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Abstract
•Stochastic NMPC strategy for a class of discrete event systems,

namely stochastic max-plus linear systems
•Using stochastic approach to interpret the constraints proba-

bilistically, allowing for a sufficiently small violation level
•The proposed scheme does not require any assumption on the

underlying probability distribution of the system parameters
•The developed framework is applicable to high dimensional

problems, which makes it suitable for real industrial applications.

Max-Plus Algebra
Smpns is the set of max-plus-nonnegative-scaling functions, i.e.
functions f of the following form

f (z) = max
i∈Nm

{αi,1z1 + · · · + αi,nzn + βi} , (1)

where z ∈ Rn
ε , αi,· ∈ R+ and βi ∈ R.

Proposition 1. Given Smpns a max-plus-nonnegative-scaling function of
z with each element f (z) ∈ Smpns. Then for any θ ∈ [0, 1]:
1. the set Smpns is a convex set, if

∀g(z), h(z) ∈ Smpns ⇒ θg(z) + (1− θ)h(z) ∈ Smpns.

2. f (·) is a convex function in the convex set Smpns , if for all v, w ∈ Rn
ε

f
(
θv + (1− θ)w

)
≤ θf (v) + (1− θ)f (w).

Stochastic Max-Plus Linear Systems
A stochastic MPL system is an extension of event-invariant MPL
system where the system matrices are uncertain. This system is
described as {

xk+1 = A(δk)⊗ xk ⊕B(δk)⊗ uk ,
yk = C(δk)⊗ xk ,

(2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control input
vector, yk ∈ R` is the output vector, δk ∈ ∆ ⊆ Rd is the random
vector defined on a probability space (∆,P) for k ∈ N ∪ {0}.

Proposition 2. Given a stochastic MPL system in the form of (2), the
future output events yk+i|k belong to the set of max-plus-nonnegative-
scaling functions Smpns for all i ∈ NN .

Definition 1 (Probabilistically Feasible). Given α ∈ (0, 1) as an admis-
sible constraint violation parameter, the state variables are called prob-
abilistically feasible if

Pδ
[
xk+i|k ∈ X , i ∈ NN

]
≥ 1− α . (3)

Note that the index of Pδ denotes the dependency of xk+i|k on the string
of random scenarios {δ0, δ1, · · · , δN−1}.
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Stochastic Model Predictive Control
Define the objective function to be

‖max{yk+i|k − rk+i, 0}‖1 − γ‖uk+i|k‖1 := J (xk,u, δ) ,

where rk+i is the deadline for the (k + i)-th occurrence of the out-
put events and γ is a cost coefficient term for the input variables.
Now we can formulate a chance-constrained finite-horizon opti-
mal control problem for each event step k:

min
u∈U

E [J (xk,u, δ)] (4a)

s.t. uk+(i+1)|k − uk+i|k ≥ 0 , (4b)

Pδ



yk+i|k ∈ Y
Euk+i|k + F yk+i|k ≤ H
i ∈ {1, · · · , N}

 ≥ 1− α , (4c)

where Y ⊆ R` represents a desired convex bound on the pre-
dicted output events at each horizon step i ∈ NN .

Scenario Model Predictive Control
Theorem 1 (Calafiore, Campi, TAC, 2008). Define the positive constant
parameters α, β ∈ (0, 1) to be a probability of constraint violations and
a confidence level, respectively. If

S1 ≥ g(α, β,mN) :=
2

α
ln

1

β
+ 2mN +

2mN

α
ln

2

α
,

then the optimal solution of the tractable formulation (5) is a feasible
solution for the chance-constrained optimization problem (4) with con-
fidence level of (1− β).

Consider now the following tractable formulation of (4), called
randomized MPC:

min
u∈U

∑
δ(k)∈W0

J (xk,u, δ
(k)) , (5a)

s.t. uk+(i+1)|k − uk+i|k ≥ 0 , (5b){
yk+i|k = ϕ(xk,u, δ

(l)) ∈ Y
Euk+i|k + F yk+i|k ≤ H

,

{
∀ i ∈ NN

∀ δ(l) ∈W1
, (5c)

Remark 1. The proposed framework provides a solution to the stochas-
tic MPL system (2) with a probabilistic feasibility certificate and it does
not necessarily lead to the optimal solution. This is due to the fact that
a set of S0 random scenarios is used as a tuning variable to empirically
approximate the cost function J .

Results
• Smpns is a set of convex function with respect to the control input

•Chance-Constrained MPC formulation for feasibility of system
trajectories along the prediction horizon

•Randomized MPC framework to approximate the underlying
problem with a-priori probabilistic performance guarantees for
the feasibility of obtained solution with high confidence level.

•Simulation study for two different cases: production system
case and Dutch railways to illustrate scalability of our framework
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Production system case study. Left figure: the difference between the output signal and the due date signal. Right figure: the difference between the input signal and the due date
signal. The ‘green’ solid line is related to the result of our developed framework. The ’red’ dashed line corresponds to the nominal system model, whereas the ‘blue’ dotted line
shows the results for the nominal system model with taking into account the mean value of the uncertain elements. The ‘black’ line is the boundary for (yk − rk) ≤ 10 .


