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Principle of RL

Controller Process

action u

state x

Reward function
reward r

• Interact with a system through states and actions
• Receive rewards as performance feedback

This lecture: approximate RL – continuous states & actions
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Recall: Solution of the RL Problem

• Q-function Qπ of policy π

• Optimal Q-function Q∗ = maxπ Qπ

Satisfies Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γ max
u′

Q∗(f (x ,u),u′)

• Optimal policy π∗ – greedy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)
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Types of RL Algorithms

By path to optimal solution
1 Off-policy – find Q∗, use it to compute π∗

2 On-policy – find Qπ, improve π, repeat

By level of interaction with the process
1 Online – learn by interacting with the process
2 Offline – data collected in advance (Monte-Carlo methods)

By model knowledge
1 Model-free – no f and ρ, only transition data (RL)
2 Model-based – f and ρ known (dynamic programming)
3 Model-learning – estimate f and ρ from transition data
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Offline, Model-based Solution: Q-iteration (Discrete)

• Bellman optimality equation:

Q∗(x ,u) = ρ(x ,u) + γ max
u′

Q∗(f (x ,u),u′)

Turn it into an iterative update:

Q-iteration
repeat at each iteration `

for all x ,u do
Q`+1(x ,u)← ρ(x ,u) + γ maxu′ Q`(f (x ,u),u′)

end for
until convergence to Q∗

• Once Q∗ available: π∗(x) = arg maxu Q∗(x ,u)
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Q-iteration Convergence

• Each update is a contraction with factor γ:

‖Q`+1 −Q∗‖∞ ≤ γ ‖Q` −Q∗‖∞
⇒ Q-iteration monotonically converges to Q∗
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Cleaning Robot: Q-iteration Demo
Discount factor: γ = 0.5
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Cleaning Robot: Q-iteration Progress

Q`+1(x ,u)← ρ(x ,u) + γ max
u′

Q`(f (x ,u),u′)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5

Q0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0 0 ; 0
Q1 0 ; 0 1 ; 0 0 ; 0 0 ; 0 0 ; 5 0 ; 0
Q2 0 ; 0 1 ; 0 0.5 ; 0 0 ; 2.5 0 ; 5 0 ; 0
Q3 0 ; 0 1 ; 0.25 0.5 ; 1.25 0.25 ; 2.5 1.25 ; 5 0 ; 0
Q4 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
Q5 0 ; 0 1 ; 0.625 0.5 ; 1.25 0.625 ; 2.5 1.25 ; 5 0 ; 0
π∗ ∗ −1 1 1 1 ∗
V ∗ 0 1 1.25 2.5 5 0

Note: Q` = Q(x , left) ; Q(x , right)
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Classical Q-function is a Table

• Separate Q-value for each x and u

0 1 .5 0.625 1.25 0
0 0.625 1.25 2.5 5 0

• In real-life control, X , U continuous!
Tabular representation impossible

⇒ need to approximate the Q-function
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Q-function Approximation

• In real-life control, X , U continuous
⇒ approximate Q-function Q̂ must be used

• Policy is greedy in Q̂, computed on demand for given x :

π(x) = arg max
u

Q̂(x ,u)
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Q-function Approximation (cont’d)

• One option: use linearly parameterized approximation

Q̂ =
N∑

i=1

θiφi(x ,u)

with φi(x ,u) : X × U 7→ R.

• π(x) = arg maxu Q̂(x ,u) is now a continuous optimization
procedure!

• Approximator must ensure efficient arg max solution
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Approximating Over the Action Space

• Approximator must ensure efficient “arg max” solution

⇒ Typically: action discretization

• Choose M discrete actions u1, . . . , uM ∈ U
Solve “arg max” by explicit enumeration

• Example: grid discretization
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Approximating Over the State Space

• Typically: basis functions

φ1, . . . , φN : X → [0,1]

• Usually normalized:
∑

i φi(x) = 1

• E.g., fuzzy approximation, RBF network approximation
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Q-function Approximation Using Basis Functions

Given:
1 N basis functions φ1, . . . , φN

2 M discrete actions u1, . . . , uM

Store:
3 N ×M matrix of parameters θ

(one for each pair basis function–discrete action)

Approximate Q-function

Q̂θ(x ,uj) =
N∑

i=1

φi(x)θi,j

= [φ1(x) . . . φN(x)]

θ1,j
...

θN,j
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Policy from Approximate Q-function

• Recall optimal policy:

π∗(x) = arg max
u

Q∗(x ,u)

• Policy with discretized actions:

π̂∗(x) = arg max
uj , j=1,...,M

Q̂θ∗(x ,uj)

(θ∗ = converged parameter matrix)
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Fuzzy Approximator

• Basis functions: pyramidal membership functions (MFs)
= cross-product of triangular MFs

• Each MF i has core (center) xi

• θi,j can be seen as Q̂(xi ,uj)
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Fuzzy Q-iteration

Recall classical Q-iteration:
repeat at each iteration `

for all x ,u do
Q`+1(x ,u) = ρ(x ,u) + γmaxu′Q`(f (x ,u),u′)

end for
until convergence

Fuzzy Q-iteration
repeat at each iteration `

for all cores xi , discrete actions uj do
θ`+1,i,j = ρ(xi ,uj) + γmaxj ′Q̂θ`(f (xi ,uj),uj ′)

end for
until convergence
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Another Example: Inverted Pendulum Swing-up

• x = [angle α, velocity α̇]T

• u = voltage

• ρ(x ,u) = −xT
[
5 0
0 0.1

]
x − uT 1u

• Discount factor γ = 0.98

• Goal: stabilize pointing up
• Insufficient actuation⇒ need to swing back & forth
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Inverted Pendulum: Near-optimal Solution

