Aquifer Thermal Energy Storage (ATES) Network Distributed Energy Storage in Smart Grid

Vahab Rostampour

Delft University of Technology

February 2, 2015

- 1 Problem Statement
- Proposed Modeling
- **3** Concluding Remarks

3

3

Image: A mathematical states and a mathem

1 Problem Statement

- **2** Proposed Modeling
- **3** Concluding Remarks

æ

A D N A B N A B N A B N

Schematic of the problem

Warm season:

- The cooling is required for the building.
- The cold water is taken from cold well.
- The warm water is injected to the warm well.

< A → < 3

3

Schematic of the problem

Cold season:

- The heating is required for the building.
- The warm water is taken from warm well.
- The cold water is injected to the cold well.

< 1 k

Questions?

- How to model the building?
- How to model the heat pump?
- How to model the thermal energy storage (aquifer)?
- Importantly, How detailed has to be the modeling parts?
- In which cycle (yearly-season), the problem has to be considered?
- How to have the combination of the heating and cooling for a yearly study?

1 Problem Statement

- Proposed Modeling
- Concluding Remarks

< □ > < 同 > < 回 > < 回 > < 回 >

э

The heating and cooling systems

- Yearly cycle
- Cooling network works with heat exchanger
- Heating system works with heat pump
- regulation of building temperature

Image: A (1)

Basis definitions

- State variables: temperatures of the all components.
- Free variables:
 - valves position (flow rates)
 - stored thermal energy, heating and cooling energy
- Objective:
 - tracking desired temperature for the building
 - energy management of the building
- Constraints:
 - balance of the extraction and injection of the energy amount of aquifer
 - simultaneous running of the heating and cooling system

Building model

- Building temperature changes: $C_B \dot{T}_B = Q_{heating} + Q_{hw,b} + Q_{gain} Q_{loss}$
- Heat water temperature changes: $C_{hw}T_{hw} = Q_h Q_{hw,b}$

where

- *Q_{heating}*: the amount of heating power
- Q_{gain} : the amount of heating power is obtained via lighting, occupancy (number of people) and etc.
- Q_{loss} : the amount of lost of thermal power to the environment: $Q_{loss} = UA_{ba} * (T_B - T_{amb})$
- $Q_{hw,b}$: the thermal power from heating network into the building: $Q_{hw,b} = UA_{hw,b} * (T_{hw} - T_B)$
- Q_h : the produced thermal power from heat pump.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Heat pump model

- Thermal power from heat pump into heating net: Q_h = COP * (Q_h - Q_s)
- COP: coefficient of performance of heat pump. quadratic approximation: $a_0 + a_1 \Delta \overline{T} + a_2 \Delta \overline{T}^2$ where $\Delta \overline{T} = \frac{T_{in} + T_{out}}{2} - T_{amb}$

•
$$Q_h = \rho_w c_{pw} \phi_{hnet} * (T_{out,hp} - T_{in_hp})$$

• $Q_s = \rho_w c_{pw} V P_{hp} \phi_{hp} * (T_{aq,h} - T_{aq,c,hp})$

N 4 E N

< 4 →

Aquifer Thermal Energy Storage model

The easiest model is an autoregressive exogenous model **ARX(1,1)**:

- Warm well model: $Q_{aq,h}(t+1) = \eta_{h,t}Q_{aq,h}(t) + S_h(t)$
- Cold well model: $Q_{aq,c}(t+1) = \eta_{c,t}Q_{aq,c}(t) + S_c(t)$
- S_h(t) and S_c(t) are positive in case if we inject, negative if we extract thermal energy from wells.
- Limitation of the capacities and rate of charge and discharge energy.

How to capture the neighboring effects: we can add the following part into their dynamics: $\sum_{j \in N_i} A_{ij} Q_{ij}^{aq}$

Problem Statement

Proposed Modeling

3 Concluding Remarks

< □ > < 同 > < 回 > < 回 > < 回 >

э

Conclusions

- Considering a dynamical building model
- Formulating a static model of heat pump in the building thermal system
- An energy-based ATES system model

< 4[™] ▶

э

Aquifer Thermal Energy Storage (ATES) Network Distributed Energy Storage in Smart Grid

Vahab Rostampour

Delft University of Technology

February 2, 2015