Reinforcement Learning Part II: RL Using Function Approximation

Ivan Koryakovskiy Jens Kober Ivo Grondman Robert Babuška

Knowledge-Based Control Systems

Outline

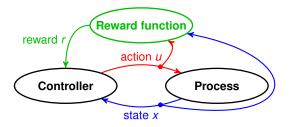
1 Introduction

2 Q-iteration

Dealing with continuous spaces
 Approximating the Q-function
 Fuzzy Q-iteration
 Actor-critic methods

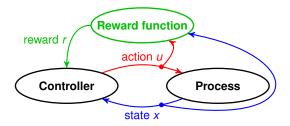
4 More examples

Principle of RL



- Interact with a system through states and actions
- Receive rewards as performance feedback

Principle of RL



- Interact with a system through states and actions
- Receive rewards as performance feedback

This lecture: approximate RL - continuous states & actions

Recall: Solution of the RL Problem

• Q-function Q^{π} of policy π

Recall: Solution of the RL Problem

- Q-function Q^{π} of policy π
- Optimal Q-function Q* = max_π Q^π Satisfies Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Recall: Solution of the RL Problem

- Q-function Q^{π} of policy π
- Optimal Q-function $Q^* = \max_{\pi} Q^{\pi}$ Satisfies Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

• Optimal policy π^* – greedy in Q^* :

$$\pi^*(x) = \operatorname*{arg\,max}_{u} Q^*(x, u)$$

Types of RL Algorithms

By path to optimal solution

- **1** Off-policy find Q^* , use it to compute π^*
- **2** On-policy find Q^{π} , improve π , repeat

Types of RL Algorithms

By path to optimal solution

- **1** Off-policy find Q^* , use it to compute π^*
- **2** On-policy find Q^{π} , improve π , repeat

By level of interaction with the process

- Online learn by interacting with the process
- Offline data collected in advance (Monte-Carlo methods)

Types of RL Algorithms

By path to optimal solution

- 1 Off-policy find Q^* , use it to compute π^*
- **2** On-policy find Q^{π} , improve π , repeat

By level of interaction with the process

- Online learn by interacting with the process
- Offline data collected in advance (Monte-Carlo methods)

By model knowledge

- **1** Model-free no *f* and ρ , only transition data (RL)
- **2** Model-based f and ρ known (dynamic programming)
- **3** Model-learning estimate f and ρ from transition data

3 Dealing with continuous spaces

4 More examples

Offline, Model-based Solution: Q-iteration (Discrete)

• Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Offline, Model-based Solution: Q-iteration (Discrete)

Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Turn it into an iterative update:

Q-iteration repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) \leftarrow \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ end for until convergence to Q^*

Offline, Model-based Solution: Q-iteration (Discrete)

Bellman optimality equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Turn it into an iterative update:

Q-iteration repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) \leftarrow \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ end for until convergence to Q^*

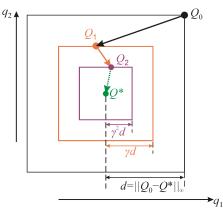
• Once
$$Q^*$$
 available: $\pi^*(x) = \arg \max_u Q^*(x, u)$

Q-iteration Convergence

• Each update is a contraction with factor γ :

$$\left\|\boldsymbol{Q}_{\ell+1} - \boldsymbol{Q}^*\right\|_{\infty} \leq \gamma \left\|\boldsymbol{Q}_{\ell} - \boldsymbol{Q}^*\right\|_{\infty}$$

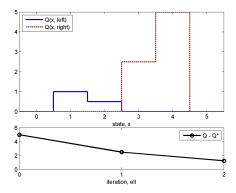
 \Rightarrow Q-iteration monotonically converges to Q^*



Cleaning Robot: Q-iteration Demo

Discount factor: $\gamma = 0.5$

Q-iteration, ell=2



Cleaning Robot: Q-iteration Progress

$Q_{\ell+1}(x,u) \leftarrow \rho(x,u) + \gamma \max_{u}$	$a_{\ell} X Q_{\ell}(f(x, u), u')$
--	------------------------------------

	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4	<i>x</i> = 5
Q_0	0;0	0;0	0;0	0;0	0;0	0;0
Q_1	0;0	1;0	0;0	0;0	0;5	0;0
Q_2	0;0	1;0	0.5;0	0;2.5	0;5	0;0
Q_3	0;0	1; 0.25	0.5; 1.25	0.25; 2.5	1.25;5	0;0
Q_4	0;0	1; 0.625	0.5; 1.25	0.625 ; 2.5	1.25;5	0;0
Q_5	0;0	1; 0.625	0.5; 1.25	0.625; 2.5	1.25;5	0;0
π^*	*		1	<u>-</u>	1	*
<i>V</i> *	0	1	1.25	2.5	5	0

