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Advance Traffic Management Systems (ATMS) must be able to respond to existing and 
predicted traffic conditions if they are to address the demands of the 1990's Artificial 
intelligence and neural network are promising technologies that provide intelligent, adaptive 
performance in a variety of application domains This paper describes two separate neural 
network systems that have been developed for integration into a ATMS blackboard archi- 
tecture. The first system is an adaptive traflic signal light controller based upon the Hopfield 
neural network model, while the second system is a backpropagation model trained to 
predict urban traffic congestion. Each of these models are presented in detail with results 
attained utilizing a discrete traffic simulation shown to illustrate their performance. 

Key word: neural networks congestion predicrion, traffic control 

INTRODUCTION 

The goal of an ATMS is to optimally manage existing transportation resources 
through the use of adaptive control systems in order to maximize the efficiency and 
usefukess of all transpdrtation modes: The intelligent, adaptive control aspects df this 
problem are attuned to the features of neural network systems Neural networks [Ander- 
son et al., 19881 are computational structures that model simple biological processes 
usually associated with the human brain. Adaptable and trainable, they are massively 
parallel systems capable of learning from positive and negative reinforcement. 

The basic element in a neural network is the neuron (Figure 1). Neurons receive 
input pulses (I,) from interconnections with other neurons in the network. These inter- 
connections are weighted (W,) based upon their contribution to the neuron. Weighted 
interconnections are summed internally to the neuron and compared to a threshold 
value. If the threshold value is exceeded, a binary output pulse (0,) is transmitted, 
otherwise the neuron exhibits no output value. A variety of specialized neural network 
models based upon this simple neuron structure have been developed. 
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"NEURAL NETWORK MODELS" 233 

This paper describes the application of neural network to two ATMS functions. 
First, an intelligent neural network-base signal light control system capable of adap- 
tively optimizing traffic flow in urban areas is presented. Second, a neural network 
model capable of learning how to accurately predict traffic congestion is discussed. 

Current signal control systems, such as the Los Angeles Automated Traffic Sur- 
veillance and Control (ATSAC), use responsive control [Rowe, 19911. ATSAC selects 
its timing plans based upon a comparison of actual surveillance data and available 
model data. This approach is an improvement over the time-of-day timing plan in 
instances where traffic varies each day. The proposed neural network approach ex- 
tends the ATSAC philosophy further by applying a neural network optimization 
model to actual traffic flow data to determine the signal light settings that will 
produce the most efficient traffic flow in a special event area. Utilizing information 
on street segment capacities, traffic flow rates, and potential flow capacities, the 
network model examines the effects of signal light settings in relation to the traffic 
flow away from a designated area. The system "settles" on control settings that 
maximize the flow and adaptively changes the signal settings based upon changes in 
street segment traffic density. 

Current developments in advanced traffic control techniques are giving rise to an 
increasing requirement for reliable near-future forecasts of traffic flow. These predic- 
tions are required in order to attain the background information for solving traffic 
congestion before it develops using methods such as "gating" or "dynamic route 
guidance." Existing systems such as SCOOT [Robertson et al., 19911 only react to 
present traffic patterns and, by themselves, do not prevent congestion from occur- 
ring. Conventional traffic modeling and simulation procedures can be applied to this 
problem but have a number of shortcomings, particularly in real-time applications. 

Many researchers have demonstrated that neural network methods based on a 
back-propagation algorithm are able to deal with complicated nonlinear forecasting 
tasks in stock prices, electricity demand, and water supply [Canu et al., 19901. By 
specifying input values representing important traffic congestion attributes, two neu- 
ral network architecture capable of capturing the underlying characteristics of the 
transportation domain have been developed. The first model addresses the dynamic 
control of traffic signal lights in urban environments. The second model is able to 
learn based upon data from previous congestion occurrences and has produced en- 
couraging results in forecasting congestion on surface streets. 

