Reinforcement Learning
Part I: The Classical Setting

Ilvo Grondman Robert Babuska

Knowledge-Based Control Systems
2012-03-05

3
TUDelft

Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image

3
TUDelft

Outline

0 Reinforcement learning basics

@ Algorithms

© Accelerating RL

3
TUDelft

Reinforcement learning basics

@ Reinforcement learning basics
@ Introduction
@ Elements of RL
@ RL solution

3
TUDelft

Reinforcement learning basics
9000000

Why learning?

Learning can find solutions that:
@ cannot be found in advance

— problem too complex
(e.g., controlling highly nonlinear systems)
— problem not fully known beforehand
(e.g., robotic exploration of extraterrestrial planets)

@ steadily improve
© adapt to time-varying environments

Essential for any intelligent system |

3
TUDelft

Reinforcement learning basics
0e00000

Principle of RL

action u

state x

@ Interact with a system through states and actions

3
TUDelft

Reinforcement learning basics
0e00000

Principle of RL

action u

state x

@ Interact with a system through states and actions

3
TUDelft

Reinforcement learning basics
0e00000

Principle of RL

action u

state x

@ Interact with a system through states and actions
@ Inspired by human and animal learning

3
TUDelft

Reinforcement learning basics
0e00000

Introduction

Principle of RL

Reward function

state x

@ Interact with a system through states and actions
@ Inspired by human and animal learning
@ Receive rewards as performance feedback

3
TUDelft

Reinforcement learning basics
[e]e] lelelele]

RL on the Machine Learning spectrum

Supervised Reinforcement Unsupervised
learning learning learning

“more informative feedback less informative feedback

3
TUDelft

Reinforcement learning basics
[e]e]e] lelele]

Spectrum: Supervised learning

Supervised
learning

‘more informative feedback less informative feedback

@ For each input sample x, correct output y is known
@ Infer input-output relationship y ~ g(x)

3
TUDelft

Reinforcement learning basics
[e]e]e] lelele]

Introduction

Spectrum: Supervised learning

Supervised
learning

Kk

“more informative feedback less informative feedbacl

@ For each input sample x, correct output y is known
@ Infer input-output relationship y ~ g(x)
@ Example: neural networks

® y
X\—n Q@ +
@ Q® oy +
Xo—om @ + +++
() @ v *
X, rm @ .
]

3
TUDelft

Reinforcement learning basics
[e]e]e] lelele]

Introduction

Spectrum: Supervised learning

Supervised
learning

Kk

“more informative feedback less informative feedbacl

@ For each input sample x, correct output y is known
@ Infer input-output relationship y ~ g(x)
@ Example: neural networks

® y
Xl . g
@ Q® *
X @
() Q@ v
X m @ e
@ X

3
TUDelft

Reinforcement learning basics
[e]e]e]e] Tele]

Spectrum: Unsupervised learning

Unsupervised
learning

‘more informative feedback less informative feedback

@ Only input samples available — no outputs
@ Find patterns in the data

3
TUDelft

Reinforcement learning basics
[e]e]e]e] Tele]

Spectrum: Unsupervised learning

Unsupervised
learning

‘more informative feedback

less informative feedback

@ Only input samples available — no outputs
@ Find patterns in the data
@ Example: clustering

Y,

+
+
+
+++

xXv

3
TUDelft

Reinforcement learning basics
[e]e]e]e] Tele]

Spectrum: Unsupervised learning

Unsupervised
learning

‘more informative feedback

less informative feedback

@ Only input samples available — no outputs

@ Find patterns in the data
@ Example: clustering

Y,

+
+++

xXv

3
TUDelft

Reinforcement learning basics
00000e0

Spectrum: Reinforcement learning

Reinforcement
learning

‘more informative feedback less informative feedback

@ Correct outputs not available, only rewards
@ Find optimal control behavior

3
TUDelft

Reinforcement learning basics
000000e

Introduction

Reinforcement learning = Control

Reinforcement learning is about control:
optimal, adaptive, and model-free

state x

3
TUDelft

Reinforcement learning basics
000000e

Introduction

Reinforcement learning = Control

Reinforcement learning is about control:
optimal, adaptive, and model-free

Reward function

state x

This lecture: classical RL — discrete states and actions

3
TUDelft

Reinforcement learning basics
000000000

Elements of RL

@ Reinforcement learning basics

@ Elements of RL

3
TUDelft

Reinforcement learning basics
0®0000000

Environment and agent

Reward function
reward r

state x

3
TUDelft

Reinforcement learning basics
0®0000000

Environment and agent

Reward function

reward r

- S
SO

s action u

__

3
TUDelft

Relnforcement learning baS|cs Algorithms . Summary and outlook

)OO ®@000000C

The environment

The environment is modeled by an MDP:

