Conventional Control A Refresher

Process to Be Controlled

- y : variable to be controlled (output)
- *u* : manipulated variable (control input)
- d: disturbance (input that cannot be influenced)

dynamic system

Examples of "Processes"

• technical (man-made) system

- technical (man-made) system
- natural environment

- technical (man-made) system
- natural environment
- organization (company, stock exchange)

- technical (man-made) system
- natural environment
- organization (company, stock exchange)
- human body

- technical (man-made) system
- natural environment
- organization (company, stock exchange)
- human body

• . . .

- physical (mechanistic) modeling
 - 1. first principles \rightarrow differential equations (linear or nonlinear)
 - 2. linearization around an operating point
- system identification
 - 1. measure input–output data
 - 2. postulate model structure (linear-nonlinear)
 - 3. estimate model parameters from data (least squares)

Modeling of Dynamic Systems

x(t) ... state of the system

summarizes all history such that if we know x(t) we can predict its development in time, $\dot{x}(t)$, for any input u(t)

linear state-space model:

 $\dot{x}(t) = Ax(t) + Bu(t)$

Modeling of Dynamic Systems

x(t) ... state of the system

summarizes all history such that if we know x(t) we can predict its development in time, $\dot{x}(t)$, for any input u(t)

linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Continuous-Time State-Space Model

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Discrete-Time State-Space Model

$$x(k+1) = \Phi x(k) + \Gamma u(k)$$
$$y(k) = Cx(k) + Du(k)$$

Discrete-Time State-Space Model

$$\begin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) \\ y(k) &= C x(k) + D u(k) \end{aligned}$$

Continuous time:

$$y^{(n)}(t) = f\left(y^{(n-1)}(t), \dots, y^{(1)}(t), y(t), u^{(n-1)}(t), \dots, u^{(1)}(t), u(t)\right)$$

Discrete time:

$$y(k+1) = f(y(k), y(k-1), \dots, y(k-n_y+1), \dots, u(k), u(k), u(k-1), \dots, u(k-n_u+1))$$

 $u(1), u(2), \dots, u(N)$ $y(1), y(2), \dots, y(N)$

Given data set $\{(u(k), y(k)) | k = 1, 2, ..., N\}$:

1. Postulate model structure, e.g.:

$$\hat{y}(k+1) = ay(k) + bu(k)$$

Given data set $\{(u(k), y(k)) | k = 1, 2, ..., N\}$:

1. Postulate model structure, e.g.:

$$\hat{y}(k+1) = ay(k) + bu(k)$$

2. Form regression equations:

$$\begin{array}{l} y(2) \,=\, ay(1) + bu(1) \\ y(3) \,=\, ay(2) + bu(2) \\ \\ \mathbf{i} \\ y(N) \,=\, ay(N\!-\!1) + bu(N\!-\!1) \end{array}$$

in a matrix form: $\mathbf{y} = \boldsymbol{\varphi}[a \ b]^T$

$$\mathbf{y} = \boldsymbol{\varphi} [\boldsymbol{a} \ \boldsymbol{b}]^T$$

$$\mathbf{y} = \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$$
$$\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$$

$$\mathbf{y} = \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$$
$$\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$$
$$[a & b]^T = [\boldsymbol{\varphi}^T \boldsymbol{\varphi}]^{-1} \boldsymbol{\varphi}^T \mathbf{y}$$

 $\mathbf{y} = \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$ $\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi} \begin{bmatrix} a & b \end{bmatrix}^T$ $\begin{bmatrix} a & b \end{bmatrix}^T = \begin{bmatrix} \boldsymbol{\varphi}^T \boldsymbol{\varphi} \end{bmatrix}^{-1} \boldsymbol{\varphi}^T \mathbf{y}$

Numerically better methods are available (in MATLAB [a b] = $\varphi \setminus y$).