Note: $Q_{\ell} = Q(x, \text{left}); Q(x, \text{right})$

Classical Q-function is a Table

• Separate Q-value for each x and u

ſ	0	1	.5	0.625	1.25	0
	0	0.625	1.25	2.5	5	0

Classical Q-function is a Table

• Separate Q-value for each x and u

ſ	0	1	.5	0.625	1.25	0
	0	0.625	1.25	2.5	5	0

• In real-life control, *X*, *U* continuous! Tabular representation impossible

Classical Q-function is a Table

• Separate Q-value for each x and u

0	1	.5	0.625	1.25	0
0	0.625	1.25	2.5	5	0

- In real-life control, *X*, *U* continuous! Tabular representation impossible
- ⇒ need to approximate the Q-function

2 Q-iteration

3 Dealing with continuous spaces Approximating the Q-function Fuzzy Q-iteration Actor-critic methods

4 More examples

Q-function Approximation

- In real-life control, X, U continuous
- \Rightarrow approximate Q-function \hat{Q} must be used
 - Policy is greedy in \widehat{Q} , computed on demand for given *x*:

$$\pi(x) = \arg\max_{u} \widehat{Q}(x, u)$$

Q-function Approximation (cont'd)

One option: use linearly parameterized approximation

$$\widehat{Q} = \sum_{i=1}^{N} \theta_i \phi_i(x, u)$$

with $\phi_i(x, u) : X \times U \mapsto \mathbb{R}$.

Q-function Approximation (cont'd)

One option: use linearly parameterized approximation

$$\widehat{Q} = \sum_{i=1}^{N} \theta_i \phi_i(x, u)$$

with $\phi_i(x, u) : X \times U \mapsto \mathbb{R}$.

 π(x) = arg max_u Q(x, u) is now a continuous optimization procedure!

Q-function Approximation (cont'd)

One option: use linearly parameterized approximation

$$\widehat{Q} = \sum_{i=1}^{N} \theta_i \phi_i(x, u)$$

with $\phi_i(x, u) : X \times U \mapsto \mathbb{R}$.

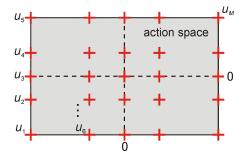
- π(x) = arg max_u Q(x, u) is now a continuous optimization procedure!
- Approximator must ensure efficient arg max solution

Approximating Over the Action Space

- Approximator must ensure efficient "arg max" solution
- ⇒ Typically: action discretization
 - Choose *M* discrete actions *u*₁,..., *u*_M ∈ *U* Solve "arg max" by explicit enumeration

Approximating Over the Action Space

- Approximator must ensure efficient "arg max" solution
- ⇒ Typically: action discretization
 - Choose *M* discrete actions *u*₁,..., *u*_M ∈ *U* Solve "arg max" by explicit enumeration
 - Example: grid discretization



Approximating Over the State Space

• Typically: basis functions

$$\phi_1,\ldots,\phi_N:X\to [0,1]$$

• Usually normalized: $\sum_i \phi_i(x) = 1$

Approximating Over the State Space

• Typically: basis functions

$$\phi_1,\ldots,\phi_N:X\to [0,1]$$

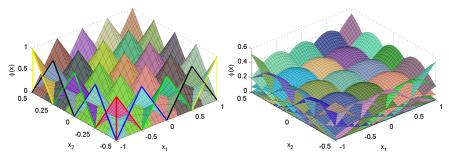
- Usually normalized: $\sum_i \phi_i(x) = 1$
- E.g., fuzzy approximation,

Approximating Over the State Space

• Typically: basis functions

$$\phi_1,\ldots,\phi_N:X\to [0,1]$$

- Usually normalized: $\sum_i \phi_i(x) = 1$
- E.g., fuzzy approximation, RBF network approximation



Q-function Approximation Using Basis Functions

Given:

- **1** *N* basis functions ϕ_1, \ldots, ϕ_N
- 2 *M* discrete actions u_1, \ldots, u_M

Store:

 N × M matrix of parameters θ (one for each pair basis function–discrete action)

Q-function Approximation Using Basis Functions

Given:

- **1** *N* basis functions ϕ_1, \ldots, ϕ_N
- 2 *M* discrete actions u_1, \ldots, u_M

