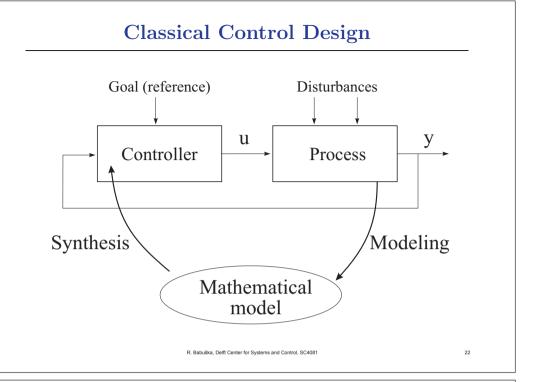


How to Obtain Models?

- physical (mechanistic) modeling
- 1. first principles \rightarrow differential equations (linear or nonlinear)
- 2. linearization around an operating point

• system identification

- 1. measure input-output data
- 2. postulate model structure (linear-nonlinear)
- 3. estimate model parameters from data (least squares)



Modeling of Dynamic Systems

x(t) ... state of the system

summarizes all history such that if we know x(t) we can predict its development in time, $\dot{x}(t)$, for any input u(t)

linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

R. Babuška, Delft Center for Systems and Control, SC4081

Modeling of Dynamic Systems

x(t) ... state of the system

summarizes all history such that if we know x(t) we can predict its development in time, $\dot{x}(t)$, for any input u(t)

linear state-space model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Discrete-Time State-Space Model

R. Babuška, Delft Center for Systems and Control, SC4081

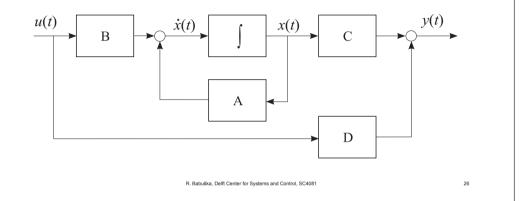
25

27

$$\begin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) \\ y(k) &= C x(k) + D u(k) \end{aligned}$$

