Knowledge-Based Control Systems (SC4081)

Lecture 2: Fuzzy Sets and Systems

Alfredo Núñez
Section of Railway Engineering CiTG, Delft University of Technology
The Netherlands
a.a.nunezvicencio@tudelft.nl
tel: 015-27 89355

Robert Babuška

Delft Center for Systems and Control 3 mE , Delft University of Technology The Netherlands
r.babuska@tudelft.nl
tel: 015-27 85117

Outline

1. Fuzzy sets and set-theoretic operations.
2. Fuzzy relations.
3. Fuzzy systems
4. Linguistic model, approximate reasoning

Classical Set Theory

A set is a collection of objects with a common property.

Classical Set Theory

A set is a collection of objects with a common property.

Examples:

- Set of natural numbers smaller than $5: A=\{1,2,3,4\}$

Classical Set Theory

A set is a collection of objects with a common property.

Examples:

- Set of natural numbers smaller than $5: A=\{1,2,3,4\}$
- Unit disk in the complex plane: $A=\{z|z \in \mathbb{C},|z| \leq 1\}$

Classical Set Theory

A set is a collection of objects with a common property.

Examples:

- Set of natural numbers smaller than $5: A=\{1,2,3,4\}$
- Unit disk in the complex plane: $A=\{z|z \in \mathbb{C},|z| \leq 1\}$
- A line in $\mathbb{R}^{2}: A=\{(x, y) \mid a x+b y+c=0,(x, y, a, b, c) \in \mathbb{R}\}$

Representation of Sets

- Enumeration of elements: $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Definition by property: $A=\{x \in X \mid x$ has property $P\}$
- Characteristic function: $\mu_{A}(x): X \rightarrow\{0,1\}$

$$
\mu_{A}(x)= \begin{cases}1 & x \text { is member of } A \\ 0 & x \text { is not member of } A\end{cases}
$$

Set of natural numbers smaller than 5

Fuzzy sets

Why Fuzzy Sets?

- Classical sets are good for well-defined concepts (maths, programs, etc.)
- Less suitable for representing commonsense knowledge in terms of vague concepts such as:
- a tall person, slippery road, nice weather, ...
- want to buy a big car with moderate consumption
- If the temperature is too low, increase heating a lot

Classical Set Approach

Logical Propositions

"John is tall" ... true or false

John's height: $h_{J o h n}=180.0 \quad \mu_{A}(180.0)=1$ (true)

$$
h_{J o h n}=179.5 \quad \mu_{A}(179.5)=0(\text { false })
$$

Fuzzy Set Approach

$$
\begin{aligned}
& \text { 隹 } \\
& \mu_{A}(h)=\left\{\begin{array}{lll}
1 & h \text { is full member of } A & (h \geq 190) \\
(0,1) & h \text { is partial member of } A(170<h<190) \\
0 & h \text { is not member of } A & (h \leq 170)
\end{array}\right.
\end{aligned}
$$

Fuzzy Logic Propositions

"John is tall" ... degree of truth
John's height: $h_{J o h n}=180.0 \quad \mu_{A}(180.0)=0.6$

$$
\begin{array}{ll}
h_{J o h n}=179.5 & \mu_{A}(179.5)=0.56 \\
h_{\text {Paul }}=201.0 & \mu_{A}(201.0)=1
\end{array}
$$

Subjective and Context Dependent

tall in China
tall in Europe

Shapes of Membership Functions

Representation of Fuzzy Sets

- Pointwise as a list of membership/element pairs:

$$
A=\left\{\mu_{A}\left(x_{1}\right) / x_{1}, \ldots, \mu_{A}\left(x_{n}\right) / x_{n}\right\}=\left\{\mu_{A}\left(x_{i}\right) / x_{i} \mid x_{i} \in X\right\}
$$

- As a list of α-level/ α-cut pairs:

$$
A=\left\{\alpha_{1} / A_{\alpha_{1}}, \alpha_{2} / A_{\alpha_{2}}, \ldots, \alpha_{n}, A_{\alpha_{n}}\right\}=\left\{\alpha_{i} / A_{\alpha_{i}} \mid \alpha_{i} \in(0,1)\right\}
$$

