Stochastic Constrained Control For Large Scale Complex Systems

Vahab Rostampour

Delft University of Technology Deft Center of Systems and Control

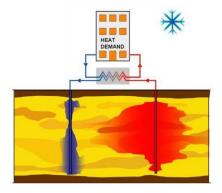
February 17, 2016

Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Cold season:

- The building requests thermal energy for the heating purpose
- Water is injected into cold well and is taken from warm well
- The stored water contains cold thermal energy for next season

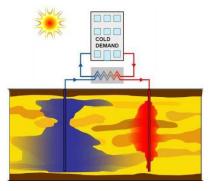


Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Warm season:

- The building requests thermal energy for the cooling purpose
- Water is injected into warm well and is taken from cold well
- The stored water contains warm thermal energy for next season



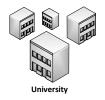
Vahab Rostampour (TUD)

Stochastic Constrained Control

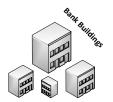
February 17, 2016 3 / 20

(日) (四) (日) (日) (日)

æ



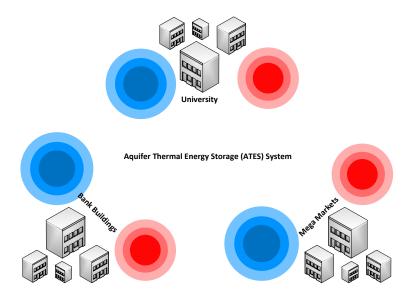
Aquifer Thermal Energy Storage (ATES) System



< A → < 3

Stochastic Constrained Contro

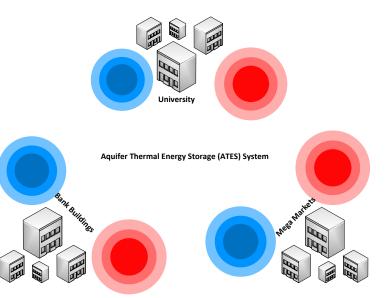
3 N 3



Stochastic Constrained Contro

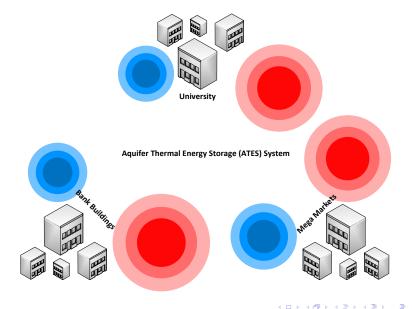
H

< 個 > < ∃

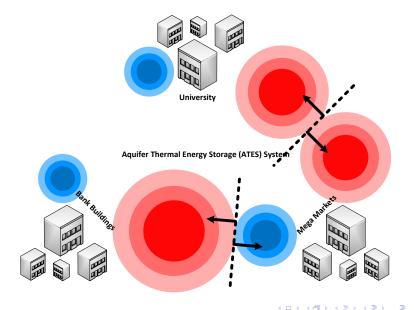


Stochastic Constrained Control

< 個 > < ∃

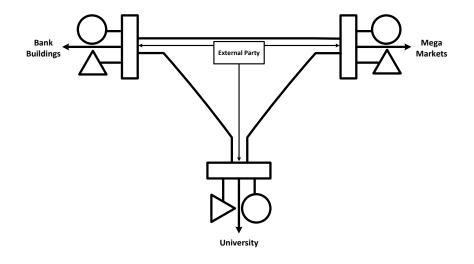


Stochastic Constrained Control



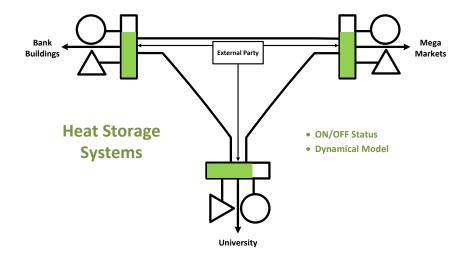
Vahab Rostampour (TUD)

February 17, 2016 3 / 20



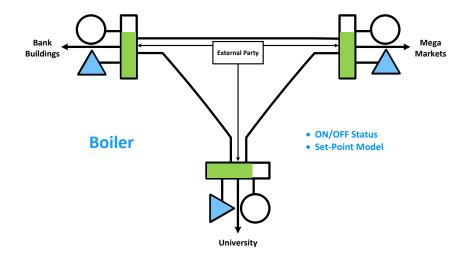
э

Image: A matrix and a matrix



э

< □ > < □ > < □ > < □ > < □ > < □ >



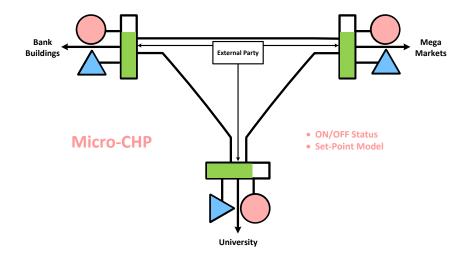
Vahab Rostampour (TUD)

