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Fuzzy Se ts *  - 

L. A. ZADEH 

Department of Electrical Engineering and Electronics l~esearch Laboratory, 
University of California, Berkeley, California 

A fuzzy set is a class of objects with a continuum of grades of 
membership. Such a set is characterized by a membership (charac- 
teristic) function which assigns to each object a grade of member- 
ship ranging between zero and one. The notions of inclusion, union, 
intersection, complement, relation, convexity, etc., are extended 
to such sets, and various properties of these notions in the context 
of fuzzy sets are established. In particular, a separation theorem for 
convex fuzzy sets is proved without requiring that the fuzzy sets be 
disjoint. 

I. INTRODUCTION 

More often than not, the classes of objects encountered in the real 
physical world do not have precisely defined criteria of membership. 
For example, the class of animals clearly includes dogs, horses, birds, 
etc. as its members, and clearly excludes such objects as rocks, fluids, 
plants, etc. However, such objects as starfish, bacteria, etc. have an 
ambiguous status with respect to the class of animals. The same kind of 
ambiguity arises in the case of a nmnber such as 10 in relation to the 
"class" of all real numbers which are much greater than 1. 

Clearly, the "class of all real numbers which are much greater than 
1," or "the class of beautiful women," or "the class of tall men," do not 
constitute classes or sets in the usual mathematical sense of these terms. 
Yet, the fact remains that such imprecisely defined "classes" play an 
important  role in human thinking, particularly in the domains of pattern 
recognition, communication of information, and abstraction. 

The purpose of this note is to explore in a preliminary way some of the 
basic properties and implications of a concept which may be of use in 

* This work was supported in part by the Joint Services Electronics Program 
(U.S. Army, U.S. Navy and U.S. Air Force) under Grant No. AF-AFOSR-139264 
and by the National Science Foundation under Grant GP-2413. 
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dealing with "classes" of the type cited above. The concept in question 
is that  of a fuzzy set, ~ tha~ is, a "class" with a continuum of grades of 
membership. As will be seen in the sequel, the notion of a fuzzy set 
provides a convenient point of departure for the construction of a eon- 
eeptuM framework which parallels in many respects the framework 
used in the case of ordinary sets, but is more general than the latter and, 
potentially, may prove to have a much wider scope of applicability, 
particularly in the fields of pattern classification and information proc- 
essing. Essentially, such a framework provides a natural way of dealing 
with problems in which the source of imprecision is the absence of sharply 
defined criteria of class membership rather than the presence of random 
variables. 

We begin the discussion of fuzzy sets with several basic definitions. 

II. DEFINITIONS 

Let X be a space of points (objects), with a generic element of X de- 
noted by x. Thus, X = {z}. 

A fuzzy set (class) A in X is characterized by a membership (charac- 
teristic) function fA(x) which associates with each point 2 in X a real 
number in the interval [0, 1], ~ with the value of fA(x) at x representing 
the "grade of membership" of x in A. Thus, the nearer the value of 
fA(x) to unity, the higher the grade of membership of x in A. When A 
is a set in the ordinary sense of the term, its membership function can 
take oil only two values 0 and 1, with fA(x) = 1 or 0 according as x 
does or does not belong to A. Thus, in this case fA(x) reduces to the 
familiar eharae~-eristic function of a set A. (When there is a need to 
differentiate between such sets and fuzzy sets, the sets with two-valued 
characteristic functions will be referred to as ordinary sets or simply sets. ) 

Example. Let X be the real line R ~ and let A be a fuzzy set of numbers 

An ~ppiieation of this concept to the formulation of a class of problems in 
pa~tern classification is described in RAND Memorandum RM-4307-PR, "Ab- 
straction and Pattern Classification," by R. Bellman, R. Kalaba and L. A. Zadeh, 
October, 1964. 

2 More generally, the domain of definition of fA (x) may be restricted to a sub- 
set of X. 

a In a more general setting, the range of the membership function can be taken 
to be a suitable partially ordered set P. For our purposes, it is convenient and 
sufficient to restrict the range of f to the unit interval. If the values of f~ (x) are 
interpreted as truth values, the latter ease corresponds to a multivaiued Iogic 
with a continuum of truth values in the interval [0, 1]. 
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which are much greater than 1. Then, one can give a precise, albeit 
subjective, characterization of A by specifying fA(x) as a function on R 1. 
Representative values of such a function might be: f~ (0) = O; fA (1) = O; 
fA(5) = 0.01;f~(10) = 0.2;fx(100)  = 0.95;fA(500) = 1. 

