanced linear regression parameter

estimation technique. The SABRE method is aimed at AO applications in which linear

wavefront reconstruction methods can not provide the required accuracy levels at a given

sensor noise level, or in AO applications in which wavefront slope or curvature measurements

are made on non-rectangular, partially obstructed, and misaligned sensor grids. Furthermore,

the SABRE reconstruction matrix is of full rank, and as a consequence the SABRE is not

subject to the waffle mode.

The new method is compared to existing finite difference methods from the literature on

both a theoretical and a numerical level. On a theoretical level it is proved that any finite

difference method is a special case of a linear SABRE model with C0 continuity on a Type-II

triangulation. Additionally, we prove that the approximation power of a class of nonlinear

SABRE models exceeds the approximation power of the class of linear SABRE models. This
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Fig. 10: An investigation of the influence of sensor geometry on the noise gain Kν for SABRE

models of equal degree and continuity order. A total of 100 turbulence realizations and 50

noise realizations are used for each noise setting.
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class of nonlinear SABRE models will ultimately result in reconstructed wavefronts of higher

accuracy than those produced by any linear SABRE, and consequently, any finite difference

model.

The computational complexity of the SABRE method in its basic form is O(N2) for

the reconstruction operation. This is equal to the matrix-vector-multiplication method used

for the FD method. However, the local nature of the simplex B-spline basis polynomials

allows the definition of a distributed SABRE (D-SABRE) algorithm which can theoretically

obtain a computational complexity of O(N2/G2) when a total of G parallel processors are

used. Additionally, the sparse matrix methods from [11,30] and the multigrid preconditioned

conjugate-gradient methods from [13, 31] can be used with the SABRE to further increase

computational efficiency.

Two numerical experiments are conducted using a Fourier optics based simulation of a

Shack-Hartmann lenslet array. Both experiments use turbulence phase screens generated

using a von Kármán turbulence model together with a variable magnitude sensor noise model.

In the first numerical experiment, the reconstruction performance of the SABRE method is

compared to that of the Fried and Southwell FD methods on rectangular SH lenslet arrays.

In this experiment it is shown that a quadratic SABRE model outperforms all tested FD

methods for all noise levels. In the second experiment the reconstruction performance of the

SABRE on non-rectangular SH sensor arrays is investigated. It is found that reconstruction

performance is not negatively influenced by the particular geometry of the underlying sensor

grid.

6. Appendix

In this appendix a theorem is provided that on a theoretical level connects the SABRE

method to the FD method. In particular, it is proved that any linear FD model is in fact a

special case of a linear SABRE model on a Type-II triangulation. Additionally, it is proved

that there exist nonlinear SABRE models that can approximate a wavefront with higher

accuracy than any linear FD method.

6.A. The SABRE as a generalization of the FD method

In the following sections, we require a definition for the space of linear FD approximators,

that is, the space which contains all possible linear FD reconstructions for a given sensor

grid. We indicate this space as F0
1 (Ω(M,N)), and define it as follows:

Definition 1. F0
1 (Ω(M,N)) is defined as the space of all linear FD approximators of conti-

nuity order C0 on the M×N grid Ω(M,N) from (32) such that we have for every (estimated)

phase point φ̂FD(xi, yj):

φ̂FD(xi, yj) ∈ F0
1 (Ω(M,N)), 1 ≤ i ≤ M, 1 ≤ j ≤ N (66)
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The following lemma proves that any linear FD model is in fact a special case of a linear

SABRE model defined on a Type-II triangulation.

Lemma 1. Let S0
1 (TII(Ω(M,N))) be the linear spline space of C0 continuity defined on the

Type-II triangulation TII(Ω(M,N)) with Ω(M,N) the FD grid domain from (32). In that

case, the space of FD approximators F0
1 (Ω(M,N)) from (66) is a subset of this spline space

as follows:

F0
1 (Ω(M,N)) ⊂ S0

1 (TII(Ω(M,N))). (67)

Proof. The proof is based on the existence of an injective mapping of the FD phase points

to the B-coefficients of the spline space. First, let ω be any grid cell in Ω(M,N) consisting

of the four vertices Vω = {vi,j ,vi+1,j ,vi,j+1,vi+1,j+1}. These vertices thus coincide exactly

with the location of the FD phase points. Then, let T4(ω) be the Type-II triangulation of Vω

with vertex set VT4 = {Vω,v∗} in which v∗ is an additional vertex located at the center of

ω. Now let s01(x, y) be a linear bivariate spline function with C0 continuity defined on T4(ω)

as follows:

s01(x, y) = B1(b(x, y))cω ∈ S0
1 (T4(ω)), (68)

with cω a vector of B-coefficients which can be decomposed as follows:

cω = [cv
⊤ c∗

⊤]⊤ ∈ R
12, (69)

with cv ∈ R
8 the B-coefficients located at the vertices in Vω, and with c∗ ∈ R

4 the B-

coefficients located at the center vertex v∗.

