Knowledge-Based Control Systems (SC4081)

Lecture 6: Model based control

Alfredo Núñez

Section of Railway Engineering CiTG, Delft University of Technology The Netherlands

a.a.nunezvicencio@tudelft.nl tel: 015-27 89355

Robert Babuška

Delft Center for Systems and Control 3mE, Delft University of Technology The Netherlands

> **r.babuska@tudelft.nl** tel: 015-27 85117

Considered Settings

- Fuzzy or neural model of the process available (many of the presented techniques apply to other types of models as well)
- Based on the model, design a controller (off line)
- Use the model explicitly within a controller
- Model fixed or adaptive

Outline

- 1. Local design using Takagi–Sugeno models
- 2. Inverse model control
- 3. Model-based predictive control
- 4. Feedback linearization
- 5. Adaptive control

$TS \ Model \rightarrow TS \ Controller$

Model:

If y(k) is Small then $x(k+1) = a_s x(k) + b_s u(k)$

If y(k) is Medium then $x(k+1) = a_m x(k) + b_m u(k)$

If y(k) is Large then $x(k+1) = a_l x(k) + b_l u(k)$

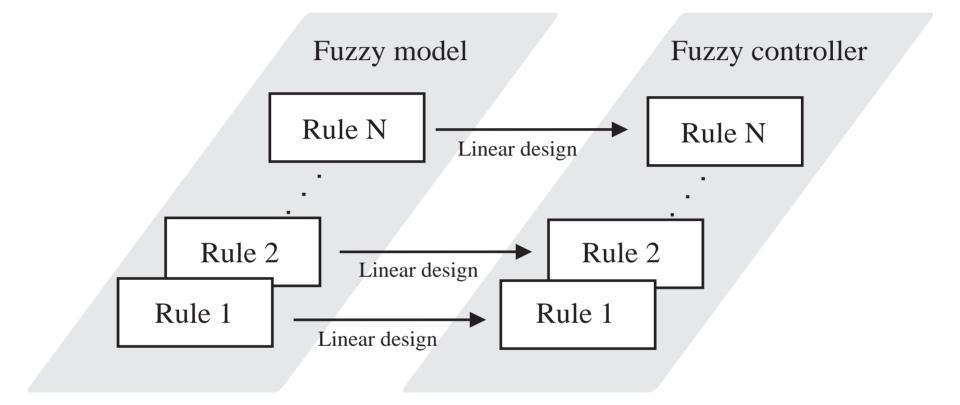
Controller:

If y(k) is Small then $u(k) = -L_s x(k)$

If y(k) is Medium then $u(k) = -L_m x(k)$

If y(k) is Large then $u(k) = -L_l x(k)$

Design Using a Takagi–Sugeno Model



Apply classical synthesis and analysis methods locally.

Control Design via Lyapunov Method

Model:

If $\mathbf{x}(k)$ is Ω_i then $\mathbf{x}_i(k+1) = \mathbf{A}_i \mathbf{x}(k) + \mathbf{B}_i \mathbf{u}(k)$

Controller:

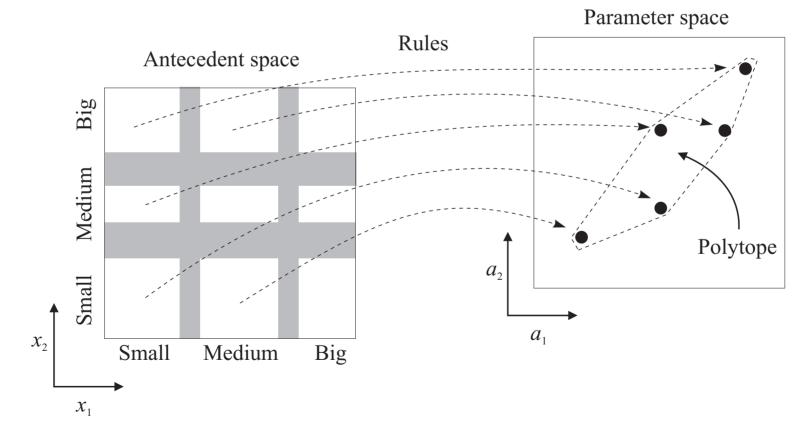
If
$$\mathbf{x}(k)$$
 is Ω_i then $\mathbf{u}_i(k) = -\mathbf{L}_i \mathbf{x}(k)$