Representation of Fuzzy Sets

- Analytical formula for the membership function:

$$
\mu_{A}(x)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

or more generally

$$
\mu(x)=\frac{1}{1+d(x, v)} .
$$

$d(x, v) \ldots$ dissimilarity measure

Various shorthand notations: $\mu_{A}(x) \ldots A(x) \ldots a$

Linguistic Variable

Basic requirements: coverage and semantic soundness

Properties of fuzzy sets

Support of a Fuzzy Set

$$
\operatorname{supp}(A)=\left\{x \mid \mu_{A}(x)>0\right\}
$$

support is an ordinary set

Core (Kernel) of a Fuzzy Set

$$
\operatorname{core}(A)=\left\{x \mid \mu_{A}(x)=1\right\}
$$

core is an ordinary set

α-cut of a Fuzzy Set

$$
A_{\alpha}=\left\{x \mid \mu_{A}(x)>\alpha\right\} \quad \text { or } \quad A_{\alpha}=\left\{x \mid \mu_{A}(x) \geq \alpha\right\}
$$

A_{α} is an ordinary set

Convex and Non-Convex Fuzzy Sets

A fuzzy set is convex \Leftrightarrow all its α-cuts are convex sets.

Non-Convex Fuzzy Set: an Example

High-risk age for car insurance policy.

Fuzzy Numbers and Singletons

Fuzzy linear regression: $y=\tilde{3} x_{1}+\tilde{5} x_{2}$

Fuzzy set-theoretic operations

Complement (Negation) of a Fuzzy Set

$$
\mu_{\bar{A}}(x)=1-\mu_{A}(x)
$$

Intersection (Conjunction) of Fuzzy Sets

$$
\mu_{A \cap B}(x)=\min \left(\mu_{A}(x), \mu_{B}(x)\right)
$$

Other Intersection Operators (T-norms)

Probabilistic "and" (product operator):

$$
\mu_{A \cap B}(x)=\mu_{A}(x) \cdot \mu_{B}(x)
$$

Lukasiewicz "and" (bounded difference):

$$
\mu_{A \cap B}(x)=\max \left(0, \mu_{A}(x)+\mu_{B}(x)-1\right)
$$

Many other t-norms $\ldots[0,1] \times[0,1] \rightarrow[0,1]$

Union (Disjunction) of Fuzzy Sets

Other Union Operators (T-conorms)

Probabilistic "or":

$$
\mu_{A \cup B}(x)=\mu_{A}(x)+\mu_{B}(x)-\mu_{A}(x) \cdot \mu_{B}(x)
$$

Łukasiewicz "or" (bounded sum):

$$
\mu_{A \cup B}(x)=\min \left(1, \mu_{A}(x)+\mu_{B}(x)\right)
$$

Many other t-conorms $\ldots[0,1] \times[0,1] \rightarrow[0,1]$

Demo of a Matlab tool

Linguistic Modifiers (Hedges)

Modify the meaning of a fuzzy set.

For instance, very can change the meaning of the fuzzy set tall to very tall.

Other common hedges: slightly, more or less, rather, etc.

Usual approach: powered hedges:

$$
\mu_{M_{p}(A)}=\mu_{A}^{P}
$$

Linguistic Modifiers: Example

Linguistic Modifiers

Fuzzy Set in Multidimensional Domains

Cylindrical Extension

Cylindrical Extension

Cylindrical Extension

$$
\operatorname{ext}_{x_{2}}(A)=\left\{\mu_{A}\left(x_{1}\right) /\left(x_{1}, x_{2}\right) \mid\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}\right\}
$$

Projection

Projection onto X_{1}

$$
\left.\operatorname{proj}_{x_{1}}(A)=\left\{\sup _{x_{2} \in X_{2}} \mu_{A}\left(x_{1}, x_{2}\right)\right) / x_{1} \mid x_{1} \in X_{1}\right\}
$$

Projection onto X_{2}

$$
\left.\operatorname{proj}_{x_{2}}(A)=\left\{\sup _{x_{1} \in X_{1}} \mu_{A}\left(x_{1}, x_{2}\right) / x_{2}\right) \mid x_{2} \in X_{2}\right\}
$$

Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.

Example: $A_{1} \cap A_{2}$ on $X_{1} \times X_{2}$:

Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.

Example: $A_{1} \cap A_{2}$ on $X_{1} \times X_{2}$:

Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.

Example: $A_{1} \cap A_{2}$ on $X_{1} \times X_{2}$:

Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set.

Example: $A_{1} \cap A_{2}$ on $X_{1} \times X_{2}$:

Fuzzy Relations

Classical relation represents the presence or absence of interaction between the elements of two or more sets.

With fuzzy relations, the degree of association (correlation) is represented by membership grades.