Stochastic Constrained Contro

February 17, 2016 4 / 20

э

(日) (四) (日) (日) (日)



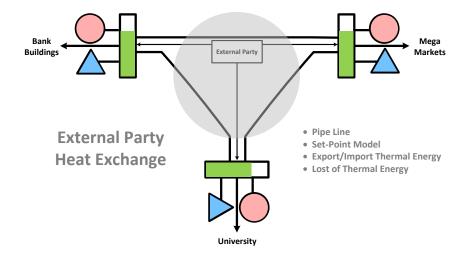
Vahab Rostampour (TUD)

Stochastic Constrained Contro

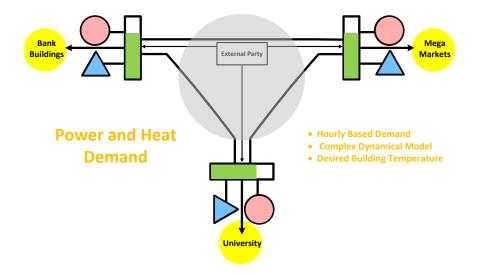
February 17, 2016 4 / 20

э

A D N A B N A B N A B N



(4) (日本)



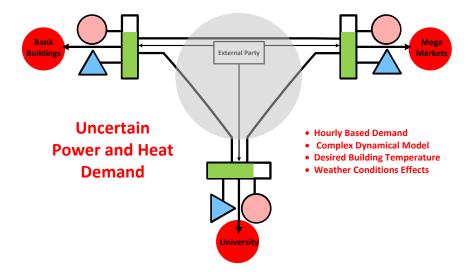
Vahab Rostampour (TUD)

Stochastic Constrained Contro

February 17, 2016 4 / 20

э

A D N A B N A B N A B N



э

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

- 1 Mathematical Model
- **2** Stochastic Control
- **3** Simulation Study

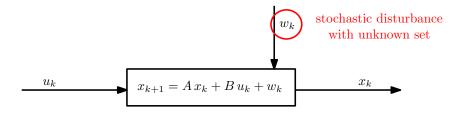
4 Conclusions

→ ∃ →

э

Mathematical Model

Define x_k to be the imbalance error between demand and production level. This yields the following dynamical model for imbalance error:



Our objective: design a state feedback control policy that minimizes the energy consumption of buildings, while keeping room temperatures between comfortable limits, despite *uncertain weather conditions*, and subject to the operational constraints

イヨト イヨト イヨト

Constrained Control Problem

Finite horizon open loop control problem:

$$\min_{\substack{(u_k, y_k)_{k=1}^M}} \quad J(x_k, u_k) := \mathbb{E}\left[\sum_{k=0}^M x_k^\top Q x_k + \sum_{k=0}^{M-1} u_k^\top R u_k\right], \ Q \succeq 0, \ R \succ 0$$

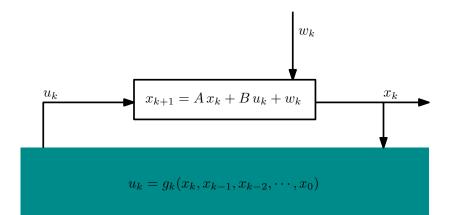
subject to: $f_k(x_k, u_k, y_k) \le 0, \ y_k \in \{0, 1\}, \ k = 0, 1, \cdots, M$

Comments:

- Easy to solve without constraints, e.g., LQG if noise is Gaussian
- Difficult in presence of constraints, binary variables (no closed-form solution)

Parametrization of the state feedback control policy can be used to obtain a less conservative formulation for the price of **sub-optimal solution**

Control Policy Parametrization



state feedback control policy

Vahab Rostampour (TUD)