TRAFFIC SIGNAL CONTROLLER 

At first glance, a traffic flow system appears to be an interwoven and connected 
array of road sections whose traffic flow is determined by a series of traffic lights. 
The control of these traffic lights is vital in order to allow traffic to flow throughout 
the system with minimal delay. A neural network approach to the control of signals 
at traffic intersections is proposed. Because the optimal traffic signal configuration is 
not available a priori, a supervised learning architecture such as a back-propagation 
network is not suitable. The neural net architecture should do unsupervised learning 
in an optimization network. The Hopfield neural network model was chosen because 
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234 JOHN F. GILMORE and NAOHIKO ABE 

of its [a] ability to optimize complex network flows, and (21 direct representational 
structural mapping of neurons to traffic intersections. 

The main parameter in Hopfield is the energy function which is distributively 
defined by the connection architecture among the neurons and the weights assigned 
to each connection. The Hopfield model and the traffic-derived energy function it 
utilizes for intelligent signal light control are described in the following subsections. 

The Hopfield Model 

The Hopfield model is an additive neural network model. This means that the 
individual weighted inputs to a neuron are added together to determine the total 
activation of neuron. This activation is then passed through an output function to 
determine an output value. 

The Hopfield model uses a fully interconnected network of neurons to descend 
onto an energy function. Since a discrete time simulation is being used, a discrete- 
time model was adopted. The dynamics of the discrete-time Hopfield Net are given 
by: 

where 

T(i , j )  are the interconnection weights, 
I( i )  are the input biases, 
U(i) are the internal states, 
V(i) are the neuron outputs, and 
g(x) is a nonlinear activation function which can be taken as 

g(x) = - 1 + tanh - [ 13) 
which approaches a hard limiter as x,, tends to zero. An asynchronous update rule 
was used which means that neurons are randomly. chosen to be updated. This asyn- 
chronous updating scheme tends to greatly reduce oscillatory or wandering behavior 
typical of synchronous updating schemes. 

Hopfield and Tank [Hopfield et al., 1984 and 19851 show that the dynamics of this 
model favors state transitions that minimize the energy function 
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where 

Ti,j are the interconnection weights, 
Vi are the neuron outputs, 
li are the input biases, and 
N is the number of signals, 

so that the network gradually settles into a minima of this function. The difficulty to 
any application using a Hopfield Net is to determine a suitable energy function that 
the network will descend on. 

Neural Signal Controller 

The goal of traffic management is to maximize the flow of traffic while minimizing 
incidents and delays in a region. Controlling the timing of signals to increase traffic 
flow is one method of supporting this goal. The management of traffic flow by a 
system utilizing the control of signals appears to directly map into a Hopfield net- 
work. Since traffic lights have two states, each traffic signal can be modeled as an 
individual neuron (Vi) in a Hopfield neural network. If a light is on, the traffic will 
flow in the E-W direction at that intersection, otherwise traffic flows in the N-S 
direction. Ii can be viewed as the input potential into a node of the network with Tij 
viewed as the connections between traffic lights 

The first step in any application of the Hopfield network is the construction of an 
energy function. The system's primary objective is to disperse traffic away from a 
special event in the shortest amount of time. In an abstract sense, one method of 
dispersing traffic is to route vehicles from road segments containing a large number 
of vehicles and a high capacity percentage (vehiclelcapacity) onto road segments with 
a smaller number of vehicles and a lower capacity percentage. This can be achieved 
by [a] changing signal lights based on the potential of a given traffic light to increase 
flow, and [b] synchronizing signals with adjacent traffic lights to maximize overall 
svstem throuah~ut. - * 

Initial attempts at creating an energy function that addresses these criteria concen- 
trated on examining the number of vehicles on roadways to determine optimal signal 
light configurations. Experimentation soon indicated that the percentage of-the 
capacity of an incoming roadway was a better indicator for determining the state of 
any given traffic signal. Research into the integration of road capacity percentages 
into the energy equation was then undertaken. 

