Lecture 6: Model based control

Jens Kober Robert Babuška

Knowledge-Based Control Systems (SC42050)
Delft Center for Systems and Control
3mE, Delft University of Technology, The Netherlands

01-03-2017

TUDelft

Outline

- 1 Local design using Takagi-Sugeno models
- 2 Inverse model control
- 3 Model-based predictive control
- 4 Feedback linearization
- 6 Adaptive control

Considered Settings

- Fuzzy or neural model of the process available (many of the presented techniques apply to other types of models as well)
- Based on the model, design a controller (off line)
- Use the model explicitly within a controller
- Model fixed or adaptive

ŤUDelft 2/2

TS Model → TS Controller

Model:

```
If y(k) is Small then x(k+1) = a_s x(k) + b_s u(k)

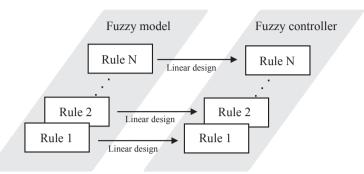
If y(k) is Medium then x(k+1) = a_m x(k) + b_m u(k)

If y(k) is Large then y(k) = a_k x(k) + b_k u(k)
```

Controller:

If
$$y(k)$$
 is Small then $u(k) = -L_s x(k)$
If $y(k)$ is Medium then $u(k) = -L_m x(k)$
If $y(k)$ is Large then $y(k) = -L_k x(k)$

Design Using a Takagi-Sugeno Model

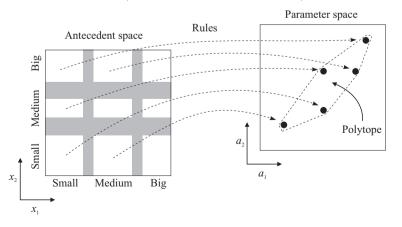


Apply classical synthesis and analysis methods locally.

TuDelft

TS Model is a Polytopic System

$$\mathbf{x}(k+1) = \left(\sum_{i=1}^{K} \sum_{j=1}^{K} \gamma_i(\mathbf{x}) \gamma_j(\mathbf{x}) (\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j)\right) \mathbf{x}(k)$$



ŤUDelft 7 / 28

Control Design via Lyapunov Method

Model:

If
$$\mathbf{x}(k)$$
 is Ω_i then $\mathbf{x}_i(k+1) = \mathbf{A}_i\mathbf{x}(k) + \mathbf{B}_i\mathbf{u}(k)$

Controller:

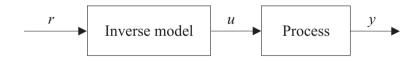
If
$$\mathbf{x}(k)$$
 is Ω_i then $\mathbf{u}_i(k) = -\mathbf{L}_i\mathbf{x}(k)$

Stability guaranteed if $\exists P > 0$ such that:

$$(\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j)^T \mathbf{P} (\mathbf{A}_i - \mathbf{B}_i \mathbf{L}_j) - \mathbf{P} < \mathbf{0}, \quad i, j = 1, \dots, K$$

ŤUDelft 6 / 28

Inverse Control (Feedforward)



Process model: $y(k+1) = f(\mathbf{x}(k), u(k))$, where

$$\mathbf{x}(k) = [y(k), \dots, y(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]^T$$

Controller: $u(k) = f^{-1}(\mathbf{x}(k), r(k+1))$

TUDelft 8 / 20

When is Inverse-Model Control Applicable?

- 1 Process (model) is stable and invertible
- 2 The inverse model is stable
- 3 Process model is accurate (enough)
- 4 Little influence of disturbances
- 5 In combination with feedback techniques

TUDelft

9 / 28

Inverse of an Affine Model

affine model:

$$y(k+1) = g(\mathbf{x}(k)) + h(\mathbf{x}(k)) \cdot u(k)$$

express u(k):

$$u(k) = \frac{y(k+1) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$$

substitute r(k+1) for y(k+1)

necessary condition $h(\mathbf{x}) \neq 0$ for all \mathbf{x} of interest

How to invert $f(\cdot)$?

