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Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image



Reinforcement learning basics Algorithms Accelerating RL Summary and outlook

Outline

1 Reinforcement learning basics

2 Algorithms

3 Accelerating RL



Reinforcement learning basics Algorithms Accelerating RL Summary and outlook

1 Reinforcement learning basics
Introduction
Elements of RL
RL solution

2 Algorithms

3 Accelerating RL



Reinforcement learning basics Algorithms Accelerating RL Summary and outlook

Introduction

Why learning?

Learning can find solutions that:
1 cannot be found in advance

– problem too complex
(e.g., controlling highly nonlinear systems)

– problem not fully known beforehand
(e.g., robotic exploration of extraterrestrial planets)

2 steadily improve
3 adapt to time-varying environments

Essential for any intelligent system
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Introduction

Principle of RL

Controller Process

action u

state x

Reward function
reward r

Interact with a system through states and actions
Inspired by human and animal learning
Receive rewards as performance feedback
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Introduction

RL on the Machine Learning spectrum

Supervised
learning

Reinforcement
learning

Unsupervised
learning

more informative feedback less informative feedback



Reinforcement learning basics Algorithms Accelerating RL Summary and outlook

Introduction

Spectrum: Supervised learning

Supervised
learning

Reinforcement
learning

Unsupervised
learning

more informative feedback less informative feedback

For each input sample x , correct output y is known
Infer input-output relationship y ≈ g(x)

Example: neural networks
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Spectrum: Unsupervised learning
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learning

more informative feedback less informative feedback

Only input samples available – no outputs
Find patterns in the data
Example: clustering
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Introduction

Spectrum: Reinforcement learning

Supervised
learning

Reinforcement
learning

Unsupervised
learning

more informative feedback less informative feedback

Correct outputs not available, only rewards
Find optimal control behavior
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Introduction

Reinforcement learning = Control

Reinforcement learning is about control:
optimal, adaptive, and model-free

Controller Process

action u

state x

Reward function
reward r

This lecture: classical RL – discrete states and actions
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Elements of RL

Environment and agent

Controller Process

action u

state x

Reward function
reward r

EnvironmentAgent
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Elements of RL

The environment

The environment is modeled by an MDP:

Markov Decision Process (MDP)

An MDP is a tuple 〈X ,U, f , ρ〉 where:
X is the finite state space
U is the finite action space
f : X × U → X is the state transition function
ρ : X × U → R is the reward function

xk+1 = f (xk ,uk ), with k the discrete time

Note: stochastic formulation is possible
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Elements of RL

The agent

The agent is a state feedback controller:
Learns optimal mapping from states to actions
Policy π : X 7→ U is the control law
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Elements of RL

A simple cleaning robot example

Cleaning robot in a 1-D world
Goal: pick up trash (reward +5) or power pack (reward +1)
After picking up item, episode terminates



Reinforcement learning basics Algorithms Accelerating RL Summary and outlook

Elements of RL

Cleaning robot: State & action

Robot in given state x (cell)
and takes action u (e.g., move right)

State space X = {0,1,2,3,4,5}
Action space U = {−1,1} = {left, right}
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Elements of RL

Cleaning robot: Transition & reward

Robot reaches next state x ′

and receives reward r = quality of transition
(here, +5 for collecting trash)
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Elements of RL

Cleaning robot: Transition & reward functions

Transition function (process behavior):

x ′ = f (x ,u) =

{
x if x is terminal (0 or 5)
x + u otherwise

Reward function (immediate performance):

r = ρ(x ,u) =


1 if x = 1 and u = −1 (powerpack)
5 if x = 4 and u = 1 (trash)
0 otherwise
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Elements of RL

Cleaning robot: Policy

Policy π: mapping from x to u (state feedback)
Determines controller behavior

Example:

π(0) = ∗ π(1) = −1 π(2) = 1
π(3) = 1 π(4) = 1 π(5) = ∗

∗ action irrelevant in terminal state
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RL solution

Learning goal

Find π that maximizes discounted return:
Rπ(x0) =

∞∑
k=0

γk rk+1 =
∞∑

k=0
γkρ(xk , π(xk ))

from any x0

Discount factor γ ∈ [0,1):
induces a “pseudo-horizon” for optimization
bounds infinite sum
encodes increasing uncertainty about the future
helps convergence of algorithms
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RL solution

Cleaning robot: Return

Assume π always goes right

Rπ(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Because x3 is terminal, all remaining rewards are 0
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RL solution

Value function

One of these two is used:
V-function (state value) of policy π:

Vπ(x0) = Rπ(x0)

Q-function (state-action value) of policy π:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

(return after taking u0 in x0 and then following π)
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RL solution

Q-function

Rπ(x0) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , π(xk ))

= ρ(x0, π(x0)) +
∞∑

k=1

γkρ(xk , π(xk ))

= ρ(x0, π(x0)) + γ

∞∑
k=0

γkρ(xk+1, π(xk+1))