First, a road segment nearing its capacity will trigger a signal to turn on. Second, 
optimal flow tends to favor near capacity road sections directing their vehicles onto 
road sections with a lower percentage of capacity. Because of this, a look at the 
difference of percentages was adopted. The potential of a given signal for traffic flow 
could be determined by adding the differences between the traffic capacity percen- 
tages into the signal and the percentages of capacity of the flow away from the 
intersection. Thus, the network tends to turn traffic lights on when they have a 
higher potential for large traffic flow. 
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236 JOHN E GILMORE and NAOHIKO ABE 

The next step in developing the energy equation was to address signal light syn- 
chronization. If a signal is on, adjacent signals should tend to turn on to further 
increase traffic flow. A term was added to the energy function to reflect this tendency 
of an adjacent traffic light to turn green based on the potential of adjacent traffic. 
With this addition, the final energy function specifying the optimal control of the 
traffic lights in the simulation was defined as: 

where 

a is the capacity percentage of the link entering an intersection, 
b is the available capacity percentage of a link, 
N is the number of traffic lights, 
M & L are the # of outgoing roadways, 
P( i )  is the priority of a traffic light i, 
t ( i )  is the time that traffic light i has been on, 
C(b) is the capacity percent of road section b, 
D(4)  (b(j))  is the difference cap fa)-cap(b(j)), 
Vi is the output of neuron i representing traffic light 1, 
rj is the % of vehicles turning from a onto b( j ) ,  & 
s,,is the % of vehicles turning from b ( j )  onto c(k) .  

The energy function tends to favor signal lights with large capacities flowing 
through their intersections. The Pi term provides a prioritization weight of individual 
traffic lights in the simulation. This furnishes the traffic engineering a mechanism to 
give added weight to heavily congested streets (e.g., the main street leaving a sports 
arena at the end of an athletic event). A (l+ti) denominator term was initially used to 
negatively weight traffic lights that have been a fixed state for an extended time 
duration, but experimentation indicated that this term was out weighed by the traffic. 
signal energy summations. A symbolic representation of energy function components 
is illustrated in Figure 2. 

The energy equation derived is applicable to standard traffic intersections consist- 
ing of two crossing roads. Current research is exploring the derivation of energy 
equations unique to specific types of intersections (e.g., three road intersections, turn 
lanes, etc). The Hopfield model supports the use of different energy functions with- 
out further modification. 
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238 JOHN F. GILMORE and NAOHIKO ABE 

NEURAL NETWORK CONGESTION FORECASTING 

An ATMS must not only control current traffic, but also predict where congestion 
will occur. Predicting congestion so that preventive actions may be taken in advance. 
will greatly alleviate traffic gridlocks. This section describes the results achieved uti- 
lizing a back-propagation neural network algorithm to predict the traffic flow on 
surface street in metropolitan areas. The neural network is trained in two phases. 
First, an initial learning phase determines the most appropriate connecting weights 
for data on a typical business day. Second, adaptive learning is employed to learn the 
special case trafic classes and adapt the weights to the present situation. In the 
adaptive learning phase, the error function is computed by placing a restriction on 
the weight changes so that the knowledge learned through the initial learning phase 
is retained. The prototype system is tested through computer simulations, with re- 
sults indicating that the application of the neural networks to traffic congestion 
forecasting is promising. 

A multi-layered network consisting of three completely connected layers (i.e. the 
input layer, the hidden layer, and the outer layer) was developed to address the traffic 
forecasting problem. The learning was achieved using a back-propagation algorithm 
with a sigmoid transfer function. This function was very suitable to the traflic prob- 
lem as traffic flows always possess a saturation characteristic. 

The number of input neurons used in the initial prototype network was 48. These 
were composed of the target flow (T in Figure 3) and three inflows into the simulated 
area (I,, I,, and I,) which are closely relevant to the target flow. Each variable was 
normalized to [0,1] by using the capacity percentage of the road for the target flow 
and the maximum values of observed data for inflows, respectively. It should be 
noted that all data was sampled every 5 minutes, though time sampling in the sys- 
tems is variable. The outputs are target flows in the next 30 minute period, thus 6 
neurons are required. Although there is much difficulty in determining the number of 
neurons for.the hidden layer, 12 neurons were chosen without any effort for optimiza- 
tion in this study. The number of hidden layers appeared to have no measurable 
effect on prediction performance. 