Stability guaranteed if $\exists P > 0$ such that:

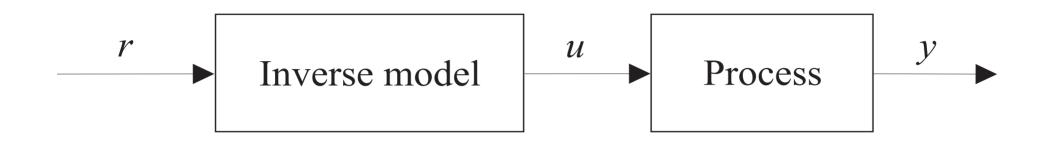
$$(\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j)^T \mathbf{P} (\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j) - \mathbf{P} < \mathbf{0}, \quad i, j = 1, \dots, K$$

TS Model is a Polytopic System

$$\mathbf{x}(k+1) = \left(\sum_{i=1}^{K} \sum_{j=1}^{K} \gamma_i(\mathbf{x}) \gamma_j(\mathbf{x}) (\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j)\right) \mathbf{x}(k)$$



Inverse Control (Feedforward)



Process model: $y(k+1) = f(\mathbf{x}(k), u(k))$, where

$$\mathbf{x}(k) = [y(k), \dots, y(k - n_y + 1), u(k - 1), \dots, u(k - n_u + 1)]^T$$

Controller: $u(k) = f^{-1}(\mathbf{x}(k), r(k+1))$

When is Inverse-Model Control Applicable?

- 1. Process (model) is stable and invertible
- 2. The inverse model is stable
- 3. Process model is accurate (enough)
- 4. Little influence of disturbances
- 5. In combination with feedback techniques

1. Numerically (general solution, but slow):

$$J(u(k)) = [r(k+1) - f(\mathbf{x}(k), u(k))]^2$$

minimize w.r.t. u(k)

- 2. Analytically (for some special forms of $f(\cdot)$ only):
 - affine in u(k)
 - singleton fuzzy model
- 3. Construct inverse model directly from data

affine model:

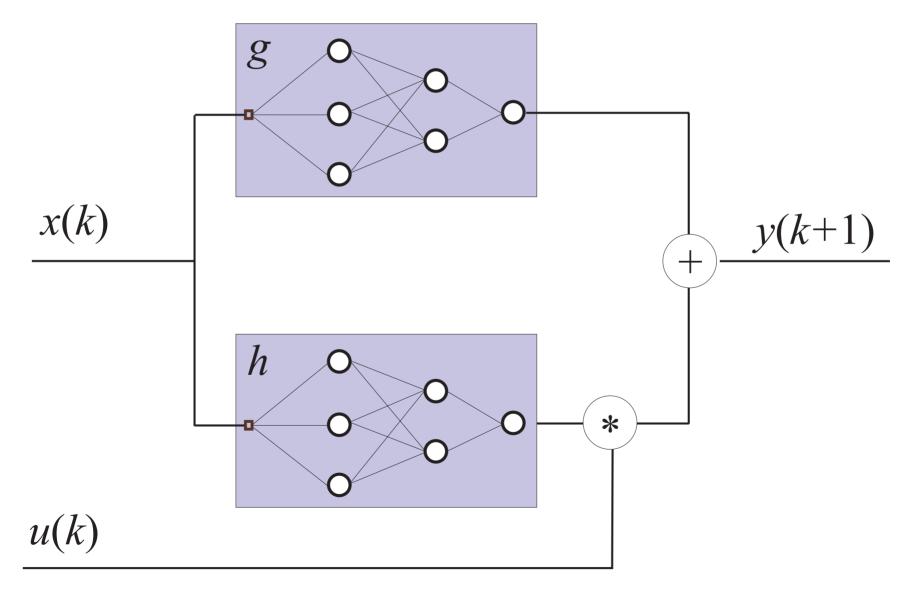
$$y(k+1) = g(\mathbf{x}(k)) + h(\mathbf{x}(k)) \cdot u(k)$$