Store:

 N × M matrix of parameters θ (one for each pair basis function–discrete action)

Approximate Q-function

$$\widehat{Q}^{\theta}(x, u_j) = \sum_{i=1}^{N} \phi_i(x) \theta_{i,j}$$

Q-function Approximation Using Basis Functions

Given:

- **1** *N* basis functions ϕ_1, \ldots, ϕ_N
- 2 *M* discrete actions u_1, \ldots, u_M

Store:

 N × M matrix of parameters θ (one for each pair basis function–discrete action)

Approximate Q-function

$$\widehat{Q}^{\theta}(x, u_j) = \sum_{i=1}^{N} \phi_i(x) \theta_{i,j} = [\phi_1(x) \dots \phi_N(x)] \begin{bmatrix} \theta_{1,j} \\ \vdots \\ \theta_{N,j} \end{bmatrix}$$

Policy from Approximate Q-function

• Recall optimal policy:

$$\pi^*(x) = \arg\max_{u} Q^*(x, u)$$

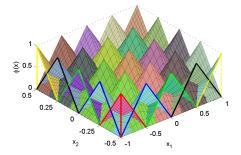
Policy with discretized actions:

$$\widehat{\pi}^*(x) = \operatorname*{arg\,max}_{u_j, \ j=1,...,M} \widehat{Q}^{\theta^*}(x, u_j)$$

(θ^* = converged parameter matrix)

Fuzzy Approximator

Basis functions: pyramidal membership functions (MFs)
 = cross-product of triangular MFs



- Each MF *i* has core (center) x_i
- $\theta_{i,j}$ can be seen as $\widehat{Q}(x_i, u_j)$

Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ end for until convergence

Fuzzy Q-iteration

repeat at each iteration ℓ for all cores x_i , discrete actions u_j do $\theta_{\ell+1,i,j} = \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}^{\theta_\ell}(f(x_i, u_j), u_{j'})$ end for until convergence

Another Example: Inverted Pendulum Swing-up

- $x = [angle \alpha, velocity \dot{\alpha}]^T$
- *u* = voltage

•
$$\rho(x, u) = -x^T \begin{bmatrix} 5 & 0 \\ 0 & 0.1 \end{bmatrix} x - u^T \mathbf{1} u$$

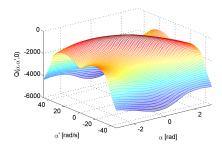
• Discount factor
$$\gamma = 0.98$$

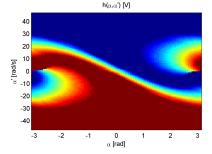
- Goal: stabilize pointing up
- Insufficient actuation \Rightarrow need to swing back & forth

Inverted Pendulum: Near-optimal Solution

Left: Q-function for u = 0

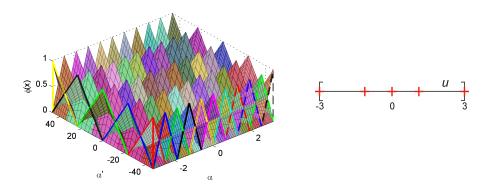
Right: policy





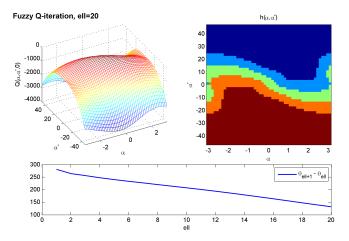
Inverted Pendulum: Fuzzy Q-iteration Demo

MFs: 41×21 equidistant grid Discretization: 5 actions, logarithmically spaced around 0



Inverted Pendulum: Fuzzy Q-iteration Demo

Demo

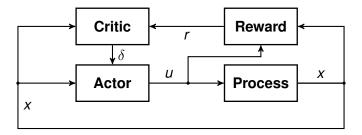


2 Q-iteration

3 Dealing with continuous spaces
 Approximating the Q-function
 Fuzzy Q-iteration
 Actor-critic methods

4 More examples

Ingredients



- Explicitly separated value function and policy
- Actor = control policy $\pi(x)$
- **Critic** = state value function V(x)

Continuous Action/State Space

To deal with continuity:

- Actor parameterized in φ : $\hat{\pi}(x, \varphi)$
- Critic parameterized in θ : $\hat{V}(x, \theta)$

Parameters φ and θ have finite size, but approximate functions on continuous (infinitely large) spaces!