The forecasting algorithm contains two phases. First, the learning phase is used to 
compute the optimal weights of the neural network for a typical pattern. The second 
is an adaptive forecasting phase to adapt the weights to the present traffic flows arid 
forecast future congestion. 

Training 

The training data consisted of traffic flow histories from a typical business day, 
and the network connecting weights were computed by following the standard back- 
propagation learning rule described below: 
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JOHN F. GILMORE and NAOHIKOABE 

where 

Y, = tth desired output 

0, = tth actual output 

Once the initial learning is completed, the network is ready for the adaptive and 
forecasting process. The connecting weights are corrected according to the forecast- 
ing error of the last few data through back-propagation. In order to retain the 
knowledge learned in the initial learning phase, an error function with a term to 
suppress changes of weights was implemented: 

E = E, + AE, 

where 

In addition, a shifting learning method was used to take the latest available data 
into account. The network was adapted to data for the past 2 hours, and would then 
forecast traffic flow for the next hour. In the learning period, all of outputs corre- 
sponding to input data (up to the last 30 minutes) are available for training data. A 
portion of the outputs corresponding to input data for the last 30 minutes, however, 
are not available. This approach adapted all the weights to the training data (except 
for the last 30 minutes) and only the weights between the available outputs and the 
hidden layer to the training data from the last 30 minutes. After the adaptation 
process, a traflic flow forecast for the next 30 minutes is generated. 

Forecasting 

The data described in section 4 was used for the initial congestion prediction 
learning. In order to generate test data, random fluctuations (+20%) were added to 
the inflow traffic patterns shown in Figure 4, and random fluctuations were also 
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242 JOHN F. GILMORE and NAOHIKO ABE 

added to splitting rates of all flows. Figure 5 shows the traffic flow patterns of inputs 
I , ,  l,, and I, chosen to generate the data on a typical business day used for training 
the neural network. Simulations were run over a 24-hour period of time. Although 
the simulation model was basic, the results are consistent with practical phenomena. 
Three forecasting criteria, PAAE, standard deviation of absolute error, and PITP, 
were used to evaluate the system performance [Srirengan et al., 19911. PAAE (Per- 
centage Average Absolute Error) and standard deviation of absolute error are calcu- 
lated as  

where note that target range is equal to 1 and therefore PAAE is equivalent t o  

PITP (Percentage of Incorrect Turning Points) is the percentage of times the predic- 
tion of the system is an increase (or decrease) in a period when in the actual result is 
the opposite. 

Three cases (as shown in Figure 6) were tested for comparison: the case without 
the adaptive learning (Case I), the case with the adaptive learning using the standard 
error function (Case 2), and the case with the adaptive learning using the proposed 
error function (Case 3). In all instances, the correct trend was forecasted in more 
than 85% of the time for the test set. Although the forecast accuracy between Cases 1 
and 2 did not always improve, it was clearly always improved in Case 3. This indi- 
cates that the error function was successful in guiding the network's adaptive learn- 
ing. In addition, it appears that the forecast accuracy of the next 5 minutes is superior 
and forecast of the next 30 minutes is poorest in all cases. This is because the data for 
the next 5 minutes has a stronger correlation with the input data, as  compared to 
data for the next 30 minutes data. Having access to real-time data through an optical 
link would improve the system's forecasting ability across all time periods. 

TRAFFIC FLOW SIMULATION 

Traffic data was generated using a discrete traffic simulator of downtown Atlanta. 
This area was selectedas it is the site for the 1996 Summer Olympics and as  such 
presents the most challenging traffic management problem the United States will 
witness in the 1990's. 