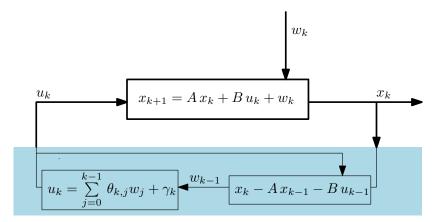
Stochastic Constrained Control

February 17, 2016 8 / 20

- 31

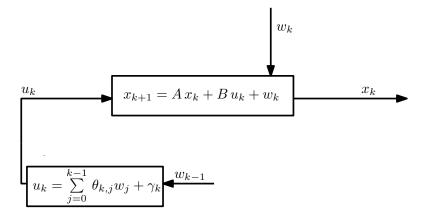
< □ > < □ > < □ > < □ > < □ > < □ >

Control Policy Parametrization

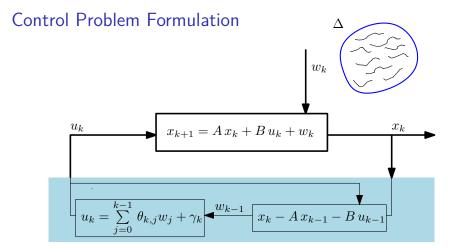


Affine feedback policy in the reconstructed (and possibly saturated) noise

Control Policy Parametrization

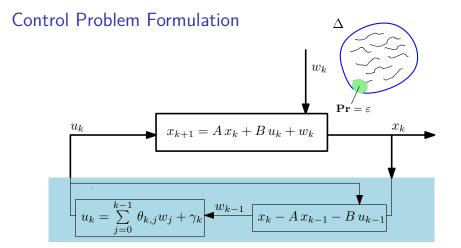


Control input and state variables depend linearly on the parameters: $\theta_{k,j}, \gamma_k$



Robust approach:

- Constraints must be satisfied for every and each disturbance realization Disturbance realizations are treated equally likely (hard constraints)
- Intractable problem formulation due to the unknown disturbance set



Chance constrained approach:

- Constraints must be satisfied for most disturbance realizations except for a set of probability ≤ ε (soft constraints)
- Nonconvex optimization problem and in general hard to solve

Randomized Approximation

optimization variables

$$\eta = \{u_k | k = 1, \dots, M\}$$
min
 $g \in \mathbf{H}$
 $g \in \{u_k | k = 1, \dots, M\}$
 $J(\eta)$
 $\delta = \{w_k | k = 1, \dots, M\}$
s.t. $\mathbf{Pr} [h(\eta, \delta) \leq 0] \geq 1 - \varepsilon$

The following **randomized approximation** that **only relies on data** can provide (conservative) solution to the chance constrained problem:

$$\min_{\eta \in \mathbf{H}} \quad J(\eta)$$
 s.t. $h(\eta, \delta^{(i)}) \le 0$, $i = 1, 2, \cdots, N$

 ${\cal N}$ is the number of required disturbance realizations that one needs to generate. This approach provides a solution guaranteed to be probabilistically fulfilling the chance constraints

- 4 回 ト 4 三 ト 4 三 ト

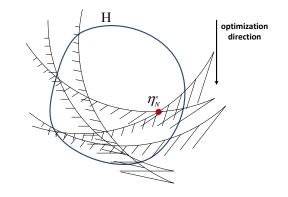
Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

- Convex reformulation is usually computationally demanding
- Still conservative performance with respect to the desired level of violation



One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm, etc.

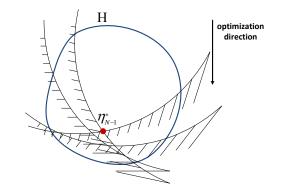
Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

- Convex reformulation is usually computationally demanding
- Still conservative performance with respect to the desired level of violation



One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm, etc.

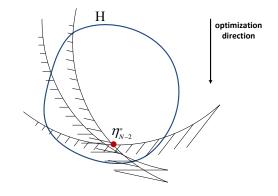
Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

- Convex reformulation is usually computationally demanding
- Still conservative performance with respect to the desired level of violation



One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm, etc.

Nonconvex Randomized Approximation

 $\begin{array}{ll} \text{Mixed Integer} \\ \text{Program} \end{array} \begin{cases} \min_{\eta \in \mathbf{H}, y} & J(\eta) \\ \text{s.t.} & \mathbf{Pr} \left[h(\eta, y, \delta) \leq 0 \right] \geq 1 - \varepsilon \\ & y \in \{0, 1\}^M \\ & y : \begin{pmatrix} \text{vector of integer variables} \\ \text{along the horizon length} \end{pmatrix} \end{cases}$

Can be reformulated via robust (worst-case) programing as follows:

 $\begin{array}{ll} & \text{Worst Case Program} \\ & h_j(\eta, \delta) := h(\eta, y_j, \delta) \end{array} \quad \begin{cases} \min_{\eta \in \mathbf{H}} & J(\eta) \\ \text{s.t.} & \max_{j \in \{1, \cdots, 2^M\}} \mathbf{Pr}\left[h_j(\eta, \delta) \leq 0\right] \geq 1 - \varepsilon \end{cases}$

Using randomized approximation, we need to generate at least $2^M N$ disturbance realizations to provide a solution guaranteed to be chance constrained feasible. This leads to **intractable optimization formulation**.