An n-dimensional fuzzy relation is a mapping

$$
R: X_{1} \times X_{2} \times X_{3} \ldots \times X_{n} \rightarrow[0,1]
$$

which assigns membership grades to all n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ from the Cartesian product universe.

Fuzzy Relations: Example

Example: $R: x \approx y$ (" x is approximately equal to $y ")$

$$
\mu_{R}(x, y)=e^{-(x-y)^{2}}
$$

Relational Composition

Given fuzzy relation R defined in $X \times Y$ and fuzzy set A defined in X, derive the corresponding fuzzy set B defined in Y :

$$
B=A \circ R=\operatorname{proj}_{Y}\left(\operatorname{ext}_{X \times Y}(A) \cap R\right)
$$

max-min composition:

$$
\mu_{B}(y)=\max _{x} \min \left(\mu_{A}(x), \mu_{R}(x, y)\right)
$$

Analogous to evaluating a function.

Graphical Interpretation: Crisp Function

Graphical Interpretation: Interval Function

Graphical Interpretation: Fuzzy Relation

Max-Min Composition: Example

$$
\mu_{B}(y)=\max _{x} \min \left(\mu_{A}(x), \mu_{R}(x, y)\right), \quad \forall y
$$

Fuzzy Systems

Fuzzy Systems

- Systems with fuzzy parameters

$$
y=\tilde{3} x_{1}+\tilde{5} x_{2}
$$

- Fuzzy inputs and states

$$
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=\tilde{2}
$$

- Rule-based systems

If the heating power is high
then the temperature will increase fast

Rule-based Fuzzy Systems

- Linguistic (Mamdani) fuzzy model

$$
\text { If } x \text { is } A \text { then } y \text { is } B
$$

- Fuzzy relational model

$$
\text { If } x \text { is } A \text { then } y \text { is } B_{1}(0.1), B_{2}(0.8)
$$

- Takagi-Sugeno fuzzy model

$$
\text { If } x \text { is } A \text { then } y=f(x)
$$

Linguistic Model

If x is A then y is B

x is A - antecedent (fuzzy proposition)
y is B - consequent (fuzzy proposition)

Linguistic Model

If x is A then y is B

x is A - antecedent (fuzzy proposition)
y is B - consequent (fuzzy proposition)

Compound propositions (logical connectives, hedges):

If x_{1} is very big and x_{2} is not small

Multidimensional Antecedent Sets

$$
A_{1} \cap A_{2} \text { on } X_{1} \times X_{2} \text { : }
$$

Partitioning of the Antecedent Space

conjunctive

other connectives

Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the corresponding output fuzzy set.

- Formal approach based on fuzzy relations.
- Simplified approach (Mamdani inference).
- Interpolation (additive fuzzy systems).

Formal Approach

1. Represent each if-then rule as a fuzzy relation.
2. Aggregate these relations in one relation representative for the entire rule base.
3. Given an input, use relational composition to derive the corresponding output.

Modus Ponens Inference Rule

Classical logic

if x is A then y is B
x is A
y is B

Fuzzy logic
if x is A then y is B
x is A^{\prime}
y is B^{\prime}

Relational Representation of Rules

If-then rules can be represented as a relation, using implications or conjunctions.

Classical implication

A	B	$A \rightarrow B(\neg A \vee B)$
0	0	1
0	1	1
1	0	0
1	1	1

$A \backslash B$	0	1
0	1	1
1	0	1

$R:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$

Relational Representation of Rules

If-then rules can be represented as a relation, using implications or conjunctions.

Conjunction

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

$A \backslash B$	0	1
0	0	0
1	0	1

$$
R:\{0,1\} \times\{0,1\} \rightarrow\{0,1\}
$$

Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

$$
\begin{gathered}
R:[0,1] \times[0,1] \rightarrow[0,1] \\
\mu_{R}(x, y)=\mathrm{I}\left(\mu_{A}(x), \mu_{B}(y)\right)
\end{gathered}
$$