Modeling traffic flow is generally analogous to current in an  electrical circuit, o r  
liquid flowing in pipes. Just as Ohm's law gives us a relationship between voltage, 
current and resistance, when considering traffic streams during uninterrupted flows, 
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"NEURAL NETWORK MODELS" 245 

it is critical to realize a relationship between velocity, traffic density, and flow rate. A 
dimensional analysis of the variables yields the following relationship: 

Q (vehicleslhr.) = U (milelhr.) * K (vehicleslmile) 

where 

U = velocity (milelhr.) 
K = trafJc density = K (vehicleslmile), arid 
Q =flow rate (vehicleslhr.) 

In addition to this basic equation of flow, a relationship between speed and density 
is needed [Homburger, 19821. As the number of vehicles on a roadway increases to a 
congestion level, the average veloc.ity of traffic will decrease. In this simulation, a 
linear speed-density model is used as the basis of emulating traffic streams as  they 
depart Atlanta Fulton County Stadium after a special event. The model is as follows: 

U =  Uf ( I -  K l  Kj)  

where: 

Uf = free speed or speed at free flow conditions 
(upproximated 0s 5 mph above the speed limit) 

Kj = junl density N I  which all vehicles are stopped 
(vel~icleslmile) 

It should be noted that both these parameters are unique to each section of road in 
the simulation. Although this speed-density model is simplistic, it does have good 
correlation with field data. 

Once a speed-density model has been chosen, a speed-flow model can be derived: 

Given: Q = UK and U = Uf ( I  - K I Kj) 

Then: U - U f = - U f * ( K I K j ) o r K = K j * ( I - U I U f )  

By substitution: 

From these equations, flow rates departing each intersection can be calculated. 
However, when some traffic is turning, compensation factors must be included to 
approximate the reduction in flow rate. 

In addition to basic traffic flow analysis, the simulation also models shock waves 
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246 JOHN F. GILMORE and NAOHlKO ABE 

in traffic streams. A shock wave is the propagation of different densities and veloci- 
ties within a stream, due to signal lights, bottle necks, accidents, etc. For example if,a 
traffic light turns red, all vehicles on the roadway controlled by the intersection will 
not stop instantaneously; rather a stopping wave will propagate backwards from the 
traffic light through the controlled roadway. This wave will proceed with a certain 
velocity and all traffic within this wave will not be moving, while traffic outside of 
the wave will still be moving. Similarly a starting wave will propagate backward 
throughout roadway traffic when a signal light changes from red to green. 

The stopping wave equation is: 

The starting wave equation is: 

Where: 

Uw = wave velocity (mileslhr.) 
U2 = 112 final velocity (mileslhr.) 
N = KIKj, and 
K = nominal density of traffic on the road. 

The above equations are used solely to determine the rate at which vehicles flow 
from a source to a sink. In conjunction with the flow rates, the shock wave equations 
determine any delay times before flow can proceed. 

The function of the simulation is to determine the amount of time necessary to 
move traffic from finite sources to infinite sinks by manipulating the traffic signals 
along the roads surrounding the stadium. In this instance the linite sources are 
parking lots and the infinite sinks are the interstates and certain roads. 

The jam density and the free velocity for each section of roadway relevant to 
movement away from the stadium was approximated. These parameters are not only 
critical in calculating the flow rates from each section of road, but the jam density is 
also the capacity of the road. 

Traffic movement starts from the parking lots to the adjacent streets. Once traffic 
is on these adjacent streets it is passed on  to other streets, this process continues until 
traffic has reached an infinite sink. Flow from a source to a sink will proceed only if 
the sink is not, at capacity and the signal light controlling the flow allows for move- 
ment; flow rates from parking lots are approximated to equal to the flow rate from a 
small street and will continue as  long as  the exit is not blocked by congested traffic 
on the adjacent road. At intersections where traffic turns, the flow rate is distributed, 
based on pre-defined percentages, t o  a variety of destinations. 

A one second resolution local clock is used to update all calculations. Each second 
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"NEURAL NETWORK MODELS" 247 

the simulation loops through all calculations to determine densities, flow rates, and 
velocities. Exploiting the configuration of the signal lights, the simulation is able to 
determine where shock waves are occurring and their velocities. Additionally, the 
simulation determines from which sources to which sinks traffic will move and up- 
dates the number of vehicles on each section of road. 

