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Abstract
By now it is widely accepted that learning a task from scratch, i.e., without
any prior knowledge, is a daunting undertaking. Humans, however, rarely at-
tempt to learn from scratch. They extract initial biases as well as strategies
how to approach a learning problem from instructions and/or demonstrations
of other humans. For learning control, this paper investigates how learning
from demonstration can be applied in the context of reinforcement learning.
We consider priming the Q-function, the value function, the policy, and the
model of the task dynamics as possible areas where demonstrations can speed
up learning. In general nonlinear learning problems, only model-based rein-
forcement learning shows significant speed-up after a demonstration, while in
the special case of linear quadratic regulator (LQR) problems, all methods
profit from the demonstration. In an implementation of pole balancing on a
complex anthropomorphic robot arm, we demonstrate that, when facing the
complexities of real signal processing, model-based reinforcement learning
offers the most robustness for LQR problems. Using the suggested methods,
the robot learns pole balancing in just a single trial after a 30 second long
demonstration of the human instructor.

1. INTRODUCTION
Inductive supervised learning methods have reached a high level of sophistication. Given
a data set and some prior information about its nature, a host of algorithms exist that can
extract structure from this data by minimizing an error criterion. In learning control, how-
ever, the learning task is often less well defined. Here, the goal is to learn a policy, i.e., the
appropriate actions in response to a perceived state, in order to steer a dynamical system to
accomplish a task. As the task is usually described in terms of optimizing an arbitrary per-
formance index, no direct training data exist which could be used to learn a controller in a
supervised way. Even worse, the performance index may be defined over the long term
behavior of the task, and a problem of temporal credit assignment arises in how to credit
or blame actions in the past for the current performance. In such a setting, typical for rein-
forcement learning, learning a task from scratch can require a prohibitively time-
consuming amount of exploration of the state-action space in order to find a good policy.

On the other hand, learning without prior knowledge seems to be an approach that is rarely
taken in human and animal learning. Knowledge how to approach a new task can be trans-
ferred from previously learned tasks, and/or it can be extracted from the performance of a
teacher. This opens the questions of how learning control can profit from these kinds of in-
formation in order to accomplish a new task more quickly. In this paper we will focus on
learning from demonstration.

Learning from demonstration, also known as “programming by demonstration”, “imitation
learning”, and “teaching by showing” received significant attention in automatic robot as-
sembly over the last 20 years. The goal was to replace the time-consuming manual pro-
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gramming of a robot by an automatic programming proc-
ess, solely driven by showing the robot the assembly task
by an expert. In concert with the main stream of Artificial
Intelligence at the time, research was driven by symbolic
approaches: the expert’s demonstration was segmented
into primitive assembly actions and spatial relationships
between manipulator and environment, and subsequently
submitted to symbolic reasoning processes (e.g., Lozano-
Perez, 1982; Dufay & Latombe, 1983; Segre & DeJong,
1985). More recent approaches to programming by dem-
onstration started to include more inductive learning
components (e.g., Ikeuchi, 1993; Dillmann, Kaiser, &
Ude, 1995). In the context of human skill learning,
teaching by showing was investigated by Kawato, Gan-
dolfo, Gomi, & Wada (1994) and Miyamoto et al. (1996)
for a complex manipulation task to be learned by an an-
thropomorphic robot arm. An overview of several other
projects can be found in Bakker & Kuniyoshi (1996).

In this paper, the focus lies on reinforcement learning and
how learning from demonstration can be beneficial in this
context. We divide reinforcement learning into two cate-
gories: reinforcement learning for nonlinear tasks
(Section 2) and for (approximately) linear tasks (Section
3), and investigate how methods like Q-learning, value-
function learning, and model-based reinforcement learn-
ing can profit from data from a demonstration. In Section
2.3, one example task, pole balancing, is placed in the
context of using an actual, anthropomorphic robot to learn
it, and we reconsider the applicability of learning from
demonstration in this more complex situation.