Markov Decision Process (MDP)
An MDP is a tuple (X, U, f, p) where:
@ X is the finite state space
@ U is the finite action space
@ f: X x U— X is the state transition function
@ p: X x U — Ris the reward function
Xk+1 = f(Xk, Uk), With k the discrete time

Note: stochastic formulation is possible

5
TUDelft

Reinforcement learning basics
000800000

The agent

The agent is a state feedback controller:
@ Learns optimal mapping from states to actions
@ Policy 7 : X — U is the control law

3
TUDelft

Reinforcement learning basics
0000e0000

A simple cleaning robot example

- Q |
power cleaning
pack robot 2SN

@ Cleaning robot in a 1-D world
@ Goal: pick up trash (reward +5) or power pack (reward +1)
@ After picking up item, episode terminates

3
TUDelft

Reinforcement learning basics
000008000

Cleaning robot: State & action

action u

+ O~

state x

@ Robot in given state x (cell)
@ and takes action u (e.g., move right)

3
TUDelft

Reinforcement learning basics
000008000

Elements of RL

Cleaning robot: State & action

action u

T O-f

state x

@ Robot in given state x (cell)
@ and takes action u (e.g., move right)

+ Ol

x=0 1 2 3 4 5

@ State space X ={0,1,2,3,4,5}
@ Action space U = {—1,1} = {left, right} FuDelft

Reinforcement learning basics
000000800

Cleaning robot: Transition & reward

reward r=5
T O
next state x’

@ Robot reaches next state x’

@ and receives reward r = quality of transition
(here, +5 for collecting trash)

3
TUDelft

Reinforcement learning basics

000000080

Elements of RL

Cleaning robot: Transition & reward functions

(===

@ Transition function (process behavior):

X if x is terminal (O or 5)
x + u otherwise

X' =f(x,u) = {

3
TUDelft

Reinforcement learning basics

000000080

Elements of RL

Cleaning robot: Transition & reward functions

1 0 0 0 0 5
AR 2NN 2N N 2
<}=‘ _ — — ,EO

@ Transition function (process behavior):

X if x is terminal (O or 5)
x + u otherwise

X' =f(x,u) = {

@ Reward function (immediate performance):

1 if x=1and u= —1 (powerpack)
r=px,u)=¢5 ifx=4andu=1 (trash)
0 otherwise P
TUDelft

Reinforcement learning basics
00000000e

Cleaning robot: Policy

@ Policy 7: mapping from x to u (state feedback)
@ Determines controller behavior

3
TUDelft

Reinforcement learning basics
00000000e

Cleaning robot: Policy

@ Policy 7: mapping from x to u (state feedback)
@ Determines controller behavior

Example:
—_I_L — > > —
m(0) = * (1) = —1 m(2) =1
m(3) =1 (4) =1 7(5) = %

* action irrelevant in terminal state s
TUDelft

Reinforcement learning basics
900000000

RL solution

@ Reinforcement learning basics

@ RL solution

3
TUDelft

Re' orcement learning basics S ary and outlook

D000@0000000

Learning goal

Find 7 that maximizes dlscounted return
R™(xo0) = kZkarkH — Z K p(Xk, T(Xk))
from any x

5
TUDelft

Reinforcement learning basics
0@0000000

Learning goal

Find 7 that maximizes dlscounted return
R™(xo0) = kEO’kakH — Z K p(Xk, T(Xk))

from any x

Discount factor v € [0, 1):
@ induces a “pseudo-horizon” for optimization
@ bounds infinite sum
@ encodes increasing uncertainty about the future
@ helps convergence of algorithms

3
TUDelft

Reinforcement learning basics
[e]e] lelele]ele]e)

Cleaning robot: Return

r‘jo r,=0 r“i5
+ O-—)
X,=2

Assume 7 always goes right

R™(2) =+ + 2+ 20+ 40+ ...

