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Research Direction
The following concepts are involved:

1 Constrained Optimal Control Techniques:
• Model Predictive Control

2 Large Scale Complex System:
• Aquifer Thermal Energy Storage Smart Grids

3 Distributed System Solutions:
• Cooperative Strategy - Negotiation Approach

4 Robustness of Solutions w.r.t. Uncertainties
• Randomized Approach - Data-Based Robust Optimization

Main research direction:
Stochastic Distributed Optimal Control for Large Scale Complex Systems
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Outline

1 Single Agent Model

2 Control Problem Formulation

3 Simulation Study and Main Results

4 Discussions and Future Works
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Building Thermal Comfort Relations
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Building Thermal Comfort Model Formulation

We define the following model:

Building Dynamical Model
xB,k+1 = xB,k + fB(xB,k , uB,k , νB,k , νBext,k)τ

yB,k = gB(xB,k , uB,k)

• Building inside variables (states): xB,k ∈ R3

• Building outside variables (uncertain): νBext,k ∈ R3

• Pump flow rate variable (control): uB,k

• Supplied water temperature: νB,k

• Returned water temperature: yB,k

• Sampling period: τ
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Heat Exchanger Model

A countercurrent heat exchanger is used and it presents via a static model.
Static Model Variables:

• Input water temperatures:
νhe,k ∈ R2

• Pump flow rates
(control variables): uA,k , uS,k

• Output water temperatures:
yhe,k ∈ R2
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Heat Exchanger Static Model
yhe,k = H(νhe,k , uA,k , uS,k)
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Heat Pump Model

An electrical water to water heat pump is used with static model.

Static Model Variables:
• Input water temperatures:
νhp,k ∈ R2

• Pump flow rates
(control variables): uB,k , uS,k

• Output water temperatures:
yhp,k ∈ R2
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Storage Tank Model
We define an storage tank model with the following first order difference
equations:

Vs,k+1 = Vs,k + Vin,k − Vout,k

Ts,k+1 =
Vs,k

Vs,k + Vin,k
Ts,k +

Vin,k

Vs,k + Vin,k
Tin,k

Storage Dynamical Model
xS,k+1 = fS(xS,k , uS,k , νS,k)

yS,k = gS(xS,k)

• Tank temperature and volume variables (state): xS,k ∈ R2

• Pump flow rate variable (control): uS,k

• Input water temperature: νS,k

• Output water temperature: yS,k
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Boiler and Chiller Model

We define the boiler and chiller water temperatures with the following
relations:

Boiler:


Tboi

out,k = 90◦C
Tboi

in,k = Tbypass,k

ub,k = vb,kuB,k

Chiller:


Tchi

out,k = 5◦C
Tchi

in,k = Tbypass,k

uc,k = vc,kuS,k

• Boiler valve position (control): vb,k ∈ [0, 1]
• Chiller valve position (control): vc,k ∈ [0, 1]
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Aquifer Thermal Energy Storage System Principle

Similar modeling as the storage model by introducing different modes:

• Water is taken from one
of the wells and is injected
into the counterpart well.

• Taken water has constant
temperature until the
aquifer water temperature
dominates.

• Injected water has gained
thermal energy and it is
stored for the next
upcoming season.
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Aquifer Thermal Energy Storage System Model

We define the following Model:

ATES system Dynamical Model
xA,k+1 = fA(xA,k , uA,k , νA,k , sw,k , sc,k)

yA,k = gA(xA,k , sw,k , sc,k)

• Wells temperature and volume variables (state): xA,k ∈ R4

• Pump flow rate variable (control): uA,k

• Output water temperature: yA,k

• Input water temperature: νA,k
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Interconnections Between Each Subsystem
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Single Agent Representation

Consider compact formulation of dynamical agent system:

Single Agent Model
xk+1 = f (xk , uk , vk , sk ,wk)

• State variables: xk := [xB,k , xS,k , xA,k] ∈ R9

• Pump flow rate variables: uk := [uB,k , uS,k , uA,k] ∈ R3

• Valve position variables: vk := [vb,k , vc,k , vh,k] ∈ [0, 1]3

• Operating mode variables: sk := [sw,k , sc,k , sn,k] ∈ {0, 1}3

• Uncertain variables: wk := [To,k , Io,k ,Vo,k] ⊆ ∆ ∈ R3

• State variables are available at each sampling time k.
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Outline