= ρ(x0, π(x0)) + γRπ(x1)

Q-function makes first action a free variable u0:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)
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RL solution

Q-function (cont’d)

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

First action in the sequence independent of policy
Rest of the sequence follows the policy

Q-function allows direct derivation of policy
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RL solution

Bellman equation

Develop Q-function one step ahead:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

= ρ(x0,u0) + γ[ρ(x1, π(x1)) + γRπ(x2)]

= ρ(x0,u0) + γQπ(x1, π(x1))

Remember: x1 = f (x0,u0)

⇒ Bellman equation for Qπ

Qπ(x ,u) = ρ(x ,u) + γQπ(f (x ,u), π(f (x ,u)))
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RL solution

Optimal solution

Optimal Q-function:

Q∗ = max
π

Qπ

⇒ Greedy policy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)

is optimal (achieves maximal returns)

Bellman optimality equation (for Q∗)

Q∗(x ,u) = ρ(x ,u) + γmax
u′

Q∗(f (x ,u),u′)
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RL solution

Cleaning robot: Optimal solution

Discount factor γ = 0.5
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Q-learning

Off-policy online RL: Q-learning

Off-policy: find Q∗, use it to compute π∗

1 Take Bellman optimality equation at some (x ,u):
Q∗(x ,u) = ρ(x ,u) + γmaxu′ Q∗(f (x ,u),u′)

2 Turn into iterative update:
Q(x ,u)← ρ(x ,u) + γmaxu′ Q(f (x ,u),u′)

3 Instead of model f , ρ, use transition sample
(xk ,uk , xk+1, rk+1) at each step k :

Q(xk ,uk )← rk+1 + γmaxu′ Q(xk+1,u′)
Note: xk+1 = f (xk ,uk ), rk+1 = ρ(xk ,uk )
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Q-learning

Q-learning (cont’d)

4 Finally, make update incremental:

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γmax

u′
Q(xk+1,u′)−Q(xk ,uk )]

with learning rate αk ∈ (0,1].

The expression

rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )

is called the temporal difference.
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Q-learning

Complete Q-learning algorithm

Q-learning
for every trial do

initialize x0
repeat for each step k

take action uk
measure xk+1, receive rk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )]

until terminal state
end for
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Q-learning

Exploration-exploitation tradeoff

Essential condition for convergence to Q∗:
all (x ,u) pairs must be visited infinitely often

⇒ Exploration necessary:
sometimes, choose actions randomly
Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

uk = arg max
ū

Q(xk , ū)

Exploration-exploitation tradeoff crucial
for performance of online RL
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Q-learning

Exploration-exploitation: ε-greedy strategy

Simple solution: ε-greedy

uk =

{
arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

Exploration probability εk ∈ (0,1)
is usually decreased over time
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Q-learning

Cleaning robot: Q-learning demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (randomly)
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SARSA

On-policy online RL: SARSA

On-policy: find Qπ, improve π, repeat

Similar to Q-learning:
1 Take Bellman equation for Qπ, at some (x ,u):

Qπ(x ,u) = ρ(x ,u) + γQπ(f (x ,u), π(f (x ,u)))

2 Turn into iterative update:
Q(x ,u)← ρ(x ,u) + γQ(f (x ,u), π(f (x ,u)))

3 Use sample (xk ,uk , rk+1, xk+1,uk+1) at each step k :
Q(xk ,uk )← rk+1 + γQ(xk+1,uk+1)

Note: uk+1 = π(f (xk ,uk )), π = policy being followed
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SARSA

SARSA (cont’d)

4 Make update incremental:

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]

Note that
rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )

is the temporal difference here

(xk ,uk , rk+1, xk+1,uk+1) =
(State, Action, Reward, State, Action) = SARSA
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SARSA

Complete SARSA algorithm

SARSA
for every trial do

initialize x0, choose initial action u0
repeat for each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]
until terminal state

end for
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SARSA

Exploration-exploitation in SARSA

For convergence—besides infinite exploration—
SARSA requires policy to eventually become greedy

E.g., ε-greedy

uk =

{
arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

with limk→∞ εk = 0

Greedy actions⇒ policy implicitly improved!
(Recall on-policy: find Qπ, improve π, repeat)
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SARSA

Cleaning robot: SARSA demo

Parameters like Q-learning: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (randomly)
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Accelerating RL

In practice, transition data costs:
time
profits (suboptimal performance due to exploration)
process wear & tear

Fast RL = use data efficiently

(computational demands are secondary)
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Cleaning robot without acceleration

Evaluate the policy π with γ = 0.5, α = 0.2

First encounter with x = 3 gives:
1 Qπ(3,1)← Qπ(3,1) + α[0 + γQπ(4,1)−Qπ(3,1)] = 0
2 Qπ(4,1)← Qπ(4,1) + α[5 + γ0−Qπ(4,1)] = 1

Next encounter with x = 3 gives:
1 Qπ(3,1)← Qπ(3,1) + α[0 + γQπ(4,1)−Qπ(3,1)] =
αγQπ(4,1) = 0.1

2 Qπ(4,1)← Qπ(4,1) + α[5 + γ0−Qπ(4,1)] = 1.8
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Cleaning robot without acceleration (cont’d)

Change in Qπ(4,1) obviously influences Qπ(3,1) as

Qπ(3,1)← Qπ(3,1) + α[0 + γQπ(4,1)−Qπ(3,1)]

always holds!