Algorithm

On-policy: find Q^{π} , improve π , repeat

1 Take Bellman equation for V^{π} , at some x_k :

$$V^{\pi}(\boldsymbol{x}) = \rho(\boldsymbol{x}, \pi(\boldsymbol{x})) + \gamma V^{\pi}(f(\boldsymbol{x}, \pi(\boldsymbol{x})))$$

Algorithm

On-policy: find Q^{π} , improve π , repeat

1 Take Bellman equation for V^{π} , at some x_k :

$$V^{\pi}(\boldsymbol{x}) = \rho(\boldsymbol{x}, \pi(\boldsymbol{x})) + \gamma V^{\pi}(f(\boldsymbol{x}, \pi(\boldsymbol{x})))$$

2 Take temporal difference Δ :

$$\Delta = \rho(\mathbf{x}, \pi(\mathbf{x})) + \gamma V^{\pi}(f(\mathbf{x}, \pi(\mathbf{x}))) - V^{\pi}(\mathbf{x})$$

Algorithm

On-policy: find Q^{π} , improve π , repeat

1 Take Bellman equation for V^{π} , at some x_k :

$$V^{\pi}(\boldsymbol{x}) = \rho(\boldsymbol{x}, \pi(\boldsymbol{x})) + \gamma V^{\pi}(f(\boldsymbol{x}, \pi(\boldsymbol{x})))$$

2 Take temporal difference Δ :

$$\Delta = \rho(\mathbf{x}, \pi(\mathbf{x})) + \gamma V^{\pi}(f(\mathbf{x}, \pi(\mathbf{x}))) - V^{\pi}(\mathbf{x})$$

Use sample (x_k, u_k, x_{k+1}, r_{k+1}) at each step k and parameterized V:

$$\Delta_k = \mathbf{r}_{k+1} + \gamma \, \hat{\mathbf{V}}^{\pi}(\mathbf{x}_{k+1}, \theta_k) - \, \hat{\mathbf{V}}^{\pi}(\mathbf{x}_k, \theta_k)$$

Note: $u_k = \hat{\pi}(x_k, \varphi_k) + \tilde{u}_k$, $\hat{\pi} = \text{actor}$, $\tilde{u}_k = \text{exploration}$

4 Use Δ_k for critic update:

$$\theta_{k+1} = \theta_k + \alpha_c \Delta_k \left. \frac{\partial \hat{V}(x,\theta)}{\partial \theta} \right|_{\substack{x = x_k \\ \theta = \theta_k}}$$

 $\alpha_{c} > 0$: learning rate of critic

4 Use Δ_k for critic update:

$$\theta_{k+1} = \theta_k + \alpha_c \Delta_k \left. \frac{\partial \hat{V}(x,\theta)}{\partial \theta} \right|_{\substack{x = x_k \\ \theta = \theta_k}}$$

 $\alpha_{c} > 0$: learning rate of critic

- $\Delta_k > 0$, i.e., $r_{k+1} + \gamma \hat{V}^{\pi}(x_{k+1}, \theta_k) > \hat{V}^{\pi}(x_k, \theta_k)$ \Rightarrow old estimate too low, increase \hat{V} .
- Δ_k < 0, i.e., r_{k+1} + γ Ŷ^π(x_{k+1}, θ_k) < Ŷ^π(x_k, θ_k) ⇒ old estimate too high, decrease Ŷ.

Recall: $u_k = \hat{\pi}(x_k, \varphi_k) + \tilde{u}_k, \hat{\pi} = \text{actor}, \tilde{u}_k = \text{exploration}$ **5** Use Δ_k and exploration term \tilde{u}_k for actor update:

$$\varphi_{k+1} = \varphi_k + \alpha_a \Delta_k \tilde{u}_k \left. \frac{\partial \hat{\pi}(x,\varphi)}{\partial \varphi} \right|_{\substack{x=x_k\\\varphi=\varphi_k}}$$

 $\alpha_a \in (0, 1]$: learning rate of actor

Recall: $u_k = \hat{\pi}(x_k, \varphi_k) + \tilde{u}_k, \hat{\pi} = \text{actor}, \tilde{u}_k = \text{exploration}$ **5** Use Δ_k and exploration term \tilde{u}_k for actor update:

$$\varphi_{k+1} = \varphi_k + \alpha_a \Delta_k \tilde{u}_k \left. \frac{\partial \hat{\pi}(\mathbf{X}, \varphi)}{\partial \varphi} \right|_{\substack{\mathbf{X} = \mathbf{X}_k \\ \varphi = \varphi_k}}$$