1 Single Agent Model

2 Control Problem Formulation

3 Simulation Study and Main Results

4 Discussions and Future Works
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Control Problem Formulation

We formulate an optimization problem as follows:

min
{uk ,vk}N

k=1

Objective Function: Reference Tracking

subject to: Nonlinear System Dynamics
State and Control Bounds
Valves, Modes and Uncertainty Sets
Heat Exchanger Capacity Constraints
Heat Pump Capacity Constraints

Proposed Formulation
Stochastic Mixed-Integer Nonlinear Optimization Problem
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Simulation Study

A single agent model control problem formulation:
• Sampling period: 1h
• Prediction horizon: 24h
• No integer variables (fixed)
• No stochastic terms (deterministic controller)
• Linear approximation of HP & HE complex subsystems
• Remove complex constraints of HP & HE:

νmin
he ≤ νhe,k ≤ νmax

he , ymin
he ≤ yhe,k ≤ ymax

he

νmin
hp ≤ νhp,k ≤ νmax

hp , ymin
hp ≤ yhp,k ≤ ymax

hp
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Simulation Results
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Simulation Results
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Main Results

1 Single Agent Model Derivation:
• Detailed mathematical representations of each subsystem (components)

that are involved in building heating and cooling system with ATES.

2 Single Agent Control problem Formulation:
• Deterministic nonlinear program for each sampling time k
• Determination of feasible operating bounds

3 Simulation Results:
• Building model simulation with a real building case study properties
• Illustrate a performance of controller for the case study building model
• Obtain a feasible control solution for the case study building model
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Research Results

• Published:
1 IFAC Conference on Nonlinear Model Predictive Control, Seville, Spain

September 17-20, 2015. (conference paper)
2 34th Benelux Meeting on Systems and Control, Lommel, Belgium

March 24-26, 2015. (abstract paper)
3 6th European Geothermal PhD Day, Delft, Netherlands

February 25-27, 2015. (abstract paper)

• Next Plans:
1 European Control Conference 2016 by October 20, 2015.
2 European Geothermal Congress 2016 by October 31, 2015.
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Discussions: Open Issues

1 Computational Tractability:
complexity of single nonlinear optimization problem:

• Dimension of decision space: (3 + 3)× 24
• Dimension of constraint function:

• nonlinear equality: 9× 24
• inequality: 2× (9 + 3 + 3)× 24

• Computational time: construction: ≤ 0.1s & solver: ≤ 2 min
• Simulation time for one year: ≤ 2 weeks

2 Computational time is growing w.r.t. Complexity:
• Adding integer variables
• Considering number of uncertain scenarios: ≥ 1000
• Interactions modeling between multiple agents
• Iterations of negotiation approach between agents

3 Simulation time is growing w.r.t. Computational time:
• Simulation for at least two years to capture agents interactions?
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Discussions: Some Ideas

1 Hierarchical settings:
• Weekly-based control approach for ATES system

• Simulate time for more than two years
• Hourly-based control approach for Building system

• Simulate time for about one week

2 Alternative aspects:
• An agent consists of an ATES system with building:

• Building model represents via an uncertain energy demand profile
• Thermal energy balance has to be satisfied

• A more simple agent model:
• An ATES system with the stored water volume as a state variable and

the fixed water temperatures
• A building thermal comfort model with the building zone temperature

as a state variable and the supplied/returned water temperatures
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Future Works: Interactions Model

Aquifer Thermal Energy Storage (ATES) System
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Future Works: Optimal Operation
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Future Works: Effective Operation

Aquifer Thermal Energy Storage (ATES) System
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Future Works: Negotiation Approach

Aquifer Thermal Energy Storage (ATES) System
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Thanks!
Questions?
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Building Thermal Comfort Energy Demand

Main goal is to keep building zone temperature at the desired level.
• Building energy demand level is: Ed = Egain − Eloss

• Endogenous source of losses: Eloss = Qzo + Qso + Qvent

• Convection heat transfer from zone and solid to outside air: Qzo,Qso

• Ventilation thermal energy lost: Qvent

• Endogenous source of energy: Egain = Qradz + Qrads + Qp + Qe

• Radiation absorption by building zone and solid: Qradz ,Qrads

• Occupancy and heat gain due to the electrical devices: Qp,Qe
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Heat Exchanger Model

Having the following relations:

• Aquifer plate thermal energy: Qhe,k = ρwcp,wuA,k(Tap
out,k − Tap

in,k)

• Building plate thermal energy: Qhe,k = ρwcp,wuS,k(Tbp
in,k − Tbp

out,k)

• Using the internal thermal energy conditions: Qhe,k = kheAhe∆The
m

• ∆The
m is the mean temperature difference for the heat transfer.