I t  should be noted that,  although the membership function of a fuzzy 
set has some resemblance to a probability function when X is a countable 
set (or a probability density function when X is a continuum), there are 
essential differences between these concepts which will become clearer 
in the sequel once the rules of combination of membership functions and 
their basic properties have been established. In fact, the notion of a 
fuzzy set is completely nonstatistical in nature. 

We begin with several definitions involving fuzzy sets which are 
obvious extensions of the corresponding definitions for ordinary sets. 

A fuzzy set is empty if and only if its membership function is identically 
zero on X. 

Two fuzzy sets A and B are equal, written as A = B, if and only if 
f~(x) = f~(x) for all x in X. (In the sequel, instead of writingfA(x) = 
f~(x) for all x in X, we shall write more simply fa = fB .) 

The complement of a fuzzy set A is denoted by A'  and is defined by 

fA, = 1 - f x .  (1) 

As in the ease of ordinary sets, the notion of containment plays a 
central role in the ease of fuzzy sets. This notion and the related notions 
of union and intersection are defined as follows. 

Containment. A is contained in B (or, equivalently, A is a subset of B, 
or A is smaller than or equal to B) if and only if f~ <_- f~ .  In symbols 

A c Bc=~fA 6 f ~ .  (2) 

Union. The union of two fuzzy sets A and B with respective member- 
ship functions fA(x) and fB(x) is a fuzzy set C, written as C = A U B, 
whose membership function is related to those of A and B by 

fc(x)  = Max irA(x), f~(x)], x ~ X (3) 

or, in abbreviated form 

fc = f~ v f z .  (4) 

Note that  U has the associative property, that  is, A O (B U C) - 
(A U B )  UC.  

Comment. A more intuitively appealing way of defining the union is 
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the following: The union of A and B is the smMlest fuzzy set containing 
both A and B. More precisely, if D is any fuzzy set which contains both 
A and B, then it also contains the union of A and B. 

To show that  this definition is equivalent to (3), we note, first, that  C 
as defined by (3) contains both A and B, since 

Max Ira,  f . ]  > f.4 

and 

Max [fA, fs] _>-- f s .  

Furthermore,  if D is any fuzzy set containing both A and B, then 

f . = > A  

/~ >f~ 

and hence 

fD >_- 5iax [L,  f.] = / c  

which implies that  C c D. Q.E.D. 
The notion of an intersection of fuzzy sets can be defined in an analo- 

gous manner. Specifically: 
Intersection. The intersection of two fuzzy sets A and B with respective 

membership functions f~(x) and fs(x) is a fuzzy set C, written as C = 
A n B, whose membership function is related to those of A and B by 

/c (x)  = Min [ /A(x) , / , (x) ] ,  x ff X, (5) 

or, in abbreviated form 

.fc ---- fA ^ lB. (6) 

As in the case of the union, it is easy to show that  the intersection of 
A and B is the largest fuzzy set which is contained in both A and B. As 
in the case of ordinary sets, A and B are disjoint if A f l  B is empty. 
Note that  N, like U, has the associative property. 

The intersection and union of two fuzzy sets in R 1 are illustrated in 
Fig. 1. The membership function of the union is comprised of curve seg- 
ments 1 and 2; that  of the intersection is comprised of segments 3 and 4 
(heavy lines). 

Comment. Note that the notion of "belonging," which plays a funda- 
mental role in the case of ordinary sets, does not have the same role in 
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X 

FIG. 1. Illustration of the union and intersection of fuzzy sets in RI 

the case of fuzzy sets. Thus, it is not meaningful to speak of a point x: 
“belonging” to a fuzzy set A except in the trivial sense of jA(x) being 
positive. Less trivially, one can introduce two levels GJ and p (0 < Q < 1, 
0 < p < 1, CI > p) and agree to say that (1) “x: belongs to A” if 
fA(x) 2 a; (2) “2 does not belong to R” if fA(2) i /3; and (3) “r has 
an indeterminate status relative to A” if 0 < jA(x) < CY. This leads to a 
three-valued logic (Kleene, 1952) with three truth values: T 
(fA(z) 2 a>, F (fA(z) 5 P), and u (P <fA(z) < a>. 