 $\alpha_a \in (0, 1]$: learning rate of actor

• Product $\Delta_k \tilde{u}_k$ determines sign in update

Recall: $u_k = \hat{\pi}(x_k, \varphi_k) + \tilde{u}_k, \hat{\pi} = \text{actor}, \tilde{u}_k = \text{exploration}$ **5** Use Δ_k and exploration term \tilde{u}_k for actor update:

$$\varphi_{k+1} = \varphi_k + \alpha_a \Delta_k \tilde{u}_k \left. \frac{\partial \hat{\pi}(\mathbf{X}, \varphi)}{\partial \varphi} \right|_{\substack{\mathbf{X} = \mathbf{X}_k \\ \varphi = \varphi_k}}$$

 $\alpha_a \in (0, 1]$: learning rate of actor

- Product $\Delta_k \tilde{u}_k$ determines sign in update
- $\Delta_k > 0$, i.e., $r_{k+1} + \gamma \hat{V}^{\pi}(x_{k+1}, \theta_k) > \hat{V}^{\pi}(x_k, \theta_k)$ $\Rightarrow \tilde{u}_k$ had positive effect. Move in direction of u_k .

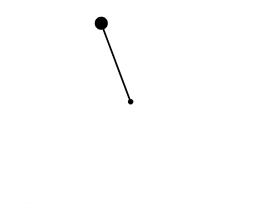
•
$$\Delta_k < 0$$
, i.e., $r_{k+1} + \gamma \hat{V}^{\pi}(x_{k+1}, \theta_k) < \hat{V}^{\pi}(x_k, \theta_k)$
 $\Rightarrow \tilde{u}_k$ had negative effect. Move away from u_k .

Complete Actor-Critic Algorithm

Actor-critic for every trial do initialize x_0 , choose initial action $u_0 = \tilde{u}_0$ **repeat** for each step k apply u_k , measure x_{k+1} , receive r_{k+1} choose next action $u_{k+1} = \hat{\pi}(x_{k+1}, \varphi_k) + \tilde{u}_{k+1}$ $\Delta_k = r_{k+1} + \hat{V}(x_{k+1}, \theta_k) - \hat{V}(x_k, \theta_k)$ $\theta_{k+1} = \theta_k + \alpha_c \Delta_k \left. \frac{\partial \hat{V}(x,\theta)}{\partial \theta} \right|_{\substack{x = x_k \\ \theta = \theta_k}}$ $\varphi_{k+1} = \varphi_k + \alpha_a \Delta_k \tilde{u}_k \left. \frac{\partial \hat{\pi}(\mathbf{x}, \varphi)}{\partial \varphi} \right|_{\mathbf{x} = \mathbf{x}_k}$ until terminal state end for

Pendulum Swing-up Learning

Solution to pendulum swing-up problem.

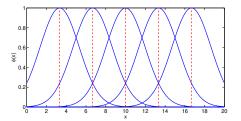


Radial Basis Functions

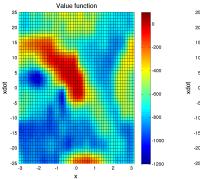
$$\widehat{f}(x) = \theta^{\mathrm{T}} \widetilde{\phi}(x)$$

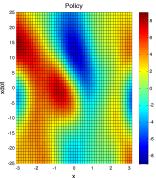
where $\tilde{\phi}(x)$ is a column vector with the value of normalized RBFs:

$$\widetilde{\phi}_i(\mathbf{x}) = rac{\phi_i(\mathbf{x})}{\sum_j \phi_j(\mathbf{x})}$$
 with $\phi_i(\mathbf{x}) = e^{-rac{1}{2}(\mathbf{x}-\mathbf{c}_i)^{\mathrm{T}}B^{-1}(\mathbf{x}-\mathbf{c}_i)}$



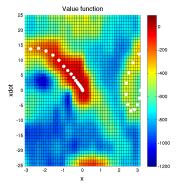
Evolution of a Policy

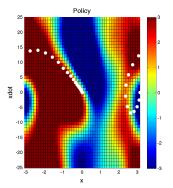




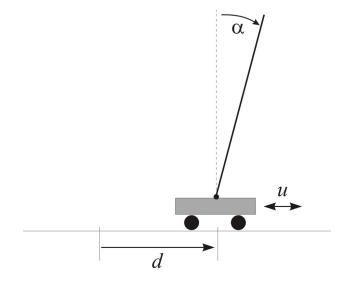
Policy After Saturation

Trajectory of pendulum.