express
$$u(k)$$
:
$$u(k) = \frac{y(k+1) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$$

substitute r(k+1) for y(k+1)

necessary condition $h(\mathbf{x}) \neq 0$ for all \mathbf{x} of interest

Example: Affine Neural Network

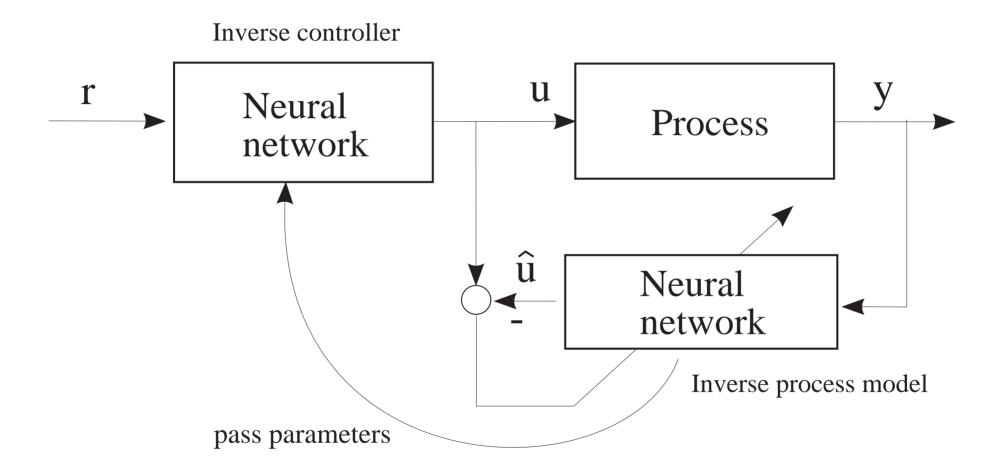


Example: Affine TS Fuzzy Model

$$\begin{aligned} \mathcal{R}_i : & \text{If } y(k) \text{ is } A_{i1} \text{ and } \dots \text{ and } y(k-n_y+1) \text{ is } A_{in_y} \text{ and} \\ & u(k-1) \text{ is } B_{i2} \text{ and } \dots \text{ and } u(k-n_u+1) \text{ is } B_{in_u} \text{ then} \\ & y_i(k+1) = \sum_{j=1}^{n_y} a_{ij} y(k-j+1) + \sum_{j=1}^{n_u} b_{ij} u(k-j+1) + c_i, \end{aligned}$$

$$y(k+1) = \sum_{i=1}^{K} \gamma_i(\mathbf{x}(k)) \left[\sum_{j=1}^{n_y} a_{ij} y(k-j+1) + \sum_{j=2}^{n_u} b_{ij} u(k-j+1) + c_i \right] + \sum_{i=1}^{K} \gamma_i(\mathbf{x}(k)) b_{i1} u(k)$$