From (21) it follows that for C0 continuity, it is required that the values of all B-coefficients

located at a vertex in VT4 are equal. As a result, we find the following for cv and c∗:

cv = [cv1 cv1 cv2 cv2 cv3 cv3 cv4 cv4 ],

c∗ = [cv∗
cv∗

cv∗
cv∗

], (70)

Evaluation of the spline function (68) at any vertex vm ∈ Vω results in:

s01(vm) = B1(b(vm)) · cω = cvm
, 1 ≤ m ≤ 4 (71)

with b(vm) the barycentric coordinate transformation of vm.
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For the theory to hold, the FD phase points must be equal to the SABRE wavefront phase

at all vertices in Vω. From (71) it therefore follows that

φ̂FD(vm) = cvm
, 1 ≤ m ≤ 4, (72)

with φ̂FD(vm) the FD wavefront phase as defined in (66).

Now let cφ be the vector of B-coefficients resulting from the substitution of the results

from (72) in cv from (70):

cφ = [φ̂FD(v1) φ̂FD(v1) · · · φ̂FD(v4) φ̂FD(v4)], (73)

Equation (73) implies that there exists an injective mapping of φ̂FD(Vω) to cω. Evaluation

of the spline function from (68) at the vertex set VT4 then results in:

s01(VT4) = B1(b(VT4)) ·

[

cφ

c∗

]

=

[

φ̂FD(Vω)

v∗

]

, (74)

with b(VT4) the transformation to barycentric coordinates of the vertices in VT4 .

(74) implies that the set of all FD approximators φ̂FD(Vω) is a subset of S0
1 (T4(ω)) for

any real value of the B-coefficients c∗ located at the center vertex v∗:

F0
1 (ω) ⊂ S0

1 (T4(ω)). (75)

By induction, the result from (75) can be extended to the complete domain Ω(M,N),

thereby proving the lemma.

The following lemma reproduces theorems from [21] that prove that the approximation

accuracy of a given wavefront phase screen φ(x, y) with simplex B-splines depends on the

spline degree as well as on the configuration of a triangulation.

Lemma 2 ( [21]: Theorem 10.2, Theorem 10.6, Theorem 10.13, Theorem 10.21). Let

Sr
d(T (Ω)) be the spline space of degree d and continuity order r defined on the triangulation

T (Ω) of the domain Ω. If φ(x, y) is a differentiable function with at least d + 1 derivatives

such that φ(x, y) ∈ Wm
q (Ω), with W d+1

q (Ω) the Sobolev space of order m equipped with the

Lq norm, then we have for the q-distance d(φ(x, y), Sr
d)q between φ(x, y) and Sr

d:

d(φ(x, y), Sr
d)q =











O(|T |0) if d < 3r+2
2

, r > 0

O(|T |d) if 3r+2
2

≤ d ≤ 2r + 1, r > 0

O(|T |d+1) if d ≥ 3r + 2, r ≥ 0

with |T | the longest triangle edge in the triangulation T .
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Proof. For a proof of the lemma, we refer the reader to Theorem 10.2, Theorem 10.6, Theorem

10.13, and Theorem 10.21 in [21].

The results of Lemma 1 and Lemma 2 lead to the main theorem, which states that there

exists an estimator which

the SABRE method can reconstruct the wavefront φ(x, y) with equal or higher accuracy

than the FD method.

Theorem 1. If f ∈ F0
1 (Ω(M,N)) is an FD approximator in the space of linear FD approx-

imators from (66), then there exists a spline function srd ∈ Sr
d(TII(Ω(M,N))) defined on a

Type-II triangulation of Ω(M,N) for which it holds that it can approximate any continuous

function φ(x, y) with higher accuracy than any linear FD approximator:

||φ(x, y)− srd||q < ||φ(x, y)− f ||q (76)

for all d > 1 if r = 0, and for all d ≥ 3r+2
2

if r > 0.

Proof. The proof is based on the results from Lemma 1 and Lemma 2. In Lemma 1 it

was proved that F0
1 (Ω(M,N)) is in fact a subset of S0

1 (TII(Ω(M,N))), which implies the

following:

||φ(x, y)− s01||q ≤ ||φ(x, y)− f ||q (77)

with s01 ∈ S0
1 (TII(Ω(M,N))).

Additionally, in Lemma 2 it was proved that the distance between φ(x, y) and Sr
d(T )

depends on |T | as well as on d and r. In particular it was proved that

d(φ(x, y), Sr
d(T ))q < d(φ(x, y), S0

1(T ))q (78)

holds for all d > 1 if r = 0, and for all d ≥ 3r+2
2

if r > 0. Combining (77) with (78) then

proves the theorem.
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