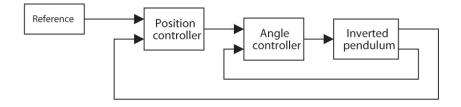




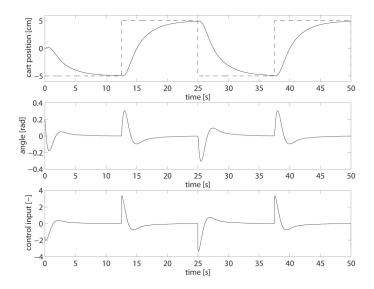
Example: Inverted Pendulum



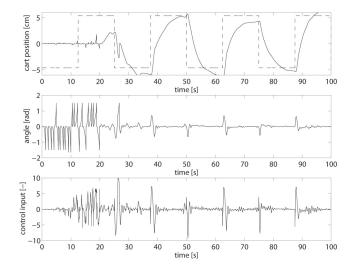
Cascade Control Scheme



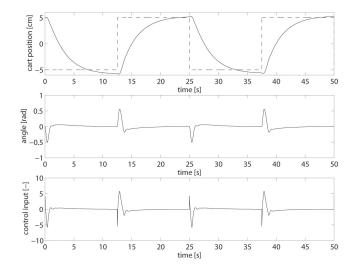
PD Control



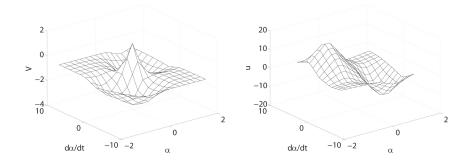
Reinforcement Learning



Reinforcement Learning: Final Performance



Critic and Actor Surfaces



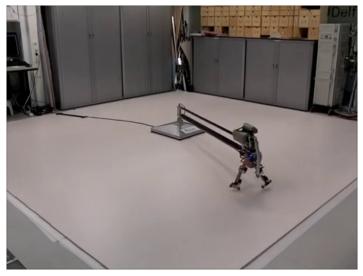
critic

2 Q-iteration

3 Dealing with continuous spaces

4 More examples

Example: Walking Robot Leo (Erik Schuitema)



https://youtu.be/SBf5-eF-EIw

Example: Autonomous Helicopter

https://youtu.be/VCdxqnOfcnE

Mixed Model-Based and Model-Free: Dyna

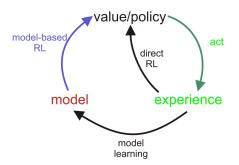
• Experience is usually costly to obtain.

Mixed Model-Based and Model-Free: Dyna

- Experience is usually costly to obtain.
- Sometimes, a priori information on the environment is available (though perhaps uncertain).

Mixed Model-Based and Model-Free: Dyna

- Experience is usually costly to obtain.
- Sometimes, a priori information on the environment is available (though perhaps uncertain).
- Use experience, but also learn from the model.



Example: Cart-Pole Swing-up (Marc P. Deisenroth)

https://youtu.be/XiigTGKZfks

By path to optimal solution

By level of interaction with the process

By model knowledge

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

1 Actor-critic – learn value function and policy

By path to optimal solution

By level of interaction with the process

By model knowledge

By what is learned

- Actor-critic learn value function and policy
- 2 Critic-only learn value function

By path to optimal solution

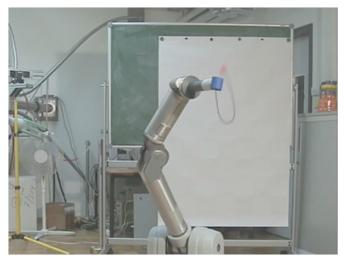
By level of interaction with the process

By model knowledge

By what is learned

- Actor-critic learn value function and policy
- 2 Critic-only learn value function
- 3 Actor-only learn policy

Example: Ball-in-a-Cup



https://youtu.be/qtqubguikMk

Summary

Reinforcement learning =

optimal, adaptive, model-free control

- Real-life RL: continuous states and actions

 approximation required
- Effective algorithms for approximate RL, able to solve complex tasks from scratch

More Videos

- https://youtu.be/SH3bADiB7uQ
- https://youtu.be/2NLN-6fMWXI
- https://youtu.be/C63avx1YCF4
- https://youtu.be/W_gxLKSsSIE
- https://youtu.be/6ovzs1KSkJE
- https://youtu.be/8Thdf_7j4dI
- https://youtu.be/nM1HTp_P31Y
- http://www.cs.utexas.edu/~AustinVilla/?p= research/learned_walk