Learning Inverse (Neural) Model



inverse model: $u(k) = f^{-1}(\mathbf{x}(k), r(k+1))$

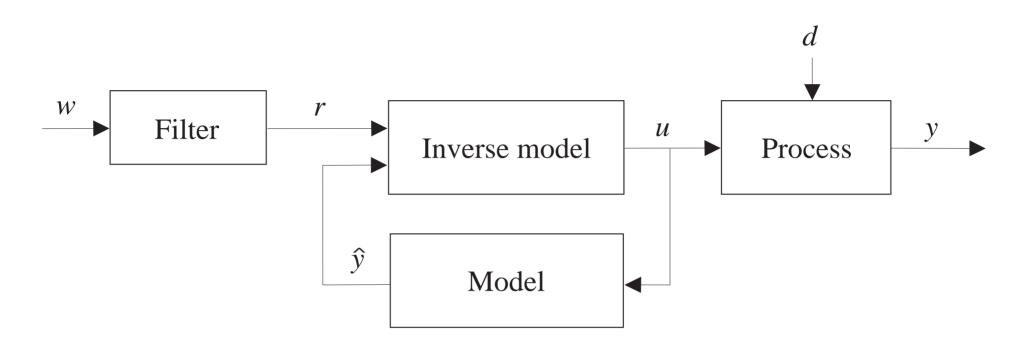
1. Use the prediction model: $\hat{y}(k+1) = f(\hat{\mathbf{x}}(k), u(k))$ $\hat{\mathbf{x}}(k) = [\hat{y}(k), \dots, \hat{y}(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]^T$ Open-loop feedforward control

2. Use measured process output

$$\mathbf{x}(k) = [y(k), \dots, y(k - n_y + 1), u(k - 1), \dots, u(k - n_u + 1)]^T$$

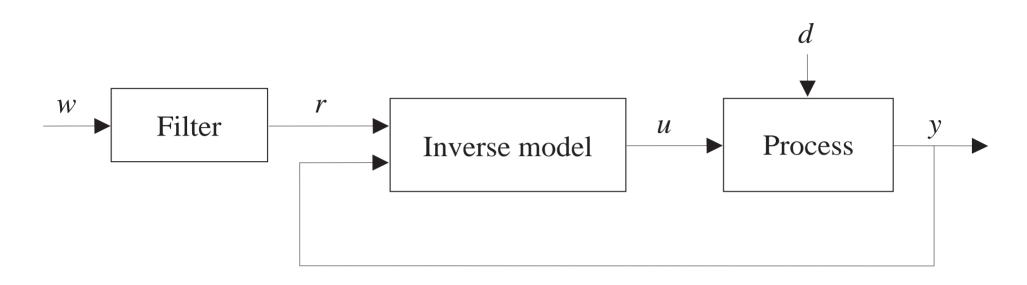
Open-loop feedback control

Open-Loop Feedforward Control



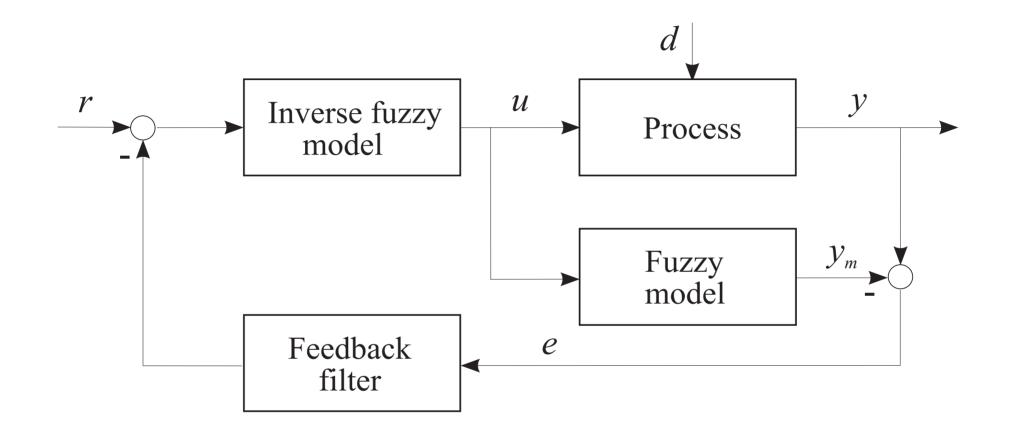
- Always stable (for stable processes)
- No way to compensate for disturbances