RESULTS 

The graphical interface displays the current traffic flows, capacities, and potentials 
for each street segment on a high resolution color monitor for viewing by the user. 
An example of the neural network traffic signal controller display for the Georgia 
Dome and Omni sports arenas is shown in Figure 7. North, south and east of the 
Dome and the Omni are the parking lots for spectators attending arena events. Each 
lot has a number indicating the number of vehicles currently in the lot. For example, 
the lot north of the Dome currently contains 782 vehicles. 

Traffic data was generated using a discrete traffic simulator [Homburger, 19821 of 
downtown Atlanta. This area was selected because it is the site for the 1996 Summer 
Olympics and presents the most challenging traffic management problem the United 
States will witness in the 1990's. The total number of vehicles on each street segment 
is also indicated by a numeric value with the top number indicating traffic flow to the 
right and the bottom number traffic flowing to the left. A single number indicates a 
one way street. 

Street lights are designated by a dash in an intersection with the flow of traffic 
(e.g., the green light) moving i n  the same direction as the dash. For example, the 
signal light at'the intersection of International and Techwood is currently red on 
International, but green on International at its intersection with Spring Street. The 
clock in the top right hand corner displays the actual travel time the simulation has 
been 'running (e.g. one minutes in this example). Also note that all the lights on 
Northside Drive are green to allow traffic to flow smoothly. 

Figure 8 shows the map one minute later. The lights on International Avenue at 
Techwood Drive have both changed to allow traffic to flow in the opposite direc- 
tions. The lights on Northside have also changed for the same reason. 

Figure 9 indicates the flow of traffic after ten minutes of driving time. This exam- 
ple has assumed that the only traffic flow in the area was from the arena parking lots. 
This was done to illustrate multiple venue traffic flow interaction. The figure shows 
that within ten minutes after the Dome and Omni events have ended traffic is effi- 
ciently being disbursed. 

The graphical user interface has been designed to provide transportation engineers 
with several levels of abstraction during system operation. Figure 10 is a display of a 
larger area of downtown Atlanta, but with only primary streets indicated. The Ful- 
ton County Stadium area previously shown can be seen in less deta~l in the bottom 
right portion of this figure. ATMS operators may select the granularity of display 
they wish to view based upon their current interests. 
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N U S :  

IME RlWP METERING 
FOR 1-20 I N  EFFECl 

RIABLE MESSAGES: 

FIGURE 7 Example Neural Network Trallic Signal Display 
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ign 1: 
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JOHN F. GILMORE and NAOHlKO ABE 

S U M M A R Y  

Two applications of neural networks in advance traffic management have been 
presented. The intelligent traffic signal control has been developed and applied to 
several special case traffic situations including the multiple venue traffic congestion 
anticipated during the 1996 Olympics in Atlanta. The traffic congestion forecasting 
system has shown promise in predicting congestion based upon learning the factors 
that contribute to traffic jams and gridlocks. 

Developed independently, research is continuing to integrate these systems into an 
ATMS blackboard architecture containing additional subsystems for incident detec- 
tion, emergency vehicle management, ramp metering, and traffic monitoring. In this 
configuration results of predicted traffic congestion would be posted to a blackboard 
data structure. This action would activate the traffic signal control system which 
would attempt to'divert traffic horn the predicted congestion area. A more detailed 
interaction of the ATMS blackboard knowledge sources can be found in [Gilmore et 
al., 19941 

Research is currently underway to expand the capabilities of both of these systems. 
The initial Hopfield energy function has proven to be a valuable optimization func- 
tion, but the creation of intersection specific energy functions (four way intersections, 
three way intersections, four way stop, etc) associated with their representative neu- 
rons promise to improve traffic flow performance. Though capable of learning behav- 
ior, backpropagation training is a time consuming task for large (5000+ link) sys- 
tems. Efforts are underway to train on smaller networks with the goal of transplanting 
this behavior knowledge to larger networks. Research has shown reductions in learn- 
ing time of over 67% in some cases. 
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