Because x3 is terminal, all remaining rewards are 0

3
TUDelft

Reinforcement learning basics
[e]e]e] lele]elele)

Value function

One of these two is used:
@ V-function (state value) of policy =:

V7(xo) = R™(x0)
@ Q-function (state-action value) of policy =:

Q" (X0, Up) = p(Xo, Up) + YR (x1)

(return after taking up in xp and then following)

3
TUDelft

Reinforcement learning basics
[e]e]ele] leelele)

Q-function

R™(X0) = Y Ikt = Y 7 p(Xk, m(xk))
k=0 k=0

= p(%0, m(%0)) + > 7*p(Xe, (X))
k=1

= p(x0, 7(X0)) + 7 D> _ ¥ p(Xkg1, T(Xk41))
k=0

= p(Xo0, 7(X0)) +YR™(x1)
Q-function makes first action a free variable uy:

Q" (X0, Up) = p(Xo, Uo) +vR™(x1) P
fuDett

Reinforcement learning basics
00000e000

Q-function (cont'd)

Q" (X0, Up) = p(Xo, Ug) + YR (x1)

@ First action in the sequence independent of policy
@ Rest of the sequence follows the policy

r=0 r,=0 r,=5
Wt v ¥y

+ O~—)
X,=2 7

@ Q-function allows direct derivation of policy

3
TUDelft

Reinforcement learning basics
000000800

Bellman equation

@ Develop Q-function one step ahead:

Q" (X0, Up) = p(Xo, Uo) +vR™(x1)
= p(Xo, Up) +v[p(x1, 7(x1)) + YA™ (x2)]
= p(xo, Up) + Q" (x1,7(x1))

Remember: x; = f(xo, Up)

3
TUDelft

Reinforcement learning basics
000000800

Bellman equation

@ Develop Q-function one step ahead:

Q" (X0, Up) = p(Xo, Uo) +vR™(x1)
= p(Xo, Up) +v[p(x1, 7(x1)) + YA™ (x2)]
= p(xo, Up) + Q" (x1,7(x1))

Remember: x; = f(xo, Up)

= Bellman equation for Q™
Q"(x,u) = p(x, u) + Q" (f(x, u), 7(f(x, u)))

3
TUDelft

Reinforcement learning basics
000000080

Optimal solution

@ Optimal Q-function:
Q" =max Q"
= Greedy policy in Q*:

7 (x) = argmax Q*(x, u)
u

is optimal (achieves maximal returns)

3
TUDelft

Reinforcement learning basics
000000080

Optimal solution

@ Optimal Q-function:
Q" =max Q"
= Greedy policy in Q*:

7 (x) = argmax Q*(x, u)
u

is optimal (achieves maximal returns)

Bellman optimality equation (for Q*)
Q*(x,u) = p(x, u) +ymax Q*(f(x, u), V')
u/

3
TUDelft

Reinforcement learning basics

00000000 e

RL solution

Cleaning robot: Optimal solution

Discount factor v = 0.5

: — ||| 8

Qfx, left)
4F ———Q(x, right)

3
TUDelft

Algorithms

@ Algorithms
@ Q-learning
@ SARSA

3
TUDelft

Algorithms
®00000

Off-policy online RL: Q-learning

Off-policy: find Q*, use it to compute 7*

@ Take Bellman optimality equation at some (x, u):
Q*(x, u) = p(x, u) + ymax, Q*(f(x,u),)

3
TUDelft

Algorithms
®00000

Off-policy online RL: Q-learning

Off-policy: find Q*, use it to compute 7*

@ Take Bellman optimality equation at some (x, u):
Q*(x, u) = p(x, u) + ymax, Q*(f(x,u),)

@ Turn into iterative update:
Q(x, u) <+ p(x,u) +~ymaxy Q(f(x,u),)

3
TUDelft

Algorithms
©00000

Q-learning

Off-policy online RL: Q-learning

Off-policy: find Q*, use it to compute 7*

@ Take Bellman optimality equation at some (x, u):
Q*(x, u) = p(x, u) + ymax, Q*(f(x,u),)

@ Turn into iterative update:
Q(x, u) <+ p(x,u) +~ymaxy Q(f(x,u),)