Open-Loop Feedback Control

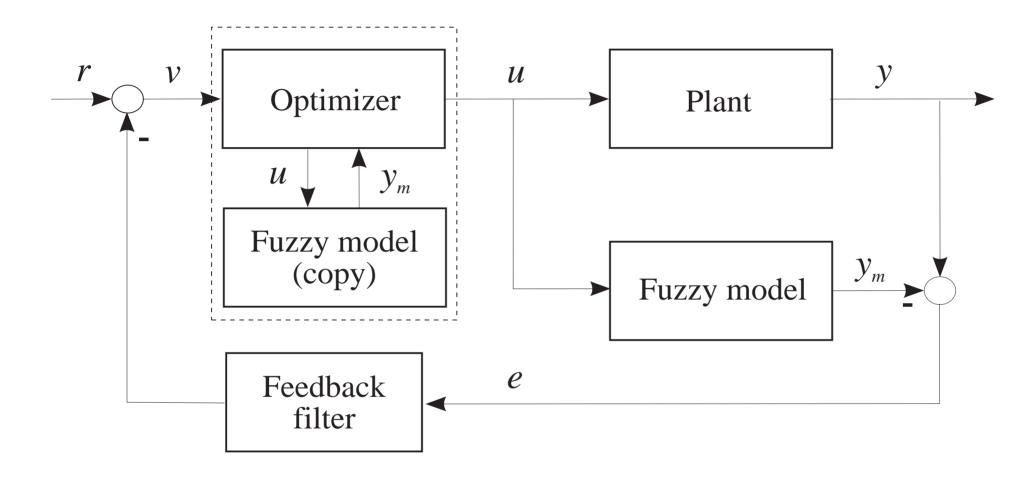


- Can to some degree compensate disturbances
- Can become unstable

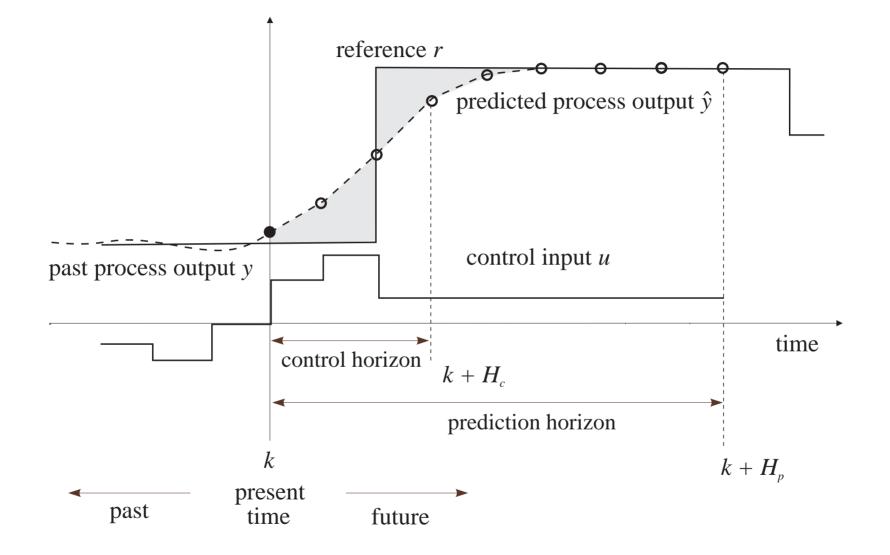
Internal Model Control



Model-Based Predictive Control



Model-Based Predictive Control



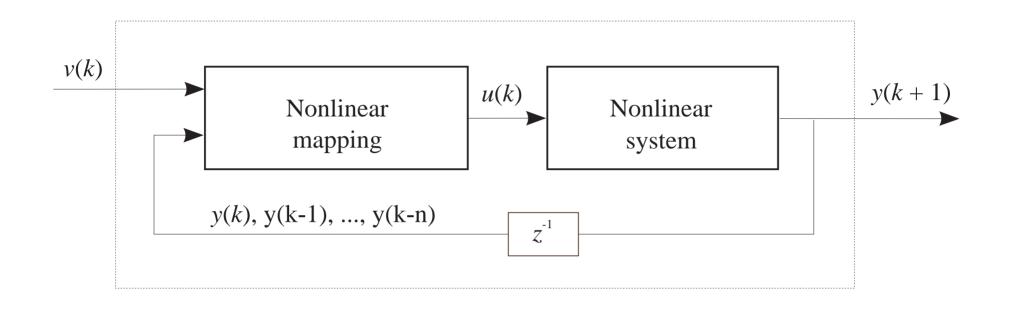
Objective Function and Constraints

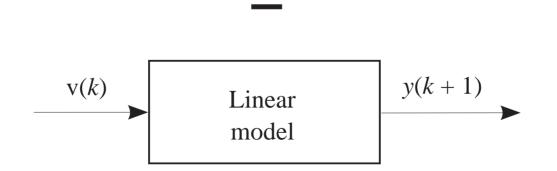
$$J = \sum_{i=1}^{H_p} \| (\mathbf{r}(k+i) - \hat{\mathbf{y}}(k+i)) \|_{P_i}^2 + \sum_{i=1}^{H_c} \| (\mathbf{u}(k+i-1)) \|_{Q_i}^2$$

$$\hat{y}(k+1) = f(\hat{\mathbf{x}}(k), u(k))$$

$$\mathbf{u}^{\min} \leq \mathbf{u} \leq \mathbf{u}^{\max}$$