2. REINFORCEMENT LEARNING FROM DEMONSTRATION
Two example tasks will be the basis of our investigation of learning from demonstration.
The nonlinear task is the “pendulum swing-up with limited torque” (Atkeson, 1994; Doya,
1996), as shown in Figure 1a. The goal is to balance the pendulum in an upright position
starting from hanging downward. As the maximal torque available is restricted such that
the pendulum cannot be supported against gravity in all states, a “pumping” trajectory is
necessary, similar as in the mountain car example of Moore (1991), but more delicately in
its timing since building up too much momentum during pumping will overshoot the up-
right position. The (approximately) linear example, Figure 1b, is the well-known cart-pole
balancing problem (Widrow & Smith, 1964; Barto, Sutton, & Anderson, 1983). For both
tasks, the learner is given information about the one-step reward r (Figure 1 ), and both
tasks are formulated as continuous state and continuous action problems. The goal of each
task is to find a policy which minimizes the infinite horizon discounted reward:
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where the left hand equation is the continuous time formulation, while the right hand
equation is the corresponding discrete time version, and where x  and u  denote a n-
dimensional state vector and a m-dimensional command vector, respectively. For the
Swing-Up, we assume that a teacher provided us with 5 successful trials starting from dif-
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Figure 1: a) pendulum swing up,
b) cart pole balancing
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ferent initial conditions. Each trial consists of a time series of data vectors ( , ˙, )θ θ τ  sam-
pled at 60Hz. For the Cart-Pole, we have a 30 second demonstration of successful balanc-
ing, represented as a 60Hz time series of data vectors ( , ˙, , ˙, )x x Fθ θ . How can these demon-
strations be used to speed up reinforcement learning?

2.1 THE NONLINEAR TASK: SWING-UP
We applied reinforcement learning based on learning a value function (V-function) (Dyer
& McReynolds, 1970) for the Swing-Up task, as the alternative method, Q–learning
(Watkins, 1989), has yet received very limited research for continuous state-action spaces.
The V–function assigns a scalar reward value V(x(t)) to each state x such that the entire V–
function fulfills the consistency equation:

V t r t t V t
t

x x u x
u

( ) arg min ( ), ( ) ( )
( )

( ) = ( ) + +( )( )γ 1

For clarity, this equation is given for a discrete state-action system; the continuous formu-
lation can be found, e.g., in Doya (1996). The optimal policy, u = (x), chooses the action
u in state x such that (2) is fulfilled. Note that this computation involves an optimization
step that includes knowledge of the subsequent state x(t+1). Hence, it requires a model of
the dynamics of the controlled system, x(t+1)=ƒ(x(t),u(t)). From the viewpoint of learning
from demonstration, V-function learning offers three candidates which can be primed from
a demonstration: the value function V(x), the policy (x), and the model ƒ(x, u).

2.1.1 V-Learning
In order to assess the benefits of a demon-
stration for the Swing-Up, we imple-
mented V–learning as suggested in Doya’s
(1996) continuous TD (CTD) learning al-
gorithm. The V–function and the dynam-
ics model were incrementally learned by a
nonlinear function approximator, Recep-
tive Field Weighted Regression (RFWR)
(Schaal & Atkeson (1996)). Differing
from Doya’s (1996) implementation, we
used the optimal action suggested by CTD
to learn a model of the policy  (an
“actor” as in Barto et al. (1983)), again re-
presented by RFWR. The following learn-
ing conditions were tested empirically:

a) Scratch: Trial by trial learning of
value function V, model ƒ, and actor  from scratch.

b) Primed Actor: Initial training of  from the demonstration, then trial by trial learning.
c) Primed Model: Initial training of ƒ from the demonstration, then trial by trial learning.
d) Primed Actor&Model: Priming of  and ƒ as in b) and c), then trial by trial learning.