© Instead of model f, p, use transition sample
(Xk, Uk, Xk+1, r'k+1) @t each step k:
Q(Xk, Ux) k1 +ymaxy Q(Xksq,U')
Note: Xkr1 = f(Xk7 Uk), k41 = p(Xk7 Uk)

3
TUDelft

Algorithms
0®0000

Q-learning

Q-learning (cont'd)

© Finally, make update incremental:

Q(X, Uk) < Q(Xx, Uk) + ak:
[t -+ max Qxict1, U') = QXk, Uk)]

with learning rate ay € (0, 1].
The expression
Fier1 + 7 Max Q(Xk41, U") — Q(Xk, Uk)
is called the temporal difference.

3
TUDelft

Algorithms C g Summary and outlook

Complete Q-learning algorithm

Q-learning
for every trial do
initialize xg
repeat for each step k
take action uy
measure X1, receive ri 1
QX Uk) < Q(Xx, Uk) + ax:
(i1 + v Max QX1 u') — Q(Xk, ux)]
until terminal state
end for

5
TUDelft

Reinforcem Algorithms c Summary and outlook

Complete Q-learning algorithm

Q-learning
for every trial do
initialize xg
repeat for each step k
take action vy
measure X1, receive ri 1
QX Uk) < Q(Xx, Uk) + ax:
(i1 + v Max QX1 u') — Q(Xk, ux)]
until terminal state
end for

5
TUDelft

Algorithms
[e]e]e] lele]

Exploration-exploitation tradeoff

@ Essential condition for convergence to Q*:
all (x, u) pairs must be visited infinitely often

= Exploration necessary:
sometimes, choose actions randomly

@ Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

ux = argmax Q(xx, u)
0]

3
TUDelft

Algorithms
[e]e]e] lele]

Exploration-exploitation tradeoff

@ Essential condition for convergence to Q*:
all (x, u) pairs must be visited infinitely often

= Exploration necessary:
sometimes, choose actions randomly

@ Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

ux = argmax Q(xg, U)
0]

Exploration-exploitation tradeoff crucial
for performance of online RL J

3
TUDelft

Algorithms
0O000e0

Exploration-exploitation: e-greedy strategy

@ Simple solution: e-greedy

_Jargmaxg Q(xk,) with probability (1 — e)
| arandom action with probability £,

@ Exploration probability ¢4 € (0, 1)
is usually decreased over time

3
TUDelft

Algorithms
00000®

Q-learning

Cleaning robot: Q-learning demo

Parameters: a = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (randomly)

Q-learning, trial 8, step 3

—|—|— 8

o

Now s g

3
trel TUDelft

Algorithms
©00000

@ Algorithms

@ SARSA

3
TUDelft

Algorithms
[¢] leJe]e]e]

On-policy online RL: SARSA

On-policy: find Q™, improve «, repeat

Similar to Q-learning:

© Take Bellman equation for Q™, at some (x, u):
Q™(x, u) = p(x, u) + Q" (F(x, u), = (f(x, u)))

3
TUDelft

Algorithms
[¢] leJe]e]e]

On-policy online RL: SARSA

On-policy: find Q™, improve «, repeat

Similar to Q-learning:

© Take Bellman equation for Q™, at some (x, u):
Q™(x, u) = p(x, u) + Q" (F(x, u), = (f(x, u)))

@ Turn into iterative update:
Q(x, u) < p(x, u) +vQ(f(x, u), m(f(x, u)))

3
TUDelft

Algorithms
080000

SARSA

On-policy online RL: SARSA

On-policy: find Q™, improve «, repeat

Similar to Q-learning:

© Take Bellman equation for Q™, at some (x, u):
Q™(x, u) = p(x, u) + Q" (F(x, u), = (f(x, u)))

@ Turn into iterative update:
Q(x, u) « p(x, u) +yQ(f(x, u), =(f(x, u)))

© Use sample (Xk, Uk, M1, Xk11, Uk 1) at each step k:

Q(Xk, Uk) < iyt + Y Q(Xkp15 Uky1)
Note: uy.1 = m(f(xk, Uk)), ™ = policy being followed

3
TUDelft

Algorithms

[e]o] le]e]e]

SARSA

SARSA (cont'd)