$$\Delta \mathbf{u}^{\min} \leq \Delta \mathbf{u} \leq \Delta \mathbf{u}^{\max}$$
$$\mathbf{y}^{\min} \leq \mathbf{y} \leq \mathbf{y}^{\max}$$
$$\Delta \mathbf{y}^{\min} \leq \Delta \mathbf{y} \leq \Delta \mathbf{y}^{\max}$$

Feedback linearization





Feedback Linearization (continued)

given affine system: $y(k+1) = g(\mathbf{x}(k)) + h(\mathbf{x}(k)) \cdot u(k)$

express u(k): $u(k) = \frac{y(k+1) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$

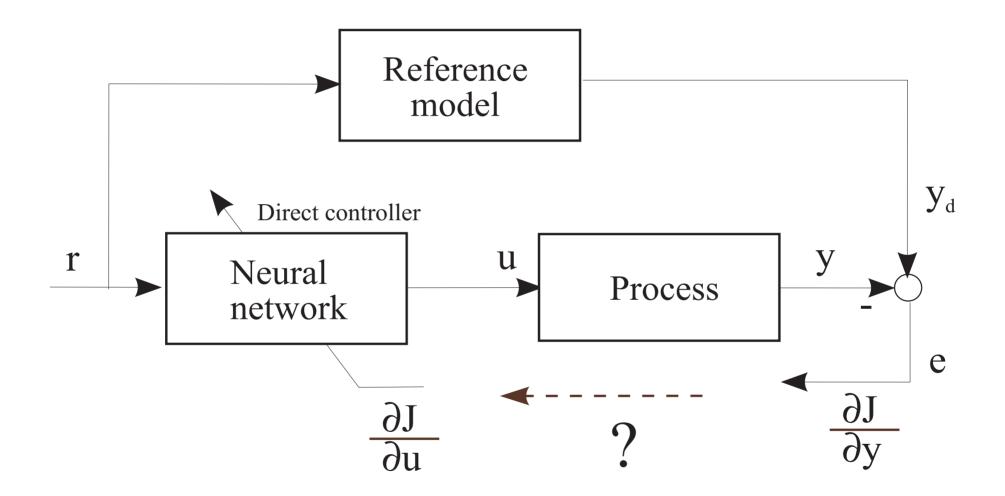
substitute A(q)y(k) + B(q)v(k) for y(k+1):

$$u(k) = \frac{A(q)y(k) + B(q)v(k) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$$