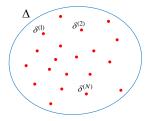
Robust Randomized Optimization

Instead we provide two-step approach:

1 Determining a bounded set that contains $1 - \varepsilon$ portion of Δ :

$$\begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_{k} - \underline{\gamma}_{k} \\ \text{s.t.} & \mathbf{Pr} \left[\delta_{i,k} \in [\underline{\gamma}_{k}, \overline{\gamma}_{k}], \forall k \right] \geq 1 - \varepsilon \end{cases}$$

2 Solving the robust counterpart of problem w.r.t. the bounded set γ^* :



Robust Randomized Optimization

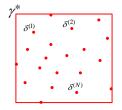
Instead we provide two-step approach:

1 Determining a bounded set that contains $1 - \varepsilon$ portion of Δ :

$$\begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_k - \underline{\gamma}_k \\ \text{s.t.} & \mathbf{Pr} \left[\delta_{i,k} \in [\underline{\gamma}_k, \overline{\gamma}_k], \, \forall k \right] \ge 1 - \varepsilon \end{cases} \begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_k - \underline{\gamma}_k \\ \text{s.t.} & \delta_{i,k}^j \in [\underline{\gamma}_k, \overline{\gamma}_k], \, \left\{ \forall k \\ \forall j \right\} \end{cases}$$

2 Solving the robust counterpart of problem w.r.t. the bounded set γ^* :

$$\begin{cases} \min_{\boldsymbol{\eta}\in\mathbf{H},\boldsymbol{y}} & J(\boldsymbol{\eta}) \\ \text{s.t.} & h(\boldsymbol{\eta},\boldsymbol{y},\boldsymbol{\gamma}^o) + h(\boldsymbol{\eta},\boldsymbol{y},\boldsymbol{\gamma}^{worst}) \leq 0 \\ & \boldsymbol{y} \in \{0,1\}^M \end{cases}$$



4

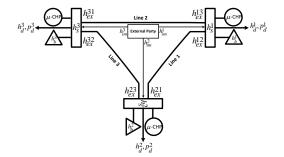
Simulation Results

A comparison against a Benchmark approach based on two-step solution

Simulation study settings:

- Day-ahead control problem
- Economical cost function
- Operational constraints
- Uncertain thermal energy
- Unit commitment & scheduling problem

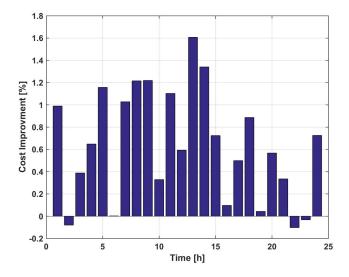
three-agent (households, greenhouses) smart thermal grid example



Mixed Integer Chance Constrained Linear Optimization Problem

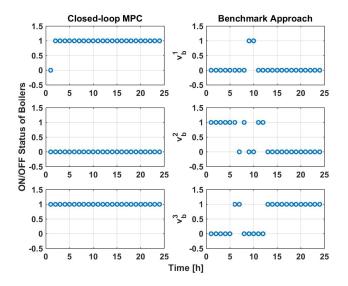
February 17, 2016 14 / 20

Simulation Results: Relative Cost Improvement



15 / 20

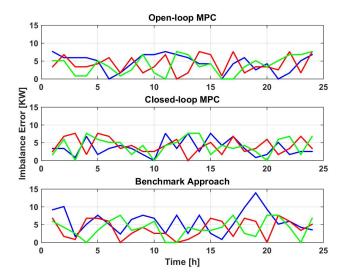
Simulation Results: ON/OFF Status of Boilers



February 17, 2016

< 1[™] >

Simulation Results: Imbalance Error Trajectories



Vahab Rostampour (TUD)

17 / 20

< 行

Conclusions

Remarks:

- Centralized control problem formulation for a SmartThermal Grid
- Affine Uncertainty Feedback Policy with chance constraint formulation
- Convex Reformulation of the proposed stochastic constrained control

Next Steps:

- Developing a Real Demand Profile Generator by using a detailed building dynamical model
- Incorporating Aquifer Thermal Energy Storage System (ATES) in the developed framework

3

E 6 4 E 6

Future Directions

Decision making under uncertainty:

- **Traditional Approach**: perfect information, i.e. accurate system parameters and specific measures for the random variable
- Modern Approach: Big Data, i.e. historical data, data driven approaches
 - Randomization (Scenario) Based Optimization

Current works concentrate toward:

- Computational algorithm for on-line data driven optimization
- Distributed algorithm for stochastic complex network problem
- Incremental algorithm for aggregated mathematical optimization

Thank you! Questions?

Future Directions

Decision making under uncertainty:

- **Traditional Approach**: perfect information, i.e. accurate system parameters and specific measures for the random variable
- Modern Approach: Big Data, i.e. historical data, data driven approaches
 - Randomization (Scenario) Based Optimization

Current works concentrate toward:

- Computational algorithm for on-line data driven optimization
- Distributed algorithm for stochastic complex network problem
- Incremental algorithm for aggregated mathematical optimization

Thank you! Questions?

Stochastic Constrained Control For Large Scale Complex Systems

Vahab Rostampour

Delft University of Technology Deft Center of Systems and Control

February 17, 2016