III. SOME PROPERTIES OF u, 0, AND COMPLEMENTATION 

With the operations of union, intersection, and complementation 
defined as in (3), (5), and (l), it is easy to extend many of the basic 
identities which hold for ordinary sets to fuzzy sets. As examples, we have 

(A u B)’ = A’ fI B’ 
(A r\ B), = A, U By De Morgan’s laws (7) 

(8) 

C I7 (A u B) = (C f-l A) u (C n B) Distributive laws. (9) 

C U (A n B) = (C U A) fI (C U B) (10) 

These and similar equalities can readiIy be established by showing 
that the corresponding relations for the membership functions of A, B, 
and C are identities. For example, in the case of (7), we have 

1 - Max [fA , fB] = Min [l - fA , 1 - f~] (11) 

which can be easily verified to be an identity by testing it for the two 
possible cases:fa(z) > jB(z) andfa(z) < fB(z). 

Similarly, in the case of (lo), the corresponding relation in terms of 
f.4 > fB 3 and fc is: 
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Max [re, Min ~A, f~] = Min [5,Iax [fc ,  f~], Max [fe,  f~]] (12) 

which can be verified to be an identi ty by  considering the six eases: 

fA(x) > f . ( x )  > f c ( x ) , f A ( x )  > fc (x )  > f . ( x ) , f . ( x )  > f~(x)  > fc (x ) ,  

y , (x)  > / c ( x )  > A ( x ) , f c ( x )  > f~ ( z )  > f , ( x ) , f c ( x )  > f , ( x )  > fA(x) .  

Essentially, fuzzy sets in X consti tute a distributive lattice with a 0 
and 1 (Birkhoff, 1948). 

AN INTERPRETATION FOR UNIONS AND INTERSECTIONS 

In  the case of ordinary sets, a set C which is expressed in terms of a 
family of sets As ,  • • • , A~, •. • , A~ through the connectives U and N, 
can be represented as a network of switches a l ,  • - - , ~n, with A~ [3 A j 
and A~ U Aj  corresponding, respectively, to series and parallel combina- 
tions of ~ and c~ i . In  the case of fuzzy sets, one can give an analogous 
interpretation in terms of sieves. Specifically, let f~(x), i = 1, . . .  , n, 
denote the value of the membership function of A~ at  x. Associate with 
.£(x) a sieve S~(x) whose meshes are of size f~(x). Then, f~(x) v f i ( x )  
and f~(x) ^ f / x )  correspond, respectively, to parallel and series com- 
binations of S~(x) and Sj (x ) ,  as shown in Fig. 2. 

More generally, a well-formed expression involving As ,  - ."  , A~,  U, 
and n corresponds to a network of sieves Sl(x) ,  . . .  , S,~(x) which can 
be found by  the conventional synthesis techniques for switching cir- 
cuits. As a very simple example, 

C = [(A! U A2) n A31 U A4 (13) 

corresponds to the network shown in Fig. 3. 
Note tha t  the mesh sizes of the sieves in the network depend on x and 
tha t  the network as a whole is equivalent to a single sieve whose meshes 
are of size fc (x) .  

Si(x) 0 sj(x) t si (x) 
T Sj (x) 

FIG. 2. Parallel and series connection of sieves simultating U and [~ 
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s2(,) Is.(*) 
s3(') 

FIG. 3. A network of sieves simultating {[fl(x) V f=(x)] ^ f3(x)} V fdx )  

IV. ALGEBRAIC OPERATIONS ON FUZZY SETS 

In addition to the operations of union and intersection, one can define 
a number of other ways of forming combinations of fuzzy sets and re- 
lating them to one another. Among the more important of these are the 
following. 