Figure 2 shows the results of learning the Swing-Up. Each trial lasted 60 seconds. The
time Tup the pole spent in the interval θ π π∈ −[ ]/ , /2 2  during each trial was taken as the
performance measure (Doya, 1996). Comparing conditions a) and c), the results demon-
strate that learning the pole model from the demonstration did not speed up learning. This
is not surprising since learning the V–function is significantly more complicated than
learning the model, such that the learning process is dominated by V–function learning.
Interestingly, priming the actor from the demonstration had a significant effect on the ini-
tial performance (condition a) vs. b)). The system knew right away how to pump up the
pendulum, but, in order to learn how to balance the pendulum in the upright position, it fi-
nally took the same amount of time as learning from scratch. This behavior is due to the
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fact that, theoretically, the V–function can only be approximated correctly if the entire
state-action space is explored densely. Only if the demonstration covered a large fraction
of the entire state space one would expect that V–learning can profit from it. We also in-
vestigated using the demonstration to prime the V–function by itself or in combination
with the other functions. The results were qualitatively the same as in shown in Figure 2:
if the policy was included in the priming, the learning traces were like b) and d), otherwise
like a) and c). Again, this is not totally surprising. Approximating a V-function is not just
supervised learning as for  and  ƒ, it requires an iterative procedure to ensure the validity
of (2) and amounts to a complicated nonstationary function approximation process. Given
the limited amount of data from the demonstration, it is generally very unlikely to ap-
proximate a good value function.

2.1.2 Model-Based V-Learning
If learning a model ƒ is required, one can
make more powerful use of it. According
to the certainty equivalence principle, ƒ
can substitute the real world, and planning
can be run in “mental simulations” instead
of interaction with the real world. In rein-
forcement learning, this idea was origi-
nally pursued by Sutton’s (1990) DYNA
algorithms for discrete state-action spaces.
Here we will explore in how far a con-
tinuous version of DYNA, DYNA-CTD,
can help in learning from demonstration.
The only difference compared to CTD in
Section 2.1.1 is that after every real trial,
DYNA-CTD performs five “mental trials”
in which the model of the dynamics ac-

quired so far replaces the actual pole dynamics. Two learning conditions we be explored:

a) Scratch: Trial by trial learning of V, model ƒ, and policy  from scratch.
b) Primed Model: Initial training of ƒ from the demonstration, then trial by trial learning.

Figure 3  demonstrates that in contrast to V–learning in the previous section, learning from
demonstration can make a significant difference now: after the demonstration, it only
takes about 2-3 trials to accomplish a good swing-up with stable balancing, indicated by
Tup >45s. Note that also learning from scratch is significantly faster than in Figure 2.

2.2 THE LINEAR TASK: CART-POLE BALANCING
One might argue that applying reinforcement learning from demonstration to the Swing-
Up task is premature, since reinforcement learning with nonlinear function approximators
has yet to obtain appropriate scientific understanding. Thus, in this section we turn to an
easier task: the cart-pole balancer. The task is approximately linear if the pole is started in
a close to upright position, and the problem has been well studied in the dynamic pro-
gramming literature in the context of linear quadratic regulation (LQR) (Dyer & McRey-
nolds, 1970).

2.2.1 Q–Learning
In contrast to V-learning, Q–learning (Watkins, 1989; Singh & Sutton, 1996) learns a more
complicated value function, Q(x,u), which depends both on the state and the command.
The analogue of the consistency equation (2) for Q–learning is:
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Figure 3: Smoothed learning curves of the average
of 10 learning trials for the learning conditions a)
and b) (see text) of the Swing-Up problem using
“mental simulations”. See Figure 2 for explana-

tions how to interpret the graph.
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At every state x, picking the action u which minimizes Q is the optimal action under the
reward function  (1). As an advantage, evaluating the Q–function to find the optimal pol-
icy does not require a model the dynamical system ƒ that is to be controlled; only the
value of the one-step reward r is needed. For learning from demonstration, priming the Q-
function and/or the policy are the two candidates to speed up learning.