© Make update incremental:
Q(Xk, Uk) < Q(Xx, Uk) + ak:
[rk1 + YQ(Xk41, Uks1) — Q(Xk, Uk)]

Note that
rk+1 + ’\/Q(Xk+1 , Uk+1) — Q(Xk7 Uk)

is the temporal difference here

(Xi, Uks Tk 1, Xk1 > Uk1) =
(State, Action, Reward, State, Action) = SARSA

3
TUDelft

Algorithms

Summary and outlook

Complete SARSA algorithm

SARSA

for every trial do
initialize xg, choose initial action ug
repeat for each step k
apply uk, measure Xy 1, receive ri.
choose next action uy 1
Q(Xk, Uk) — Q(Xk, Uk) + o

[kt + YQ(Xkt1, Uk1) — Q(Xk, U)]

until terminal state
end for

5
TUDelft

Algorithms
[e]o]e]e] Je]

Exploration-exploitation in SARSA

@ For convergence—besides infinite exploration—
SARSA requires policy to eventually become greedy

e E.g., e-greedy

argmaxy Q(xx, u) with probability (1 — ex)
a random action with probability £,

with limy_, ek =0

3
TUDelft

Algorithms
[e]o]e]e] Je]

Exploration-exploitation in SARSA

@ For convergence—besides infinite exploration—
SARSA requires policy to eventually become greedy

e E.g., e-greedy

argmaxy Q(xx, u) with probability (1 — ex)
a random action with probability £,

with limy_, ek =0

@ Greedy actions = policy implicitly improved!
(Recall on-policy: find Q™, improve 7, repeat)

3
TUDelft

Algorithms

[e]o]e]e]e]]

SARSA

Cleaning robot: SARSA demo

Parameters like Q-learning: o = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (randomly)

SARSA, trial 8, step 3

—|—|— 8

Now s g

3
il TUDelft

Accelerating RL

e Accelerating RL
@ Eligibility traces
@ Experience replay

3
TUDelft

Accelerating RL

Accelerating RL

In practice, transition data costs:
@ time
@ profits (suboptimal performance due to exploration)
@ process wear & tear

Fast RL = use data efficiently J

(computational demands are secondary)

3
TUDelft

Accelerating RL

Cleaning robot without acceleration

Evaluate the policy = with v = 0.5, = 0.2

1
T

“«— | —> —> —> |

3
TUDelft

Accelerating RL

Cleaning robot without acceleration

Evaluate the policy = with v = 0.5, = 0.2

1
T

“«— | —> —> —> |
First encounter with x = 3 gives:

Q@ O (3,1) « @ (3,1) +a[0 +vQ"(4,1) — Q7(3,1)] = 0
Q@ Q"(4.1) « Qr(4,1) + a[5+ 70— Q7(4,1)] = 1

3
TUDelft

Accelerating RL

Cleaning robot without acceleration

Evaluate the policy = with v = 0.5, = 0.2

1
T

“«— —> —> —> |

First encounter with x = 3 gives:
Q@ Q(3,1)« Q"(3,1) +a[0+~vQ"(4,1) — Q" (3,1)] =0
Q Q" (4,1)« Q" (4,1)+a5+70— Q" (4,1)] =1

Next encounter with x = 3 gives:
Q@ Q"(3,1) « Q"(3,1) + a[0 +7Q™(4,1) — Q"(3,1)] =
ayQ"(4,1) = 0.1

Q Q" (4,1)« Q" (4,1)+a5+~10—-Q"(4,1)]=1.8 .
TuDelft

Accelerating RL

Cleaning robot without acceleration (cont’d)

Change in Q™(4,1) obviously influences Q"(3,1) as
Q"(3,1) «+ Q"(3,1) + a[0 + yQ"(4,1) — Q"(3,1)]

always holds!

3
TUDelft

Accelerating R

Cleaning robot without acceleration (cont’d)

Change in Q™(4,1) obviously influences Q"(3,1) as
Q"(3,1) « Q™(3,1) + a[0 +yQ™(4,1) — Q"(3,1)]
always holds!

Main idea
@ Do not wait for state x = 3 to pop up again for the update.

@ Update Q™ (3, 1) immediately when Q™ (4, 1) and/or other
successor states are updated.