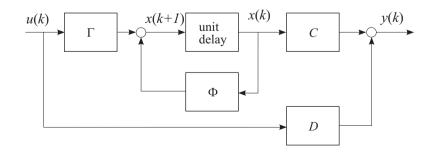
Continuous-Time State-Space Model

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

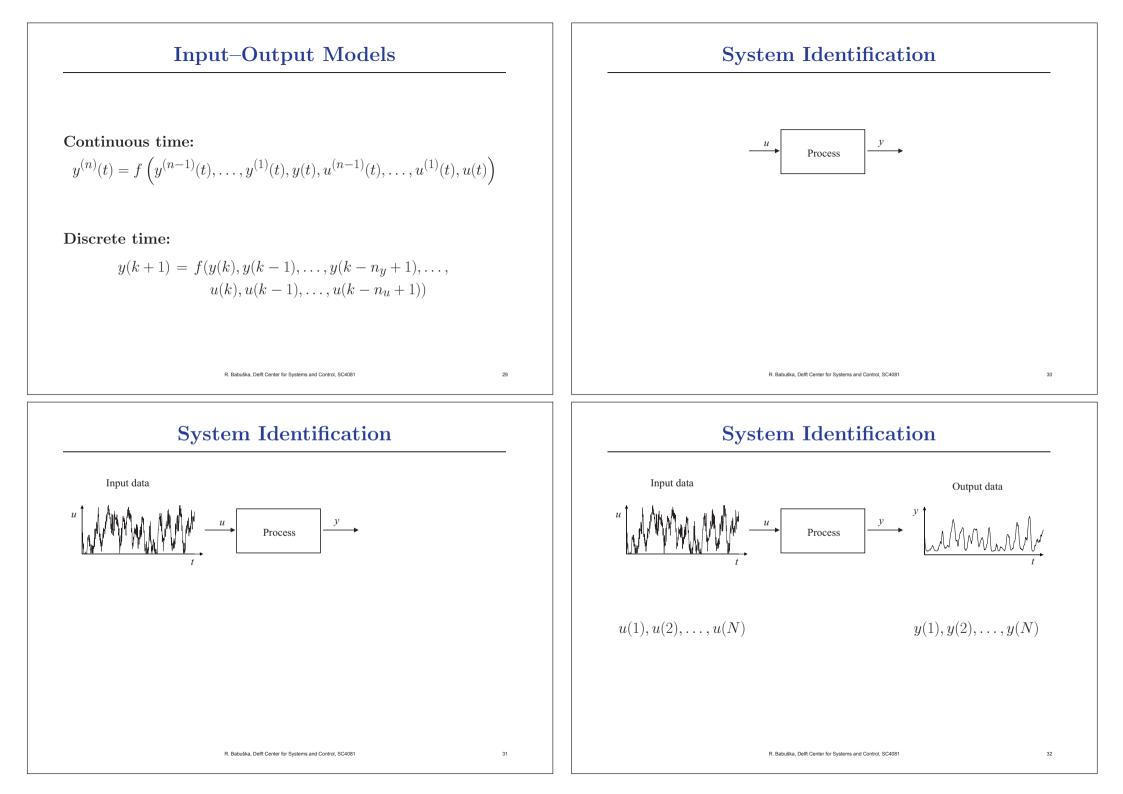


Discrete-Time State-Space Model

$$\begin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) \\ y(k) &= C x(k) + D u(k) \end{aligned}$$



R. Babuška, Delft Center for Systems and Control, SC4081



System Identification

Given data set $\{(u(k), y(k)) | k = 1, 2, ..., N\}$:

1. Postulate model structure, e.g.:

$$\hat{y}(k+1) = ay(k) + bu(k)$$

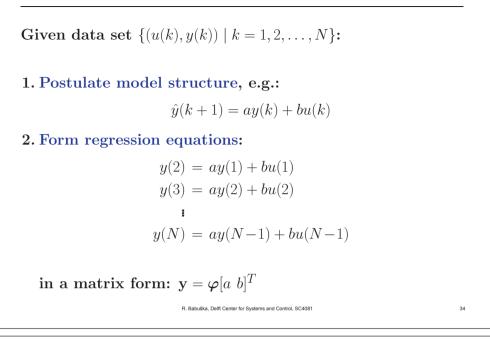
R. Babuška, Delft Center for Systems and Control, SC4081

System Identification

3. Solve the equations for $[a \ b]$ (least-squares solution):

$$\mathbf{y} = \boldsymbol{\varphi}[a \ b]^T$$

System Identification



System Identification

3. Solve the equations for $[a \ b]$ (least-squares solution):

 $\mathbf{y} = \boldsymbol{\varphi} [a \ b]^T$ $\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi} [a \ b]^T$

35

System Identification

3. Solve the equations for $[a \ b]$ (least-squares solution):

 $\mathbf{y} = \boldsymbol{\varphi}[a \ b]^T$ $\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi}[a \ b]^T$ $[a \ b]^T = [\boldsymbol{\varphi}^T \boldsymbol{\varphi}]^{-1} \boldsymbol{\varphi}^T \mathbf{y}$

R Babuška Delft Center for Systems and Control SC4081

System Identification

3. Solve the equations for $[a \ b]$ (least-squares solution):

 $\mathbf{y} = \boldsymbol{\varphi}[a \ b]^T$ $\boldsymbol{\varphi}^T \mathbf{y} = \boldsymbol{\varphi}^T \boldsymbol{\varphi}[a \ b]^T$ $[a \ b]^T = [\boldsymbol{\varphi}^T \boldsymbol{\varphi}]^{-1} \boldsymbol{\varphi}^T \mathbf{y}$

Numerically better methods are available (in MATLAB [a b] = $\varphi \setminus y$).

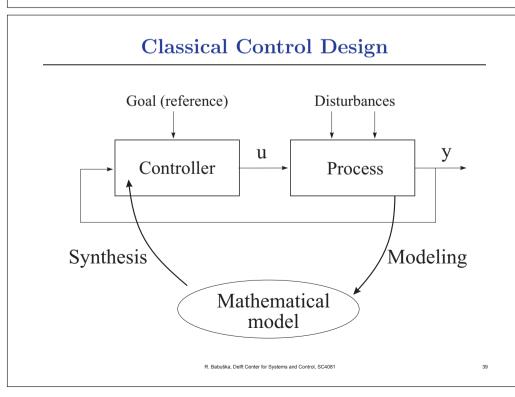
R. Babuška, Delft Center for Systems and Control, SC4081

Design Procedure

• Criterion (goal)