Algebraic  product.  The algebraic product  of A and B is denoted by A B  

and is defined in terms of the membership functions of A and B by the 
relation 

f a .  = f J . .  (14) 

Clearly, 

AB c A n B. (15) 

Algebraic sum.  4 The algebraic s u m  of A and B is denoted by A + B 
and is defined by 

f a + ,  = fA ~-- fB (16) 

provided the sum fa + f~ is less than or equal to unity. Thus, unlike 
the algebraic product, the algebraic sum is meaningful only when the 
eondit ion/~(x) + f B ( x )  _-_6 1 is satisfied for all x. 

Absolute  difference. The absolute difference of A and B is denoted by 
]A - B I and is defined by 

fla-,l = [fA -- f ' l "  

Note that  in the ease of ordinary sets I A -- B I reduces to the relative 
complement of A O B in A U B. 

4 The dual of the Mgebr~ic product is the sum A @ B - (A 'B') ' = A + B -- AB.  
(This was pointed out by T. Cover. ) Note that for ordinary sets f'] and the alge- 
braic product are equivalent operations, as are O and @. 
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Convex combination. By a convex combination of two vectors f and g 
is usually meant a linear combination of f and g of the form 
Xf -+- (1 - X)g, in which 0 _-< X < 1. This mode of combining f and g 
can be generalized to fuzzy sets in the following manner. 

Let  A, B, and A be arbitrary fuzzy sets. The convex combination of 
A, B, and A is denoted by (A, B; A) and is defined by the relation 

(A, B; A) = AA q- A'B (17) 

where A' is the complement of A. Writ ten out in terms of membership 
functions, (17) reads 

f~A,B;A)(X) = fA(x)fA(x) -~- [1 - - f a (x ) ] fB(x ) ,  X ~ X. (18) 

A basic property of the convex combination of A, B, and A is expressed 
by 

A [7 B c (A, B; A) c A U B for all A. (19) 

This property is an immediate consequence of the inequalit, ies 

Min [f~(x), f~(x)] =< Xfx(x) -{- (1 - X)f,(x) 

< Max [f~(x),fB(x)], x C X (20) 

which hold for all X in [0, 1]. I t  is of interest to observe that, given any 
fuzzy set C satisfying A [3 B c C c A U B, one can always find a fuzzy 
set A such that  C = (A, B; A). The membership function of this set is 
given by 

A ( ~ )  - f ~ ( x )  - f.(x) 
A(~) f~,(x)' ~ ~ x .  (2~) 

Fuzzy relation. The concept of a relation (which is a generalization of 
that of a function) has a natural extension to fuzzy sets and plays an 
important  role in the theory of such sets and their applieat ions~just  
as it does in the case of ordinary sets. In the sequel, we shall merely de- 
fine the notion of a fuzzy relation and touch upon a few related concepts. 

Ordinarily, a relation is defined as a set of ordered pairs (Halmos, 
1960) ; e.g., the set of all ordered pairs of real numbers x and y such that  
x => y. In the context of fuzzy sets, a fuzzy relation in X is a fuzzy set in 
the product sp~ce X X X. For example, the relation denoted by  x }} y, 
x, y E R ~, may be regarded as a fuzzy set A in R 2, with the membership 
function of A, f_4(x, y),  having the following (subjective) representative 
values:f~(10,  5) = 0;fx(100,  10) = 0.7;f~(100, 1) = 1; etc. 
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More generally, one can define an n-ary fuzzy relation in X as a fuzzy 
set A in the product space X X X X --- × X. For such relations, the 
membership function is of the form fA(xl ,  . . : ,  x~), where x~ C X, 
i =  1 , . . . , n .  

In the ease of binary fuzzy relations, the composition of two fuzzy re- 
lations A and B is denoted by B o A and is defined as a fuzzy relation in X 
whose membership function is related to those of A and B by 

fBoA(X, y) = Sup~ ~:Iin [fx(x, v),fB(v, y)]. 

Note that, the operation of composition has the associative property 

Ao  ( B o C )  = ( A o B )  oC. 

Fuzzy sets induced by mappings. Let T be a mapping from X to a 
space Y. Let B be a fuzzy set in Y with membership function f~(y). 
The inverse mapping T -~ induces a fuzzy set A in X whose membership 
function is defined by 

fA(Z) = f~(y), y ~ Y (22) 

for all x in X which are mapped by T into y. 
Consider now a converse problem in which A is a given fuzzy set in X, 

and T, as before, is a mapping from X to Y. The question is: What. is 
the membership function for the fuzzy set B in Y which is induced by 
this mapping? 