5
TUDelft

Accelerating RL
000000000

Eligibility traces

e Accelerating RL
@ Eligibility traces

3
TUDelft

Accelerating RL
0@0000000

Eligibility traces

@ Leave decaying trace along state-action trajectory:

I e(x,u)=1
—(UAN =(yA)? PJEKir Ui)=VA
g S U =(VA) g 8 tha)=(rA) I

. uk—3 > ‘ uk—2 > ’ uk—1 S . uk >

@)\ € [0, 1] decay rate, v discount factor

@ Implementation:

e(x,u)«< 0 VX, u

for each step k do
e(x, u) < \ye(x, u) VX, u
e(Xk, ug) « 1

end for

3
TUDelft

Accelerating RL
[e]e] le]ele]ele]e]

Eligibility traces

Q()\)-learning

@ Recall basic Q-learning only updates Q(x, uk):

Q(Xi, tk) + Q(Xi, Uk) + ak:
(i1 + 7 max QX1 u') — Q(x, uk)]

3
TUDelft

Accelerating RL
[e]e] le]ele]ele]e]

Eligibility traces

Q()\)-learning

@ Recall basic Q-learning only updates Q(x, uk):

Q(Xi, tk) + Q(Xi, Uk) + ak:
(i1 + 7 max QX1 u') — Q(x, uk)]

@ Q(\)-learning updates all eligible pairs:

Q(x, u) < Q(x,u) + ak - e(x, u)-
[+t + vy max QX1 u') — Q(x, uk)] VX, u

3
TUDelft

Accelerating RL
[e]e] le]ele]ele]e]

Eligibility traces

Q()\)-learning

@ Recall basic Q-learning only updates Q(x, uk):

Q(Xi, tk) + Q(Xi, Uk) + ak:
(i1 + 7 max QX1 u') — Q(x, uk)]

@ Q(\)-learning updates all eligible pairs:

Q(x, u) < Q(x,u) + ak - e(x, u)-
[+t + vy max QX1 u') — Q(x, uk)] VX, u

@ Note: exploratory actions break causality
= reset eligibility trace to 0
11UDeIft

Accelerating RL Summary and outlook

000@000000000

Complete Q()\)-learning algorithm

Q(\)-learning
for every trial do

e(x,u) + 0 VX, u

initialize xg

repeat for each step k
take action ug
measure X1, receive rg 4
if uy exploratory then e(x,u) «+ 0 VX, u
else e(x, u) < A\ye(x, u) Vx,u
end if
e(Xy, ux) + 1
Q(x,u) + Q(x,u) + ax - e(x, u)-

[Pkt + max Q(Xk+1,U") — Q(xk, uk)] Vx,u

until terminal state

.3
end for TUDelft

Accelerating RL
[e]e]ele] lelele]e]

Eligibility traces

Cleaning robot: Q(\)-learning demo

Parameters: a« = 0.2, ¢ = 0.3 (like basic Q-learning), A = 0.5
Xo = 2 or 3 (randomly)

Q(lambda)-learning, trial 5, step 2

H-=lele

05

0 I l

0 1 2 3 4 5
state, x
56 —
—e—Q-Q

4

3

2

0 1 2 3 4

3
trel TUDelft

Accelerating RL
[e]e]ele]e] lele]e]

Eligibility traces

SARSA()\)

Similar to Q-learning:
@ Basic SARSA:

Q(Xi, Uk) < Q(Xk, Uk) + ak:
[Fk1 + Y Q(Xkg1, Uk1) — Q(Xk, Uk)]

3
TUDelft

Accelerating RL
[e]e]ele]e] lele]e]

Eligibility traces

SARSA()\)

Similar to Q-learning:
@ Basic SARSA:

Q(Xi, Uk) < Q(Xk, Uk) + ak:
[Fk1 + Y Q(Xkg1, Uk1) — Q(Xk, Uk)]

@ SARSA(\)-learning:

Q(x,u) + Q(x,u) + ak - e(x, u)-
[t + Y Q(Xkt1, Uk1) — Q(Xk, Uk)] Vx,u

3
TUDelft

Accelerating RL
[e]e]ele]e] lele]e]

Eligibility traces

SARSA()\)

Similar to Q-learning:
@ Basic SARSA:

Q(Xi, Uk) < Q(Xk, Uk) + ak:
[Fk1 + Y Q(Xkg1, Uk1) — Q(Xk, Uk)]