For LQR problems, Bradtke (1993) suggested a Q–learning method that is ideally suited
for learning from demonstration, based on extracting a policy. He observed that for LQR
the Q–function is quadratic in the states and commands:

Q n n m m n mT T T T T Tx u x u
H H

H H
x u H H H H, , , , , ,( ) = [ ]






 [ ] = × = × = = ×11 12

21 22
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and that the (linear) policy, represented as a
gain matrix K, can be extracted from (4) as:

uopt = − = − −K x H H x22
1

21

Conversely, given a stabilizing initial policy
Kdemo, the current Q–function can be approxi-

mated by a recursive least squares procedure,
and it can be optimized by a policy iteration
process with guaranteed convergence (Bradkte,
1993). As a demonstration allows one to extract
an initial policy Kdemo by linearly regressing

the observed command u against the corre-
sponding observed states x, one-shot learning
of pole balancing is achievable. As shown in
Figure 4, after about 120 seconds (12 policy it-
eration steps), the policy is basically indistin-
guishable from the optimal policy. A caveat of

this Q–learning, however, is that it cannot not learn without a stabilizing initial policy.

2.2.2 Model-based V–Learning
Learning an LQR task by learning the V-function is one of the classic forms of dynamic
programming (Dyer & McReynolds, 1970). Using a stabilizing initial policy Kdemo, the

current V–function can be approximated by recursive least squares in analogy with
Bradtke (1993). Similarly as for Kdemo, a (linear) model ƒdemo of the cart-pole dynamics

can be extracted from a demonstration by linear regression of the cart-pole state x(t) vs.
the previous state and command vector (x(t-1), u(t-1)), and the model can be refined with
every new data point experienced during learning. The policy update becomes:

K B H B B H A x x H x A B A B= +( ) ( ) = = [ ] = × = ×−γ γR V f n n n mT T T
demo

1
,  where , , ,

Thus, a similar process as in Bradtke (1993) can be used to find the optimal policy K, and
the system accomplishes one shot learning, qualitatively indistinguishable from Figure 4.

Again, as pointed out in Section 2.1.2, one can make more efficient use of the learned
model by performing mental simulations. Given the model ƒdemo, the policy K can be cal-

culated by off-line policy iteration from an initial estimate of H, e.g., taken to be the iden-
tity matrix (Dyer & McReynolds, 1970). Thus, no initial (stabilizing) policy is required,
but rather an estimate of the task dynamics. Also this method achieves one shot learning.

2.3 POLE BALANCING WITH AN ACTUAL ROBOT
As a result of the previous section, it seems that there are no real performance differences
between V-learning, Q-learning, and model-based V-learning for LQR problems. To ex-
plore the usefulness of these methods in a more realistic framework, we implemented
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learning from demonstration of pole balancing on an anthropomorphic robot arm. The ro-
bot is equipped with a 60 Hz video-based stereo vision. The pole is marked by two color
blobs which can be tracked in real-time. A 30 second long demonstration of pole balanc-
ing was is provided by a human standing in front of the two robot cameras.

There are a few crucial differences in comparison with the simulations. First, as the dem-
onstration is vision-based, only kinematic variables can be extracted from the demonstra-
tion. Second, visual signal processing has about 120ms time delay. Third, a command
given to the robot is not executed with very high accuracy due to unknown nonlinearities
of the robot. And lastly, humans use internal state for pole balancing, i.e., their policy is
partially based on non-observable variables. These issues have the following impact:

Kinematic Variables: In this implementation, the robot arm
replaces the cart of the Cart-Pole problem. Since we have an
estimate of the inverse dynamics and inverse kinematics of
the arm, we can use the acceleration of the finger in Carte-
sian space as command input to the task. The arm is also
much heavier than the pole which allows us to neglect the
interaction forces the pole exerts on the arm. Thus, the pole
balancing dynamics of Figure 1b can be reformulated as:

uml ml mgl x ucos ˙̇ sin , ˙̇θ θ θ+ − = =2 0

All variables in this equation can be extracted from a dem-
onstration. We omit the 3D extension of these equations.