1 Numerically (general solution, but slow):

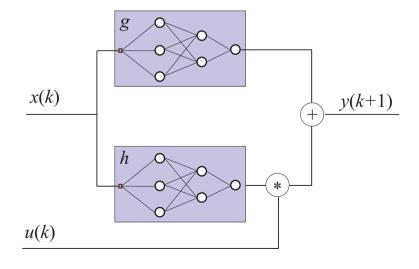
$$J(u(k)) = \left[r(k+1) - f(\mathbf{x}(k), u(k))\right]^{2}$$

minimize w.r.t. u(k)

- **2** Analytically (for some special forms of $f(\cdot)$ only):
 - affine in u(k)
 - singleton fuzzy model
- 3 Construct inverse model directly from data

TUDelft

Example: Affine Neural Network



TUDelft

Example: Affine TS Fuzzy Model

 $\mathcal{R}: \qquad \text{If } y(k) \text{ is } A_{i1} \text{ and } \dots \text{ and } y(k-n_y+1) \text{ is } A_{in_y} \text{ and } \\ u(k-1) \text{ is } B_{i2} \text{ and } \dots \text{ and } u(k-n_u+1) \text{ is } B_{in_u} \text{ then } \\ y_i(k+1) = \sum_{j=1}^{n_y} a_{ij} y(k-j+1) + \sum_{j=1}^{n_u} b_{ij} u(k-j+1) + c_i,$

$$y(k+1) = \sum_{i=1}^{K} \gamma_{i}(\mathbf{x}(k)) \left[\sum_{j=1}^{n_{y}} a_{ij}y(k-j+1) + \sum_{j=2}^{n_{u}} b_{ij}u(k-j+1) + c_{i} \right] + \sum_{i=1}^{K} \gamma_{i}(\mathbf{x}(k))b_{i1}u(k)$$

TUDelft 13 / 2

How to obtain x?

inverse model: $u(k) = f^{-1}(\mathbf{x}(k), r(k+1))$

① Use the prediction model: $\hat{y}(k+1) = f(\hat{x}(k), u(k))$

$$\hat{\mathbf{x}}(k) = [\hat{y}(k), \dots, \hat{y}(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]^T$$

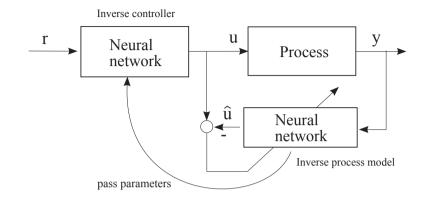
Open-loop feedforward control

2 Use measured process output

$$\mathbf{x}(k) = [y(k), \dots, y(k-n_y+1), u(k-1), \dots, u(k-n_u+1)]^T$$

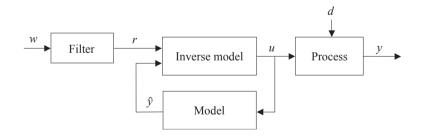
Open-loop feedback control

Learning Inverse (Neural) Model



TUDelft 14/2

Open-Loop Feedforward Control

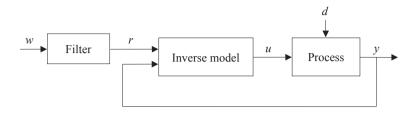


Always stable (for stable processes)

TUDelft

• No way to compensate for disturbances

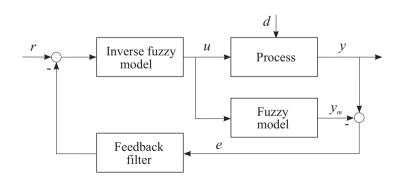
Open-Loop Feedback Control



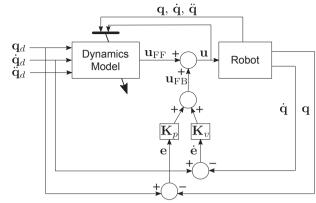
- Can to some degree compensate disturbances
- Can become unstable