If T is not one-one, then an ambiguity arises when two or more dis- 
tinct points in X, say xl and z2, with different grades of membership 
in A, are mapped into the same poirtt y in Y. In this case, the question 
is: What  grade of membership in B should be assigned to y? 

To resolve this ambiguity, we agree to assign the larger of the two 
grades of membership to y. More generally, the membership function 
for B will be defined by 

.f~(y) = Max~r-~(~)fA(x), y C Y (23) 

where T-~(y) is the set of points in X which are mapped into y by T. 

V. CONVEXITY 

As will be seen in the sequel, the notion of convexity can readily be 
extended to fuzzy sets in such a way as to preserve many of the prop- 
erties which it has in the context of ordinary sets. This notion appears 
to be particularly useful in applications involving pattern classification, 
optimization and related problems. 
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~ fA(x)  

onvex fuzzy set vnon-convex 
fuzzy set 

. ,  . \ p . . . I f A [ X x , + ( ' - X ) x a ]  

x I x 2 x 

FIG. 4. Convex and noneonvex fuzzy sets in E ~ 

hi  what  follows, we assume for concreteness tha t  X is a real Euclidean 
space E ~. 

DEFINITIONS 

Convexity. A fuzzy set A is convex if and only if the sets I~, defined by 

r .  = {x lyA(x) => ~} (24) 

are convex for all a in the interval (0, 1]. 
An alternative and more direct definition of convexity is the fo!tow- 

ingS: A is convex if and only if 

f.~[Xxl + (1 - X)x2] > Min ~'.~(xl), fA(x2)] (25) 

for all xl and x2 in X and all X in [0, l]. Note tha t  this definition does not 
imply tha t  f ~ ( x )  must  be a convex function of x. This is illustrated in 
Fig. 4 for n = 1. 

To show the equivalence between the above definitions note that  if A 
is convex in the sense of the first definition and c~ -- f~ (x l )  < f~(x~), 
then x2 ~ r ,  and Xxl + (1 - X)x2 ~ iP~ by  the convexity of F~.  Hence 

.h[Xx~ + (1 -- h)x2] > a = JS(x~) = Min [fA(x~),j[~(x~)]. 

Conversely, if A is convex in the sense of the second definition and 
= f~ (x~), then 17~ may  be regarded as the set of all points x~ for which 

f~(x~) > f~(x~).  In  virtue of (25), every point of the form 
Xxl + (1 - X)x2 ,0  < X _-< 1, is also in r~ and hence r~ is a convex 
set. Q.E.D. 

A basic proper ty  of convex fuzzy sets is expressed by  the 
THEOreM. I f  A and B are convex, so is the# intersection. 

This way of expressing convexity was suggested to the writer by his colleague, 
E. Berlekamp. 
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Proof: Let C = A fl B. Then 

fc[Xxl -t- (1 - X)x2] 

= Min [fAiXx~ ~- (1 - X)x2],f,[hxl -~ (1 - k)x~]]. (26) 

Now, since A and B are convex 

f~[Xxl + (1 -X)x2]  > lVIin [L(x~),L(x2)] 
(27) 

f ,  Dtxl-~- (1 - X)x~] ~ ~ i n  ~B(Xl), f , (x2)] 
and hence 

fc[~.Xl -~- (1 -- X)X2] 
(2s) 

> :~Vlin [Min [fA(z~), fA(x~)], Min [f.(x~), f.(z~)]] 

or equivalently 

fc[xx~ + (I - x)x~] 
(29) 

> Min [Min [fA(x~), f,(x~)], Min IrA(x2), f,(x2)]] 

and thus 

fc[XXl ~- (1 - X)x2] > Min [fc(x~), fc(x:)].  Q . E . D .  (30) 

Boundedness. A fuzzy set A is bounded if and only if the sets F= -- 
{x I fA(x) > a} are bounded for all a > 0; that  is, for every a > 0 there 
exists a finite R(a )  such that  [I x ]] -< R(a )  for all x in r ~ .  