Design Procedure

- Criterion (goal)
 - -stabilize an unstable process
 - suppress influence of disturbances
 - -improve performance (e.g., speed of response)
- Structure of the controller
- Parameters of the controller (tuning)

Taxonomy of Controllers

- Presence of feedback: feedforward, feedback, 2-DOF
- Type of feedback: output, state
- Presence of dynamics: static, dynamic
- Dependence on time: fixed, adaptive
- Use of models: model-free, model-based

Feedforward Control

Controller:

- (dynamic) inverse of process model
- cannot stabilize unstable processes
- \bullet cannot suppress the effect of d
- sensitive to uncertainty in the model

Feedback Control

Controller:

- dynamic or static (\neq inverse of process)
- can stabilize unstable processes (destabilize stable ones!)
- \bullet can suppress the effect of d

Proportional Control

Controller:

• static gain P: u(t) = Pe(t)

PID Control

Controller:

- dynamic: $u(t) = Pe(t) + I \int_0^t e(\tau) d\tau + D \frac{de(t)}{dt}$
- *P*, *I* and *D* are the proportional, integral and derivative gains, respectively

PID Control: Internal View

$$u(t) = Pe(t) + I \int_0^t e(\tau) d\tau + D \frac{de(t)}{dt}$$

PID Control: Internal View

 $u(t) = Pe(t) + I \int_0^t e(\tau) d\tau + D \frac{de(t)}{dt}$

State Feedback

Controller:

- static: u(t) = Kx(t)
- K can be computed such that (A + BK) is stable
- $K_{\rm ff}$ takes care of the (unity) gain from r to y

Model-Based Control

- state observer
- model-based predictive control
- adaptive control

Motivation for Intelligent Control

Pro's and Con's of Conventional Control

- + systematic approach, mathematically elegant
- + theoretical guarantees of stability and robustness

- time-consuming, conceptually difficult
- control engineering expertise necessary
- often insufficient for nonlinear systems

Additional Aspects

- control is a multi-disciplinary subject
- human factor may be very important
 - $-\operatorname{pilot}$
 - -plant operator
 - -user interface (e.g., consumer products)

• quest for higher machine itelligence

When Conventional Design Fails

- no model of the process available
 - \rightarrow mathematical synthesis and analysis impossible
 - \rightarrow experimental tuning may be difficult

- process (highly) nonlinear
 - \rightarrow linear controller cannot stabilize
 - \rightarrow performance limits

Example: Stability Problems

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

Example: Stability Problems

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

Conclusions:

- stability and performance depend on process output
- re-tuning the controller does not help
- nonlinear control is the only solution

Intelligent Control

techniques motivated by human intelligence

- fuzzy systems (represent human knowledge, reasoning)
- artificial neural networks (adaptation, learning)
- genetic algorithms (optimization).

 \Rightarrow computational intelligence, soft computing

Knowledge Representation by If-Then Rules

If x is *Medium* then y is *Large*

Artificial Neural Networks

Function approximation by imitating biological neural networks.

Learning, adaptation, optimization.

Genetic Algorithms

Optimization by imitating natural evolution.

Intelligent Control

• Fuzzy knowledge-based control

• Fuzzy data analysis, modeling, identification

• Learning and adaptive control (neural networks)

• Reinforcement learning

Direct Fuzzy Control

Direct Fuzzy Control

Direct Fuzzy Control

Fuzzy Sets and Fuzzy Logic

Relatively new methods for representing uncertainty and reasoning under uncertainty.

Types of uncertainty:

• chance, randomness (stochastic)

• imprecision, vagueness, ambiguity (non-stochastic)

Vagueness in If–Then Rules

If temperature in the burning zone *is OK*, and oxygen percentage in the exhaust gases *is Low*, and temperature at the back-end *is High*,

then reduce fuel *Slightly* and reduce fan speed *Moderately*.

Fuzzy Sets and Fuzzy Logic

Proposed in 1965 by L.A. Zadeh (Fuzzy Sets, Information Control, vol. 8, pp. 338–353)

- generalization of ordinary set theory
- '70 first applications, fuzzy control (Mamdani)
- '80 industrial applications, train operation, pattern recognition
- '90 consumer products, cars, special HW, SW.

The term "fuzzy logic" often also denotes fuzzy sets theory and its applications (e.g., fuzzy logic control).

Applications of Fuzzy Sets