@ SARSA(\)-learning:

Q(x,u) + Q(x,u) + ak - e(x, u)-
[t + Y Q(Xkt1, Uk1) — Q(Xk, Uk)] Vx,u

@ SARSA on-policy, including exploration

= exploratory actions not a problem .
TUDelft

Algorithms Accelerating RL Summary and outlook

0000008000000

Complete SARSA()) algorithm

SARSA())

for every trial do
e(x,u) <0 VX, u
initialize xg, choose initial action ug
repeat for each step k
apply uk, measure xy. 1, receive ri 1
choose next action uy_ 1
e(x, u) « \ve(x, u) VX, u
e(xk, Uk) +— 1
Q(x, u) < Q(x,u) + ak - e(x, u)-
[k + YQ(Xky1, Uk1) — QXk, UK)] VX, U
until terminal state
end for

5
TUDelft

Accelerating RL

00000000

Eligibility traces

Cleaning robot: SARSA()\) demo

Parameters: a = 0.2, ¢ = 0.3 (like basic SARSA), A = 0.5
Xo = 2 or 3 (randomly)

SARSA(lambda), trial 6, step 2

—|—|— 9

.................

3
trel TUDelft

Accelerating RL
00000000 e

Effects of eligibility traces

@ Accelerates learning: fewer trials to convergence

@ However: too large A can make algorithm
settle on suboptimal solution!

3
TUDelft

Accelerating RL
@000

Experience replay

e Accelerating RL

@ Experience replay

3
TUDelft

Accelerating RL
0@00

Experience replay (ER)

@ Store each transition sample (Xk, Uk, Xk11, k1)
into a database

@ At every step, replay N transitions from the database

3
TUDelft

Accelerating RL
0@00

Experience replay (ER)

@ Store each transition sample (Xk, Uk, Xk11, k1)
into a database

@ At every step, replay N transitions from the database

@ Improvement: replay most informative samples first:
prioritized sweeping (not considered here)

3
TUDelft

Reinforcem g Accelerating RL Summary and outlook

ER Q-learning

Q-learning with experience replay

for every trial do
initialize xg
repeat for each step k
take action uy
measure X1, receive ri 1
Q(xk, ux) <+ Q(xk, Uk) + a-
[Mkt1 + max Q(Xk11,U") — Q(Xk, Uk)]

add (X, Uk, Xk11, k1) to database
ReplayExperience
until terminal state
end for

5
TUDelft

ER Q-learning (cont'd)

ReplayExperience
loop N times
retrieve a sample (x, u, x’, r) from database
Q(x,u) + Q(x,u) + a
[r +ymax Q(x', u') — Q(x, u)]
end loop ’

5
TUDelft

Summary and outlook
e0

Summary

@ Reinforcement learning =
optimal, adaptive, model-free control

@ Principle: reward signal as performance feedback

@ Inspired from human and animal learning,
but solid mathematical foundation

@ Classical RL: small, discrete X and U (this lecture)

3
TUDelft

Summary and outlook
o]]

A final look at the algorithms

Off-policy On-policy
Basic RL
asie Q-learning SARSA
Param: v, ay, ek Param: v, ay, ek
RL with
eligibility traces Q(\)-learning SARSA())
Param: v, ak, ek, A | Param: ~, ak, ek, A

3
TUDelft

Summary and outlook
o]]

A final look at the algorithms

Off-policy On-policy
Basic RL
asie Q-learning SARSA
Param: v, ay, ek Param: v, ay, ek
RL with
elig;lglility traces Q(\)-learning SARSA())
Param: v, ak, ek, A | Param: ~, ak, ek, A

Typical parameter values:
~ 0.9 or larger
ay under 0.5 or diminishing schedule
ek around 0.1 or diminishing schedule
A between 0.5 and 0.9

3
TUDelft

Summary and outlook
[]
Outlook

Next lecture

Still to address:
@ Continuous state and action spaces X, U
@ More algorithms: actor-critic, model-learning, etc.

Part Il — RL using function approximation

3
TUDelft

	Reinforcement learning basics
	Introduction
	Elements of RL
	RL solution

	Algorithms
	Q-learning
	SARSA

	Accelerating RL
	Eligibility traces
	Experience replay
	Summary
	Outlook