Left: Q-function for u = 0 Right: policy
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Inverted Pendulum: Fuzzy Q-iteration Demo

MFs: 41× 21 equidistant grid
Discretization: 5 actions, logarithmically spaced around 0

23 / 50



Inverted Pendulum: Fuzzy Q-iteration Demo
Demo
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Ingredients

Actor

Critic

Process

Rewardr

x

x

u
δ

• Explicitly separated value function and policy
• Actor = control policy π(x)
• Critic = state value function V (x)
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Continuous Action/State Space

To deal with continuity:
• Actor parameterized in ϕ: π̂(x , ϕ)
• Critic parameterized in θ: V̂ (x , θ)

Parameters ϕ and θ have finite size, but approximate functions on
continuous (infinitely large) spaces!
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Algorithm
On-policy: find Qπ, improve π, repeat

1 Take Bellman equation for Vπ, at some xk :

Vπ(x) = ρ(x , π(x)) + γVπ(f (x , π(x)))

2 Take temporal difference ∆:

∆ = ρ(x , π(x)) + γVπ(f (x , π(x)))− Vπ(x)

3 Use sample (xk ,uk , xk+1, rk+1) at each step k and
parameterized V :

∆k = rk+1 + γV̂π(xk+1, θk )− V̂π(xk , θk )

Note: uk = π̂(xk , ϕk ) + ũk , π̂ = actor, ũk = exploration
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Algorithm (cont’d)

4 Use ∆k for critic update:

θk+1 = θk + αc∆k
∂V̂ (x , θ)

∂θ

∣∣∣∣∣x=xk
θ=θk

αc > 0: learning rate of critic

• ∆k > 0, i.e., rk+1 + γV̂π(xk+1, θk ) > V̂π(xk , θk )
⇒ old estimate too low, increase V̂ .

• ∆k < 0, i.e., rk+1 + γV̂π(xk+1, θk ) < V̂π(xk , θk )
⇒ old estimate too high, decrease V̂ .
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Algorithm (cont’d)

Recall: uk = π̂(xk , ϕk ) + ũk , π̂ = actor, ũk = exploration
5 Use ∆k and exploration term ũk for actor update:

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x , ϕ)

∂ϕ

∣∣∣∣x=xk
ϕ=ϕk

αa ∈ (0,1]: learning rate of actor

• Product ∆k ũk determines sign in update
• ∆k > 0, i.e., rk+1 + γV̂π(xk+1, θk ) > V̂π(xk , θk )
⇒ ũk had positive effect. Move in direction of uk .

• ∆k < 0, i.e., rk+1 + γV̂π(xk+1, θk ) < V̂π(xk , θk )
⇒ ũk had negative effect. Move away from uk .
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Complete Actor-Critic Algorithm

Actor-critic
for every trial do

initialize x0, choose initial action u0 = ũ0
repeat for each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1 = π̂(xk+1, ϕk ) + ũk+1
∆k = rk+1 + V̂ (xk+1, θk )− V̂ (xk , θk )

θk+1 = θk + αc∆k
∂V̂ (x ,θ)

∂θ

∣∣∣x=xk
θ=θk

ϕk+1 = ϕk + αa∆k ũk
∂π̂(x ,ϕ)

∂ϕ

∣∣∣x=xk
ϕ=ϕk

until terminal state
end for
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Pendulum Swing-up Learning

Solution to pendulum swing-up problem.

32 / 50



Radial Basis Functions

f̂ (x) = θTφ̃(x)

where φ̃(x) is a column vector with the value of normalized RBFs:

φ̃i(x) =
φi(x)∑
j φj(x)

with φi(x) = e− 1
2 (x−ci )

TB−1(x−ci )

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

x

φ
(x

)
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Evolution of a Policy

Value function and policy in learning phase.
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Policy After Saturation

Trajectory of pendulum.
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Example: Inverted Pendulum

36 / 50



Cascade Control Scheme
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PD Control
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Reinforcement Learning
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Reinforcement Learning: Final Performance
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Critic and Actor Surfaces

critic actor
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Example: Walking Robot Leo (Erik Schuitema)

https://youtu.be/SBf5-eF-EIw
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Example: Autonomous Helicopter

https://youtu.be/VCdxqn0fcnE
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Mixed Model-Based and Model-Free: Dyna

• Experience is usually costly to obtain.

• Sometimes, a priori information on the environment is
available (though perhaps uncertain).

• Use experience, but also learn from the model.
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Example: Cart-Pole Swing-up (Marc P. Deisenroth)

https://youtu.be/XiigTGKZfks
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Types of RL Algorithms

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned
1 Actor-critic – learn value function and policy
2 Critic-only – learn value function
3 Actor-only – learn policy
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Example: Ball-in-a-Cup

https://youtu.be/qtqubguikMk
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Summary

• Reinforcement learning =
optimal, adaptive, model-free control

• Real-life RL: continuous states and actions
– approximation required

• Effective algorithms for approximate RL,
able to solve complex tasks from scratch
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More Videos

• https://youtu.be/SH3bADiB7uQ
• https://youtu.be/2NLN-6fMWXI
• https://youtu.be/C63avx1YCF4
• https://youtu.be/W_gxLKSsSIE
• https://youtu.be/6ovzs1KSkJE
• https://youtu.be/8Thdf_7j4dI
• https://youtu.be/nM1HTp_P3lY
• http://www.cs.utexas.edu/~AustinVilla/?p=
research/learned_walk
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