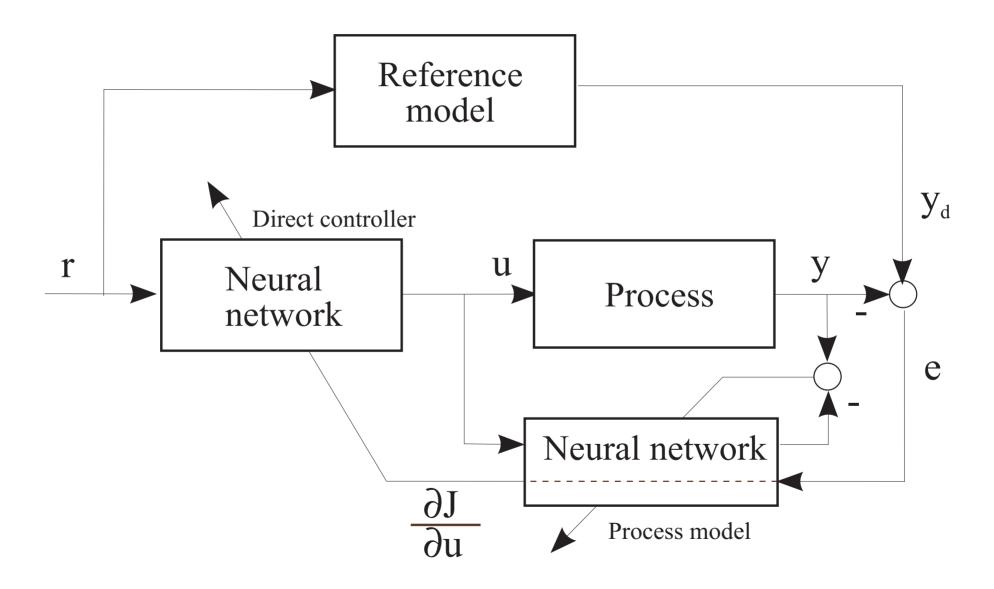
Adaptive Control

- Model-based techniques (use explicit process model):
 - model reference control through backpropagation
 - indirect adaptive control
- Model-free techniques (no explicit model used) - reinforcement learning

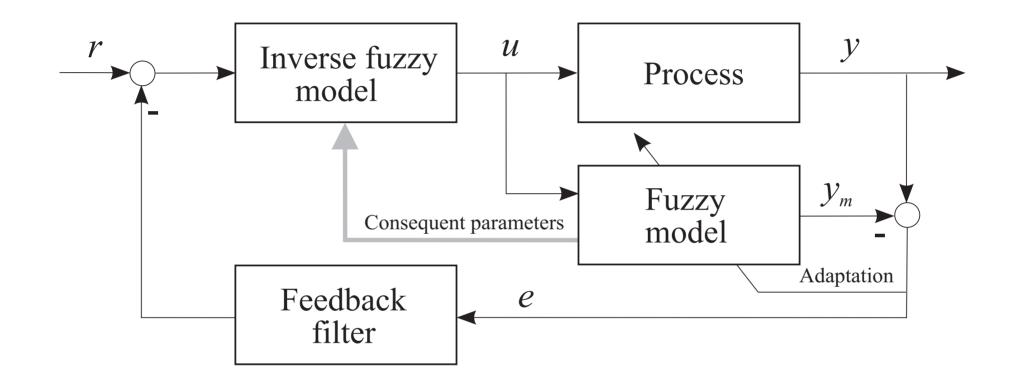
Model Reference Adaptive Neurocontrol



Model Reference Adaptive Neurocontrol



Indirect Adaptive Control



no only for fuzzy models, but also for affine NNs, etc.

Reinforcement Learning

- Inspired by principles of human and animal learning.
- No explicit model of the process used.
- No detailed feedback, only reward (or punishment).
- A control strategy can be learnt from scratch.