If A is a bounded set, then for each e > 0 then exists a hyperplane H 
such that  f x (x )  <-_ e for all x on the side of H which does not contain 
the origin. For, consider the set r~ -- {x IrA(x) > e}. By hypothesis, 
this set is contained in a sphere S of radius R(e).  Let H be any hyper- 
plane supporting S. Then, all points on the side of H which does not 
contain the origin lie outside or on S, and hence for all such points 
fA(x) =< e. 

LEMMA. Let A be a bounded fuzzy set and let M -= Sup~fA(x). 
( M  will be referred to as the maximM grade in A . )  Then there is at least 
one point Xo at which M is essentially attained in the sense that, for each 

> O, every spherical neighborhood of xo contains points in the set Q(e) ~- 
{x [ fx(x)  __> M - -  e}. 

Proof. 6 Consider a nested sequence of bounded sets F1, F2, . ' . ,  
where F.  = {x ]f~(x) >= M - M / ( n  -~ 1)}, n = 1, 2, . . . .  Note tha t  

6 This proof was suggested by A. J. Thomasian. 
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P. is nonempty  for all finite n as a consequence of the definition of M 
as M = Sup~fA(x). (We assume tha t  M > 0.) 

Let  x.  be an arbitrari ly chosen point in r ~ ,  n = 1, 2, - . . .  Then, 
x l ,  x~, • • - , is a sequence of points in a closed bounded set r l .  By  the 
Bolzano-Weierstrass theorem, this sequence must  have at least one 
limit point, say x0, in F i .  Consequently, every spherical neighborhood 
of x0 will contain infinitely many  points from the sequence x l ,  x2, -. • , 
and, more particularly, f rom the subsequenee xN+I, x~+2, . . .  , where 
N > M/e.  Since the points of this subsequenee fall within the set Q(e) = 
{x I f~(x)  > M - e}, the lemma is proved. 

Strict and strong convexity. A fuzzy set A is strictly convex if the sets 
r ~ ,  0 < a =< 1 are strictly convex ( tha t  is, if the midpoint of any two 
distinct points in P~ lies in the interior of r~) .  Note  tha t  this definition 
reduces to that  of strict convexity for ordinary sets when A is such a set. 

A fuzzy set A is strongly convex if, for any two distinct points x~ and x2, 
and any X in the open interval (0, 1) 

f~[Xxl + (1 -- ),)x2] > Min [fA(x~),fA(x~)]. 

Note that  strong convexity does not imply strict convexity or vice-versa. 
Note  also tha t  if A and B are bounded, so is their union and intersection. 
Similarly, if A and B are strictly (strongly) convex, their intersection 
is strictly (strongly) convex. 

Let A be a convex fuzzy set and let M = Supzf~(x) .  I f  A is bounded, 
then, as shown above, either M is at tained for some x, say x0, or there 
is at  least one point, x0 at  which M is essentially at tained in the sense 
that ,  for each e > 0, every spherical neighborhood of x0 contains points 
in the set Q(e) = {x 1M - fA(x) < e}. In  particular, if A is strongly 
convex and x0 is attained, then x0 is unique. For, if M = f~(xo) and 
M = fa(z~), with x, ~ x~, then fA(x) > M for x = 0.5x0 -~ 0.5x,,  
which contradicts M = Max~fa(x) .  

More generally, let C(A)  be the set of all points in X at  which M is 
essentially attained. This set will be referred to as the core of A. In  the 
case of convex fuzzy sets, we can assert the following proper ty  of C(A) .  

Tu~oaE~.  I f  A is a convex fuzzy set, then its core is a convex set. 
Proof: I t  will suffice to show tha t  if M is essentially at tained at x0 

and x l ,  xl ~ x0, then it is also essentially at tained at all x of the form 
x = X x 0 +  ( 1 - - X ) x l , 0 _ - <  X <  1. 

To the end, let P be a cylinder of radius e with the line passing through 
xo and xl as its axis. Let xo' be a point in a sphere of radius e centering 
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on x0 and x~ I be a point in a sphere of radius e centering on xl such that  
f a (xo ' )  >= M -- e and fA(zl ') ~ M - e. Then, by the convexity of A, 

t ! 
for any point u on the segment x0 x~, we havef~(u)  => M - e. Further- 
more, by the convexity:of P, 'all points on Xo'X~ ~ will lie in P. 