Heat Exchanger Static Model

Πhe :=
{

yhe,k = H(νhe,k , uA,k , uS,k)
∀k ∈ {0, 1, 2, · · · }
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Heat Pump Model

Having the following relations:
• The thermal energy of condenser Qh,k and evaporator Qc,k sides:

Qh,k = ρwcp,wuB,k(Tcon
out,k − Tcon

in,k)
Qc,k = ρwcp,wuS,k(Teva

in,k − Teva
out,k)

• Using the internal thermal energies conditions:
Qh,k = khpAhp∆Thp

m,h and Qc,k = khpAhp∆Thp
m,c

• The coefficient of performance: COP = Qh,k
(
Qh,k − Qc,k

)−1

• Using Carnot cycle: COP = ηhpThs
(
Ths − Tcs

)−1

Heat Pump Static Model

Πhp :=
{

yhp,k = P(νhp,k , uB,k , uS,k)
∀k ∈ {0, 1, 2, · · · }
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Aquifer Thermal Energy Storage System Model

Consider the following mixed-integer first-order difference equations:

Vaq
w,k+1 = Vaq

w,k + (sw,k − sc,k)Vaq
in,k

Vaq
c,k+1 = Vaq

c,k + (sc,k − sw,k)Vaq
in,k

Taq
w,k+1 =

Vaq
w,k

Vaq
w,k + sw,kVaq

in,k
Taq

w,k +
sw,kVaq

in,k

Vaq
w,k + sw,kVaq

in,k
Taq

in,k −
α(Taq

w,k − Taq
amb,k)

Vaq
w,k + sw,kVin,k

Taq
c,k+1 =

Vaq
c,k

Vaq
c,k + sc,kVaq

in,k
Taq

c,k +
sc,kVaq

in,k

Vaq
c,k + sc,kVaq

in,k
Taq

in,k −
α(Taq

c,k − Taq
amb,k)

Vaq
c,k + sc,kVin,k

• Integer variables of warm and cold season: sw,k , sc,k ∈ {0, 1}

• Output water temperature is: Taq
out,k = sc,kTaq

w,k + sw,kTaq
c,k
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Interconnections Between Each Subsystem

1 ATES system: νA,k := Taq
in,k , yA,k := Taq

out,k
• Taq

in,k = Tap
out,k

2 Heat exchanger: νhe,k := [Tap
in,k ,T

bp
in,k], yhe,k := [Tap

out,k ,T
bp
out,k]

• Tap
in,k = Taq

out,k and Tbp
in,k = (1− vc,k)Ts,k + vc,kTchi

out,k

3 Heat pump: νhp,k := [Tcon
in,k ,Teva

in,k], yhp,k := [Tcon
out,k ,Teva

out,k]
• Tcon

in,k = sn,k(sw,kTbp
out,k +sc,kTB

ret,k)+(1−sn,k)(sw,kText
out,k +sc,kTB

ret,k)
• Teva

in,k = sn,k(sc,kTbp
out,k +sw,kTB

ret,k)+(1−sn,k)(sw,kText
out,k +sc,kTB

ret,k)
4 Storage model: νS,k := Tin,k , yS,k := Ts

out,k
• Ts

in,k = vh,k(sw,kTcon
out,k + sc,kTeva

out,k) + (1− vh,k)TB
ret,k

5 Building model: νB,k := TB
sup,k , yB,k := TB

ret,k

TB
sup,k = vh,k(sw,kTeva

out,k + sc,k((1−vb,k)Tcon
out,k + vb,kTboi

out,k)) + (1−vh,k)Tbp
out,k
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Simulation Results
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