$\mathrm{I}(a, b)$ - implication function
"classical" Kleene-Diene $\mathrm{I}(a, b)=\max (1-a, b)$
Lukasiewicz $\quad \mathrm{I}(a, b)=\min (1,1-a+b)$
T-norms Mamdani $\mathrm{I}(a, b)=\min (a, b)$
Larsen

$$
\mathrm{I}(a, b)=a \cdot b
$$

Inference With One Rule

1. Construct implication relation:

$$
\mu_{R}(x, y)=\mathrm{I}\left(\mu_{A}(x), \mu_{B}(y)\right)
$$

Inference With One Rule

1. Construct implication relation:

$$
\mu_{R}(x, y)=\mathrm{I}\left(\mu_{A}(x), \mu_{B}(y)\right)
$$

2. Use relational composition to derive B^{\prime} from A^{\prime} :

$$
B^{\prime}=A^{\prime} \circ R
$$

Graphical Illustration

$$
\mu_{R}(x, y)=\min \left(\mu_{A}(x), \mu_{B}(y)\right) \quad \mu_{B^{\prime}}(y)=\max _{x} \min \left(\mu_{A^{\prime}}(x), \mu_{R}(x, y)\right)
$$

Inference With Several Rules

1. Construct implication relation for each rule i :

$$
\mu_{R_{i}}(x, y)=\mathrm{I}\left(\mu_{A_{i}}(x), \mu_{B_{i}}(y)\right)
$$

2. Aggregate relations R_{i} into one:

$$
\mu_{R}(x, y)=\operatorname{aggr}\left(\mu_{A_{i}}(x)\right)
$$

The aggr operator is the minimum for implications and the maximum for conjunctions.
3. Use relational composition to derive B^{\prime} from A^{\prime} :

$$
B^{\prime}=A^{\prime} \circ R
$$

Example: Conjunction

1. Each rule

$$
\text { If } \tilde{x} \text { is } A_{i} \text { then } \tilde{y} \text { is } B_{i}
$$

is represented as a fuzzy relation on $X \times Y$:

$$
R_{i}=A_{i} \times B_{i} \quad \mu_{R_{i}}(\mathbf{x}, \mathbf{y})=\mu_{A_{i}}(\mathbf{x}) \wedge \mu_{B_{i}}(\mathbf{y})
$$

Aggregation and Composition

2. The entire rule base's relation is the union:

$$
R=\bigcup_{i=1}^{K} R_{i} \quad \mu_{R}(\mathbf{x}, \mathbf{y})=\max _{1 \leq i \leq K}\left[\mu_{R_{i}}(\mathbf{x}, \mathbf{y})\right]
$$

3. Given an input value A^{\prime} the output value B^{\prime} is:

$$
B^{\prime}=A^{\prime} \circ R \quad \mu_{B^{\prime}}(\mathbf{y})=\max _{X}\left[\mu_{A^{\prime}}(\mathbf{x}) \wedge \mu_{R}(\mathbf{x}, \mathbf{y})\right]
$$

Example: Modeling of Liquid Level

- If $F_{\text {in }}$ is Zero then h is Zero
- If $F_{\text {in }}$ is Med then h is Med
- If $F_{\text {in }}$ is Large then h is Med

\mathcal{R}_{1} If Flow is Zero then Level is Zero

\mathcal{R}_{2} If Flow is Medium then Level is Medium

\mathcal{R}_{3} If Flow is Large then Level is Medium

Aggregated Relation

Simplified Approach

1. Compute the match between the input and the antecedent membership functions (degree of fulfillment).
2. Clip the corresponding output fuzzy set for each rule by using the degree of fulfillment.
3. Aggregate output fuzzy sets of all the rules into one fuzzy set.

This is called the Mamdani or max-min inference method.

Water Tank Example

- If $F_{\text {in }}$ is Zero then h is Zero
- If $F_{\text {in }}$ is Med then h is Med
- If $F_{\text {in }}$ is Large then h is Med

Mamdani Inference: Example

Mamdani Inference: Example

Given a crisp (numerical) input $\left(F_{\text {in }}\right)$.

If $F_{\text {in }}$ is Zero then ...

Determine the degree of fulfillment (truth) of the first rule.

If $F_{\text {in }}$ is Zero then h is Zero

Clip consequent membership function of the first rule.

If $F_{\text {in }}$ is Medium then ...

Determine the degree of fulfillment (truth) of the second rule.

If $F_{\text {in }}$ is Medium then h is Medium

Clip consequent membership function of the second rule.

Aggregation

Combine the result of the two rules (union).

Defuzzification

conversion of a fuzzy set to a crisp value

${ }^{(a)}$ center of gravity

(b) mean of maxima

Center-of-Gravity Method

$$
y_{0}=\frac{\sum_{j=1}^{F} \mu_{B^{\prime}}\left(y_{j}\right) y_{j}}{\sum_{j=1}^{F} \mu_{B^{\prime}}\left(y_{j}\right)}
$$

Defuzzification

Compute a crisp (numerical) output of the model (center-of-gravity method).

Fuzzy System Components