Now let x be any point in the segment xox~. The distance of this point 
from the segment xo'x~ r must be less than or equal to e, since xo'xl' lies 
in P. Consequently, a sphere of radius e centering on x will contain at 
least one point of the segment xo'x~' and hence will contain at least one 
point, say w, at which f~(w) >_ M - -  e. This establishes that  M is es- 
sentially attained at x and thus proves the theorem. 

COnOLLARV. I f  X = E ~ a n d  A is strongly convex, then the  point  at 
which M is essentially at tained is unique.  

Shadow of a f u z z y  set. Let A be a fuzzy set in E ~ with membership 
function f A ( x )  = f ~ ( x l  , . . .  , x~). For notational simplicity, the notion 
of the shadow (projection) of A on a hyperplane H will be defined below 
for the special case where H is a coordinate hyperplane, e.g., H = 

I xlx  = 0} .  

Specifically, the shadow of A on H = lx l x l  = 0} is defined to be a 
fuzzy set S , ( A )  in E ~-~ with fs,(~)(x) given by 

f sa (A) (x )  = f s , ( A ) ( x 2 ,  "..  , x,~) = Sup ~, fA (x l  , . . "  , x~). 

Note that  this definition is consistent with (23). 
When A is a convex fuzzy set, the following property of S H ( A )  is an 

immediate consequence of the above definition: If  A is a convex fuzzy 
set, then its shadow on any hyperplane is also a convex fuzzy set. 

An interesting property of the shadows of two convex fuzzy sets is 
expressed by the following implication 

S n ( A )  = S , ( B )  for all H ~ A = B. 

To prove this assertion, 7 it is sufficient to show that if there exists a 
point, say x0, such that  fA(xo)  # f z ( xo ) ,  then their exists a hyperplane 
H such that fs,(~)(x0*) # f s z ( , ) ( xo*) ,  where xo* is the projection of 
x0 on H. 

Suppose thatf~(x0) = a > f~(xo)  = ft. Since B is a convex fuzzy set, 
the set F~ = {x ] f , (x )  > fl} is convex, and hence there exists a hyper- 
plane F supporting F~ and passing through x0. Let H be a hyperplane 
orthogonal to F, and let x0* be the projection of x0 on H. Then, since 

7 This proof is based on an idea suggested by G. Dantzig for the case where 
A and B a~e ordinary convex sets. 
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j'B(x) < 8 for alI x on F, we have fs~(B)(Xo*) < 8. On the other hand, 
fss(A)(x0*) ->_ a. Consequently, fss(B)(x0*) ~ fSH(A)(X0*), and similarly 
for the case where a < 8. 

A somewhat more general form of the above assertion is the following: 
Let A, but  not necessarily B, be a convex fuzzy set, and let Ss(A)  = 
Ss(B)  for all H. Then A = cony B, where cony B is the convex hull of 
B, tha t  is, the smallest convex set containing B. More generally, Ss(A) = 
Ss(B) for all H implies cony A = cony B. 

Separation of convex fuzzy sets. The classical separation theorem for 
ordinary convex sets states, in essence, that  if A and B are disjoint con- 
vex sets, then there exists a separating hyperplane H such that  A is 
on one Side of H and B is on the other side. 

I t  is natural  to inquire if this theorem can be extended to convex fuzzy 
sets, without requiring that  A and B be disjoint, since the condition of 
disjointness is much too restrictive in the case of fuzzy sets. I t  turns 
out, as will be seen in the sequel, that  the answer to this question is in 
the affirmative. 

As a preliminary, we shall have to make a few definitions. Specifically, 
let A and B be two bounded fuzzy sets and let H be a hypersurface in 
E ~ defined by  an equation h(x) = O, with all points for which h(x) >= 0 
being on one side of H and all points for which h(x) _-< 0 being on the 
o ther  side. a Let  KH be a number dependent on H such that  fA(x) _-< K~ 
on one side of H and fB(x) <= KI~ on the other side. Let  Mg be Inf  K ~ .  
The number D~ = 1 - M~ will be called the degree of separation of A 
and B by H. 

In general, one is concerned not with a given hypersurface H, but  
with a family of hypersurfaces {Hx}, with X ranging over, say, E ~. The 
problem, then, is to find a member of this family which realizes the 
highest possible degree of separation. 