TuDelft 17 / 28

Internal Model Control



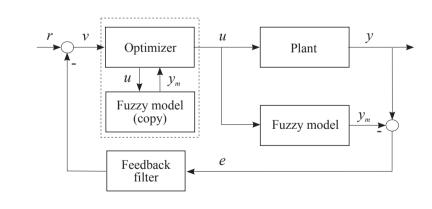
Example: Computed Torque Control¹



- Video: RBD model vs. learned model
- Video: adaptive model

TUDelft 18 / 28

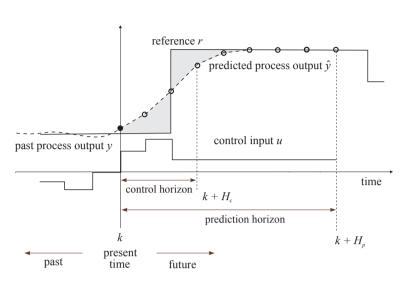
Model-Based Predictive Control



ŤUDelft

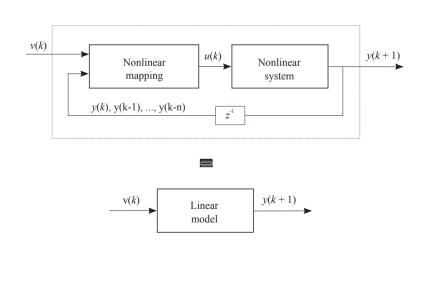
 $^{^1\}mathrm{D}.$ Nguyen-Tuong and J. Peters (2011). "Incremental Sparsification for Real-time Online Model Learning". In: Neurocomputing 74.11, pp. 1859–1867

Model-Based Predictive Control



TuDelft 21 / 28

Feedback linearization



Objective Function and Constraints

$$J = \sum_{i=1}^{H_p} \left\| \mathbf{r}(k+i) - \hat{\mathbf{y}}(k+i) \right\|_{P_i}^2 + \sum_{i=1}^{H_c} \left\| \mathbf{u}(k+i-1) \right\|_{Q_i}^2$$

$$\hat{\mathbf{y}}(k+1) = f(\hat{\mathbf{x}}(k), u(k))$$

$$\mathbf{u}^{\min} \leq \mathbf{u} \leq \mathbf{u}^{\max}$$

$$\Delta \mathbf{u}^{\min} \leq \Delta \mathbf{u} \leq \Delta \mathbf{u}^{\max}$$

$$\mathbf{y}^{\min} \leq \mathbf{y} \leq \mathbf{y}^{\max}$$

$$\Delta \mathbf{y}^{\min} \leq \Delta \mathbf{y} \leq \Delta \mathbf{y}^{\max}$$

TUDelft 22 / 28

Feedback Linearization (continued)

given affine system: $y(k+1) = g(\mathbf{x}(k)) + h(\mathbf{x}(k)) \cdot u(k)$

express u(k):

$$u(k) = \frac{y(k+1) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$$

substitute A(q)y(k) + B(q)v(k) for y(k+1):

$$u(k) = \frac{A(q)y(k) + B(q)v(k) - g(\mathbf{x}(k))}{h(\mathbf{x}(k))}$$

ŤUDelft 24 / 28

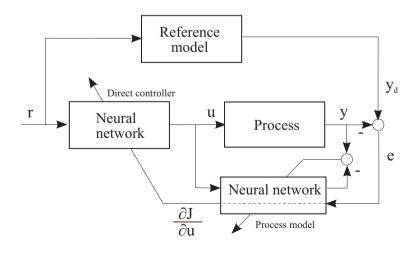
Adaptive Control

- Model-based techniques (use explicit process model):
 - model reference control through backpropagation
 - indirect adaptive control
- Model-free techniques (no explicit model used)
 - reinforcement learning

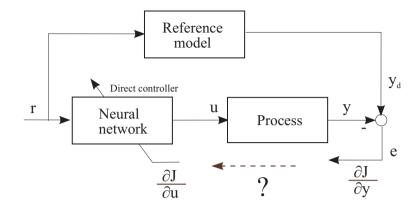
TUDelft

25 / 28

Model Reference Adaptive Neurocontrol

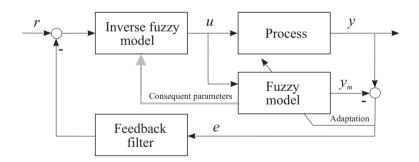


Model Reference Adaptive Neurocontrol



TUDelft 26 / 28

Indirect Adaptive Control



no only for fuzzy models, but also for affine NNs, etc.

TUDelft

Reinforcement Learning

- Inspired by principles of human and animal learning.
- No explicit model of the process used.
- No detailed feedback, only reward (or punishment).
- A control strategy can be learnt from scratch.