Delayed Visual Information: There are two possibilities of dealing with delayed variables.
Either the state of the system is augmented by delayed commands corresponding to
7*1/60s 120s delay time, xT

t t tx x u u u= …− − −( , ˙, , ˙, , , , )θ θ 1 2 7 , or a state predictive controller
is employed. The former method increases the complexity of a policy significantly, while
the latter method requires a model ƒ.

Inaccuracies of Command Execution: Given an acceleration command u, the robot will
execute something close to u, but not u exactly. Thus, learning a function which includes
u, e.g., the dynamics model (7), can be dangerous since the mapping ( , ˙, , ˙, ) ( ˙̇ , ˙̇ )x x u xθ θ θ→
is contaminated by the nonlinear dynamics of the robot arm. Indeed, it turned out that we
could not learn such a model reliably. This could be remedied by “observing” the com-
mand u, i.e., by extracting u x= ˙̇  from visual feedback.

Internal State in Demonstrated Policy: Investigations with human subjects have shown
that humans use internal state in pole balancing. Thus, a policy cannot be observed that
easily anymore as claimed in Section 2.2: a regression analysis for extracting the policy of
a teacher must find the appropriate time-alignment of observed current state and com-
mand(s) in the past. This can become a numerically involved process as regressing a pol-
icy based on delayed commands is endangered by singular regression matrices. Conse-
quently, it easily happens that one extracts a nonstabilizing policy from the demonstration,
which prevents the application of Q–learning and V–learning as described in Section 2.2.

As a result of these considerations, the most trustworthy item to extract from a demonstra-
tion is the model of the pole dynamics. In our implementation it was used in two ways, for
calculating the policy as in (6), and in state-predictive control with a Kalman filter to
overcome the delays in visual information processing. The model was learned incremen-
tally in real-time by an implementation of RFWR (Schaal & Atkeson 1996). Figure 6
shows the results of learning from scratch and learning from demonstration of the actual
robot. Without a demonstration, it took about 10-20 trials before learning succeeded in re-
liable performance longer than one minute. With a 30 second long demonstration, learning
was reliably accomplished in one single trial, using a large variety of physically different
poles and using demonstrations from arbitrary people in the laboratory.

Figure 5: Sketch of SARCOS
anthropomorphic robot arm

(7)
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3. CONCLUSION
We discussed learning from demonstration in the
context of reinforcement learning, focusing on Q–
learning, value function learning, and model
based reinforcement learning. Q–learning and
value function learning can theoretically profit
from a demonstration by extracting a policy, by
using the demonstration data to prime the Q/value
function, or, in the case of value function learn-
ing, by extracting a predictive model of the
world. Only in the special case of LQR problems,
however, could we find a significant benefit of
priming the learner from the demonstration. In
contrast, model-based reinforcement learning was
able to greatly profit from the demonstration by
using the predictive model of the world for
“mental simulations”. In an implementation with

an anthropomorphic robot arm, we illustrated that even in LQR problems, model-based
reinforcement learning offers larger robustness towards the complexity in real learning
systems than Q–learning and value function learning. Using a model-based strategy, our
robot learned pole-balancing from a demonstration in a single trial with great reliability.
The important message of this work is that not every learning approach is equally suited to
allow knowledge transfer and/or the incorporation of biases. This issue may serve as a
critical additional constraint to evaluate artificial and biological models of learning.
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Figure 6: Smoothed average of 10 learn-
ing curves of the robot for pole balancing.

The trials were aborted after successful
balancing of 60 seconds. We also tested
long term performance of the learning

system by running pole balancing for over
an hour—the pole was never dropped.