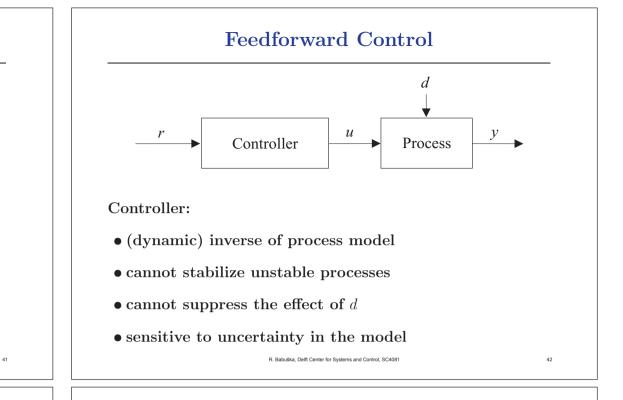
37

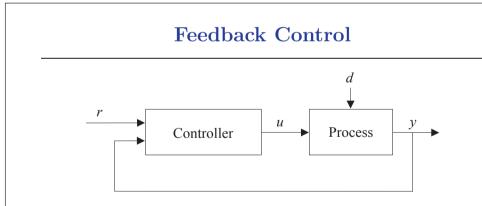
- -stabilize an unstable process
- suppress influence of disturbances
- improve performance (e.g., speed of response)
- Structure of the controller
- Parameters of the controller (tuning)



Taxonomy of Controllers

- Presence of feedback: feedforward, feedback, 2-DOF
- Type of feedback: output, state
- Presence of dynamics: static, dynamic
- Dependence on time: fixed, adaptive
- Use of models: model-free, model-based





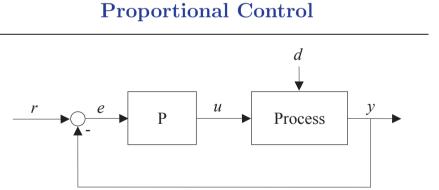
R Babuška Delft Center for Systems and Control SC4081

Controller:

- dynamic or static (\neq inverse of process)
- can stabilize unstable processes (destabilize stable ones!)

R. Babuška, Delft Center for Systems and Control, SC4081

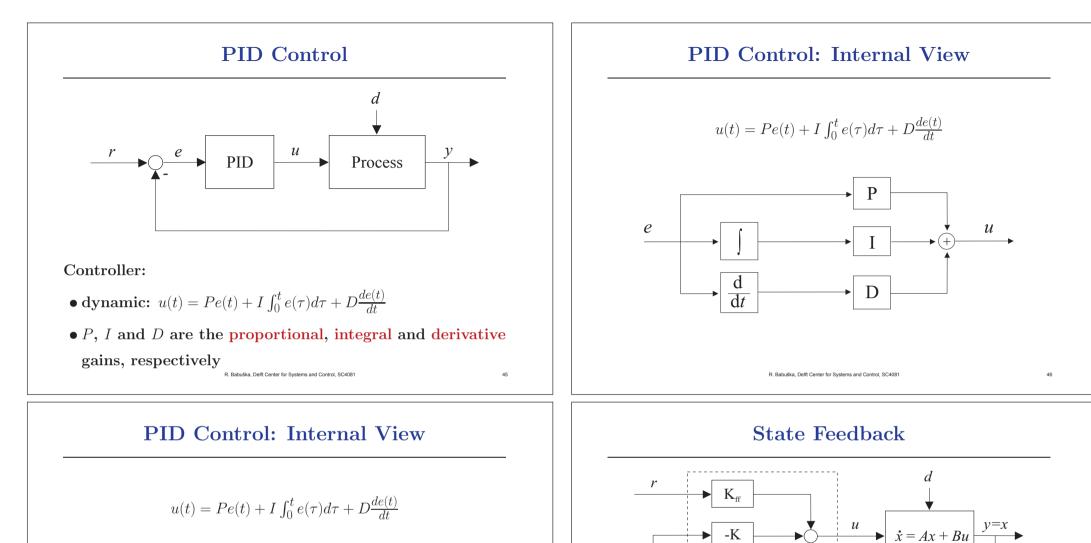
 \bullet can suppress the effect of d



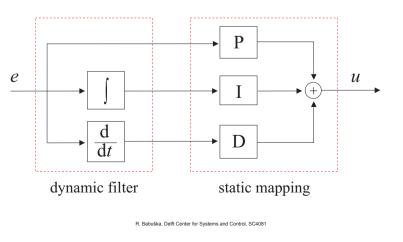
Controller:

43

• static gain P: u(t) = Pe(t)