Main idea
Do not wait for state x = 3 to pop up again for the update.
Update Qπ(3,1) immediately when Qπ(4,1) and/or other
successor states are updated.
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Eligibility traces

Eligibility traces

Leave decaying trace along state-action trajectory:

λ ∈ [0,1] decay rate, γ discount factor

Implementation:

e(x ,u)← 0 ∀x ,u
for each step k do

e(x ,u)← λγe(x ,u) ∀x ,u
e(xk ,uk )← 1

end for
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Eligibility traces

Q(λ)-learning

Recall basic Q-learning only updates Q(xk ,uk ):

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γmax

u′
Q(xk+1,u′)−Q(xk ,uk )]

Q(λ)-learning updates all eligible pairs:

Q(x ,u)← Q(x ,u) + αk · e(x ,u)·
[rk+1 + γmax

u′
Q(xk+1,u′)−Q(xk ,uk )] ∀x ,u

Note: exploratory actions break causality
⇒ reset eligibility trace to 0
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Eligibility traces

Complete Q(λ)-learning algorithm

Q(λ)-learning
for every trial do

e(x ,u)← 0 ∀x ,u
initialize x0
repeat for each step k

take action uk
measure xk+1, receive rk+1
if uk exploratory then e(x ,u)← 0 ∀x ,u
else e(x ,u)← λγe(x ,u) ∀x ,u
end if
e(xk ,uk )← 1
Q(x ,u)← Q(x ,u) + αk · e(x ,u)·

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )] ∀x ,u
until terminal state

end for
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Eligibility traces

Cleaning robot: Q(λ)-learning demo

Parameters: α = 0.2, ε = 0.3 (like basic Q-learning), λ = 0.5
x0 = 2 or 3 (randomly)
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Eligibility traces

SARSA(λ)

Similar to Q-learning:
Basic SARSA:

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]

SARSA(λ)-learning:

Q(x ,u)← Q(x ,u) + αk · e(x, u)·
[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )] ∀x ,u

SARSA on-policy, including exploration
⇒ exploratory actions not a problem
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Eligibility traces

Complete SARSA(λ) algorithm

SARSA(λ)
for every trial do

e(x ,u)← 0 ∀x ,u
initialize x0, choose initial action u0
repeat for each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1
e(x ,u)← λγe(x ,u) ∀x ,u
e(xk ,uk )← 1
Q(x ,u)← Q(x ,u) + αk · e(x ,u)·

[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )] ∀x ,u
until terminal state

end for
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Eligibility traces

Cleaning robot: SARSA(λ) demo

Parameters: α = 0.2, ε = 0.3 (like basic SARSA), λ = 0.5
x0 = 2 or 3 (randomly)
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Eligibility traces

Effects of eligibility traces

Accelerates learning: fewer trials to convergence

However: too large λ can make algorithm
settle on suboptimal solution!
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Experience replay

Experience replay (ER)

Store each transition sample (xk ,uk , xk+1, rk+1)
into a database
At every step, replay N transitions from the database
Improvement: replay most informative samples first:
prioritized sweeping (not considered here)
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Experience replay

ER Q-learning

Q-learning with experience replay
for every trial do

initialize x0
repeat for each step k

take action uk
measure xk+1, receive rk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )]

add (xk ,uk , xk+1, rk+1) to database
ReplayExperience

until terminal state
end for
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Experience replay

ER Q-learning (cont’d)

ReplayExperience
loop N times

retrieve a sample (x ,u, x ′, r) from database
Q(x ,u)← Q(x ,u) + α·

[r + γmax
u′

Q(x ′,u′)−Q(x ,u)]

end loop
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Summary

Summary

Reinforcement learning =
optimal, adaptive, model-free control
Principle: reward signal as performance feedback
Inspired from human and animal learning,
but solid mathematical foundation
Classical RL: small, discrete X and U (this lecture)
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Summary

A final look at the algorithms

Off-policy On-policy
Basic RL

Q-learning
Param: γ, αk , εk

SARSA
Param: γ, αk , εk

RL with
eligibility traces Q(λ)-learning

Param: γ, αk , εk , λ
SARSA(λ)
Param: γ, αk , εk , λ

Typical parameter values:
γ 0.9 or larger
αk under 0.5 or diminishing schedule
εk around 0.1 or diminishing schedule
λ between 0.5 and 0.9
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Outlook

Next lecture

Still to address:
Continuous state and action spaces X , U
More algorithms: actor-critic, model-learning, etc.

Part II – RL using function approximation
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