A special case of this problem is one where the Hx are hyperplanes in 
E '~, with ), ranging over E ~. In  this case, we define the degree of separa- 
bility of A and B by the relation 

D = 1 - M (31) 

where 
= ! n f ,  M~ (32) 

with the subscript ), omitted for simplicity. 

s N o t e  t h a t  t h e  se t s  in  questio~l h a v e  H in c o m m o n .  
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FIG. 5. I l lustrat ion of the separation theorem for fuzzy  sets in E ~ 

Among the various assertions tha t  can be made concerning D, the 
following s ta tement  9 is, in effect, an extension of the separation theorem 
to convex fuzzy sets. 

T~EOnEM. Let A and B be bounded convex fuzzy sets in E ' ,  with maximal 
grades M~ and M , ,  respectively [M~ = Sup~f~(x) ,  M ,  = Supers(x)] .  
Let M be the maximal grade for the intersection A N B ( M  = Sup~ 5~[in. 
irA(x), f s (x ) ] ) .  Then D = 1 -- M.  

Comment. In  plain words, the theorem states that  the highest degree 
of separation of two convex fuzzy sets A and B tha t  can be achieved 
with a hyperplane in E "~ is one minus the maximal grade in the inter- 
section A f l  B. This is illustrated in Fig. 5 for n = 1. 

Proof: I t  is convenient to consider separately the following two cases: 
(1) M = Min (MA, Ms)  and (2) M < Min ( M ~ ,  Ms) .  Note  tha t  the 
la t ter  case rules out A ~ B or B c A. 

Case 1. For concreteness, assume tha t  M~ < M s ,  so tha t  M = M ~ .  
Then, by  the proper ty  of bounded sets already stated there exists a 
hyperplane H such tha t  f s ( x )  <= M for all x on one side of H.  On the 
other side of H, fA(x)  < M because f~(x)  =< M~ = M for all x. 

I t  remains to be shown tha t  there do not exist an M '  < M and a 
hyperplane H '  such tha t  fA(x) < M r on one side of H '  and f . ( x )  =< M'  
on the other side. 

This follows at  once from the following observation. Suppose tha t  
such H '  and M '  exist, and assume for concreteness tha t  the core of A 
( tha t  is, the set of points a t  which MA = M is essentially a t ta ined)  is 
on the plus side of H ' .  This rules out the possibility tha t  fA(x)  <= M'  

This statement is based on a suggestion of E. Berlekamp. 
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for all x on the plus side of H', and hence necessitates that f~(x)  <= M j 
for all x on the minus side of H r, and f~(x)  <= M r for all x on the plus 
side of H r. Consequently, over all x on the plus side of H' 

Supx 5/~in [L (x),/.(x)] __< M' 

and likewise for all x on the minus side of H'. This implies that, over all 
x in X, Sup~ 5lin [f~ (x), fB(x)] =< M r, which contradicts the assumption 
that Sup~ Min [fA(x), fB(x)] = M > M'. 

Case 2. Consider the convex sets FA = {X IrA(x) > M} and Y~ = 
{x I f z (x )  > M}. These sets are nonempty and disjoint, for if they were 
not there would be a point, say u, such that fA(u) > M andfB(u) > M, 
and hence fAn~(u) > M, which contradicts the assumption that M = 
Sup~ f~ns(x). 

Since FA and 1~8 are disjoint, by the separation theorem for ordinary 
convex sets there exists a hyperplane H such that FA is on one side of H 
(say, the plus side) and FB is on the other side (the minus side). Fur- 
thermore, by the definitions of FA and r~ ,  for all points on the minus 
side of H, f~ (x) =< M, and for all points on the plus side of H, f~ (x) =< M. 

Thus, we bare shown that there exists a hyperplane H which realizes 
1 - M as the degree of separation of A and B. The conclusion that a 
higher degree of separation of A and B cannot be realized follows from 
the argument given in Case 1. This concludes the proof of the theorem. 

The separation theorem for convex fuzzy sets appears to be of particu- 
lar relevance to the problem of pattern discrimination. Its application 
to this class of problems as well as to problems of optimization will be 
explored in subsequent notes on fuzzy sets and their properties. 
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