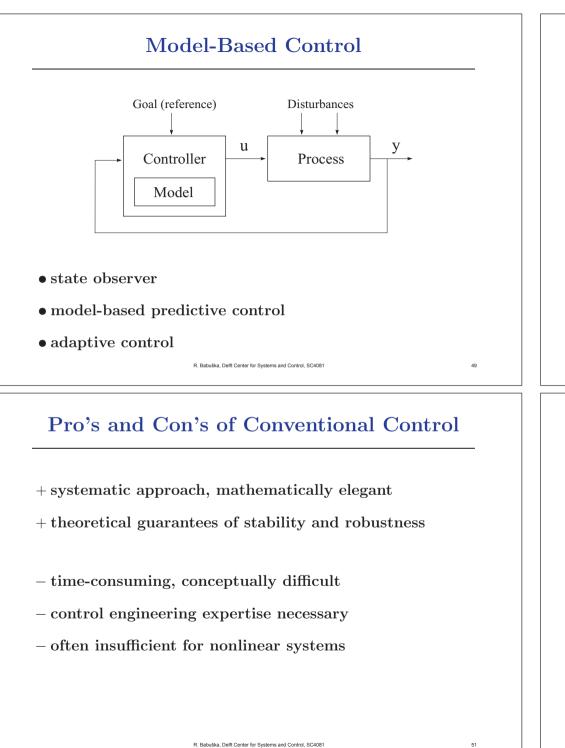
47



Controller:

- static: u(t) = Kx(t)
- \bullet K can be computed such that (A+BK) is stable
- $K_{\rm ff}$ takes care of the (unity) gain from r to y

R. Babuška, Delft Center for Systems and Control, SC4081



Motivation for Intelligent Control

Additional Aspects

R. Babuška, Delft Center for Systems and Control, SC4081

• control is a multi-disciplinary subject

- human factor may be very important
 - pilot
 - plant operator
 - -user interface (e.g., consumer products)
- quest for higher machine itelligence

When Conventional Design Fails

- no model of the process available
 - \rightarrow mathematical synthesis and analysis impossible
 - \rightarrow experimental tuning may be difficult
- process (highly) nonlinear
 - \rightarrow linear controller cannot stabilize
 - \rightarrow performance limits

Example: Stability Problems

R Babuška Delft Center for Systems and Control SC4081

53

55

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

Conclusions:

• stability and performance depend on process output

R. Babuška, Delft Center for Systems and Control, SC4087

- re-tuning the controller does not help
- nonlinear control is the only solution

Example: Stability Problems

$$\frac{d^3y(t)}{dt^3} + \frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} = y^2(t)u(t)$$

Use Simulink to simulate a proportional controller (nlpid.m)

R. Babuška, Delft Center for Systems and Control, SC408

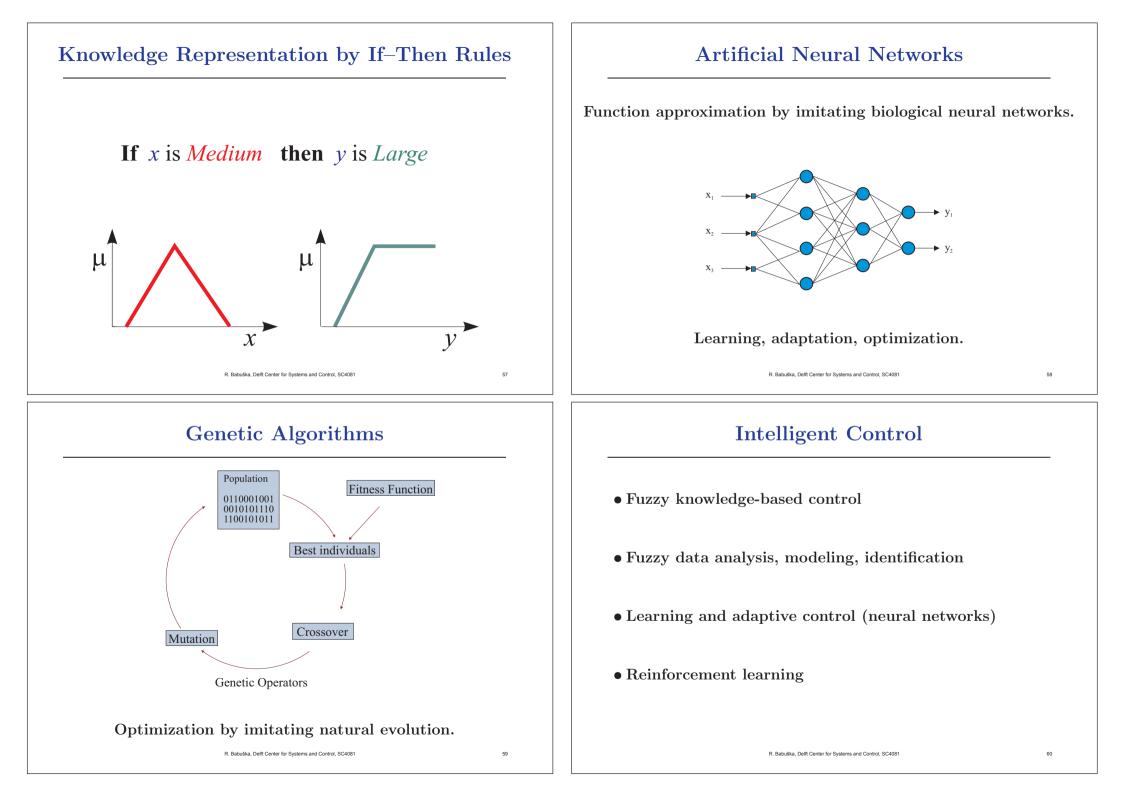
Intelligent Control

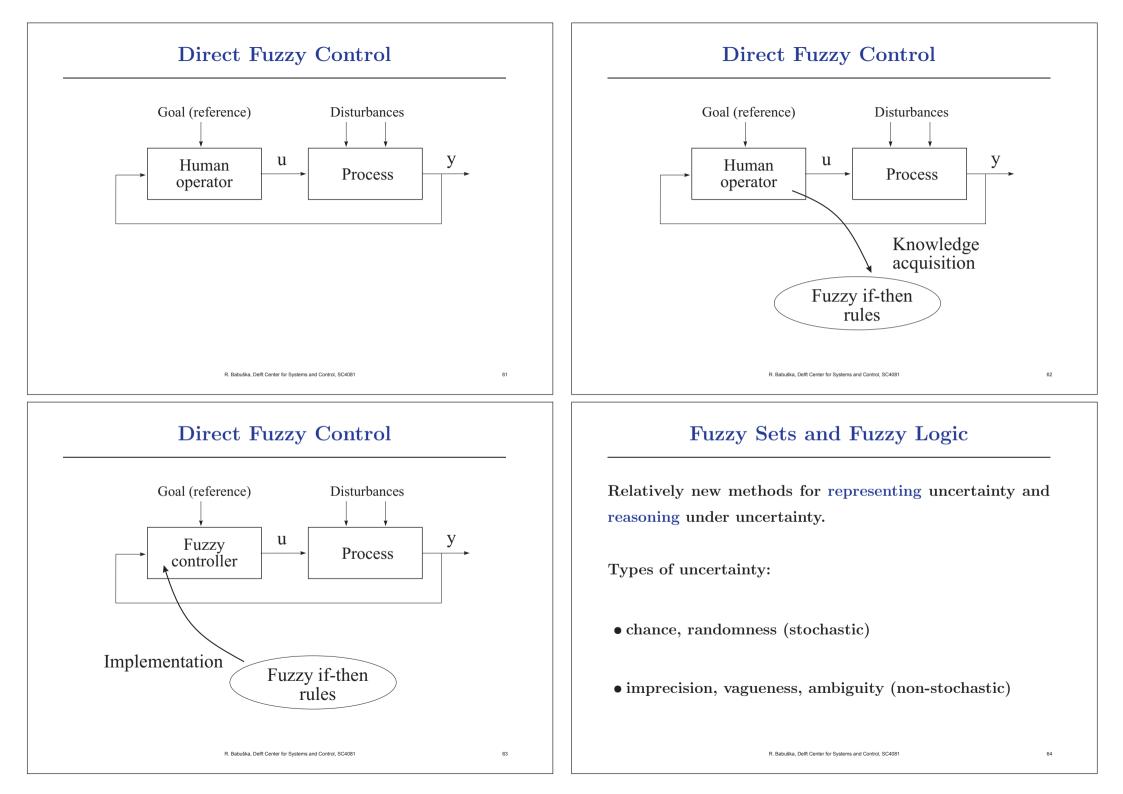
techniques motivated by human intelligence

- fuzzy systems (represent human knowledge, reasoning)
- artificial neural networks (adaptation, learning)
- genetic algorithms (optimization).

 \Rightarrow computational intelligence, soft computing

R. Babuška, Delft Center for Systems and Control, SC4081





Vagueness in If–Then Rules

If temperature in the burning zone *is OK*, and oxygen percentage in the exhaust gases *is Low*, and temperature at the back-end *is High*,

then reduce fuel *Slightly* and reduce fan speed *Moderately*.

R Babuška Delft Center for Systems and Control SC4081

Fuzzy Sets and Fuzzy Logic

Proposed in 1965 by L.A. Zadeh (Fuzzy Sets, Information Control, vol. 8, pp. 338–353)

65

- generalization of ordinary set theory
- '70 first applications, fuzzy control (Mamdani)
- '80 industrial applications, train operation, pattern recognition
- '90 consumer products, cars, special HW, SW.

The term "fuzzy logic" often also denotes fuzzy sets theory and its applications (e.g., fuzzy logic control).

