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Aquifer Thermal Energy Storage (ATES)

• A large-scale natural subsurface storage for thermal energy
• An innovative method for thermal energy balance in smart grids

Cold season:
• The building requests thermal

energy for the heating purpose
• Water is injected into cold well

and is taken from warm well
• The stored water contains cold

thermal energy for next season
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Smart Thermal Grids: ATES Systems
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation

External Party
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External Party
Heat Exchange

· Pipe Line
· Set-Point Model
· Export/Import Thermal Energy
· Lost of Thermal Energy
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Smart Thermal Grids: Conceptual Representation
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Mathematical Model

Define xk to be the imbalance error between demand and production level. This
yields the following dynamical model for imbalance error:

xk+1 = Axk +B uk + wk
uk xk

wk
stochastic disturbance
with unknown set

Our objective: design a state feedback control policy that minimizes the energy
consumption of buildings, while keeping room temperatures between comfortable
limits, despite uncertain weather conditions, and subject to the operational
constraints
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Constrained Control Problem

Finite horizon open loop control problem:

min
(uk,yk)M

k=1

J(xk, uk) := E

[
M∑
k=0

x>k Qxk +
M−1∑
k=0

u>k Ruk

]
, Q � 0 , R � 0

subject to: fk(xk, uk, yk) ≤ 0 , yk ∈ {0, 1} , k = 0, 1, · · · ,M

Comments:
• Easy to solve without constraints, e.g., LQG if noise is Gaussian
• Difficult in presence of constraints, binary variables (no closed-form solution)

Parametrization of the state feedback control policy can be used to obtain a less
conservative formulation for the price of sub-optimal solution
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Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk = gk(xk, xk−1, xk−2, · · · , x0)

state feedback control policy
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Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

Affine feedback policy in the reconstructed (and possibly saturated) noise
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Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk
wk−1

Control input and state variables depend linearly on the parameters:
θk,j , γk
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Control Problem Formulation

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

∆

Robust approach:
• Constraints must be satisfied for every and each disturbance realization

Disturbance realizations are treated equally likely (hard constraints)
• Intractable problem formulation due to the unknown disturbance set

Vahab Rostampour (TUD) Stochastic Constrained Control February 17, 2016 9 / 20



Control Problem Formulation

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

Pr = ε

∆

Chance constrained approach:
• Constraints must be satisfied for most disturbance realizations except for a

set of probability ≤ ε (soft constraints)
• Nonconvex optimization problem and in general hard to solve
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Randomized Approximation

min
η∈H

J(η)

s.t. Pr [h(η, δ) ≤ 0] ≥ 1− ε

optimization variables uncertainty parameters
δ = {wk|k = 1, · · · ,M}η = {uk|k = 1, · · · ,M}

The following randomized approximation that only relies on data can provide
(conservative) solution to the chance constrained problem:

min
η∈H

J(η)

s.t. h(η, δ(i)) ≤ 0 , i = 1, 2, · · · , N

N is the number of required disturbance realizations that one needs to generate.
This approach provides a solution guaranteed to be probabilistically fulfilling the
chance constraints
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Randomized Approximation & Constraint Removal

Advantages:

• Only relies on the data
• Reformulation is a convex

optimization problem
Disadvantages:

• Convex reformulation is
usually computationally
demanding

• Still conservative
performance with respect to
the desired level of violation



*
N


optimization 
direction

One way, to improve performance of the solution, is by using constraint removal
techniques such as greedy algorithm, etc.
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Nonconvex Randomized Approximation

• Mixed Integer
Program


min
η∈H,y

J(η)

s.t. Pr [h(η, y, δ) ≤ 0] ≥ 1− ε
y ∈ {0, 1}M

y :
(vector of integer variables

along the horizon length
)

Can be reformulated via robust (worst-case) programing as follows:

• Worst Case Program
• hj(η, δ) := h(η, yj , δ)

min
η∈H

J(η)

s.t. max
j∈{1,··· ,2M}

Pr [hj(η, δ) ≤ 0] ≥ 1− ε

Using randomized approximation, we need to generate at least 2M N disturbance
realizations to provide a solution guaranteed to be chance constrained feasible.
This leads to intractable optimization formulation.
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Robust Randomized Optimization
Instead we provide two-step approach:

1 Determining a bounded set that contains 1− ε portion of ∆:min
γ

M−1∑
k=0

γk − γk

s.t. Pr
[
δi,k ∈ [γ

k
, γk] , ∀k

]
≥ 1− ε

2 Solving the robust counterpart of problem w.r.t. the bounded set γ∗:

(1)
(2)

( )N
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k
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min
γ

M−1∑
k=0

γk − γk

s.t. δji,k ∈ [γ
k
, γk] ,

{
∀k
∀j

2 Solving the robust counterpart of problem w.r.t. the bounded set γ∗:


min
η∈H,y

J(η)

s.t. h(η, y, γo) + h(η, y, γworst) ≤ 0
y ∈ {0, 1}M

(1)
(2)

( )N

*
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Simulation Results

A comparison against a Benchmark approach based on two-step solution

Simulation study settings:

• Day-ahead control problem
• Economical cost function
• Operational constraints
• Uncertain thermal energy
• Unit commitment &

scheduling problem

three-agent (households, greenhouses)
smart thermal grid example
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Simulation Results: Relative Cost Improvement
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Simulation Results: ON/OFF Status of Boilers
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Simulation Results: Imbalance Error Trajectories
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Conclusions

Remarks:

• Centralized control problem formulation for a SmartThermal Grid

• Affine Uncertainty Feedback Policy with chance constraint formulation
• Convex Reformulation of the proposed stochastic constrained control

Next Steps:

• Developing a Real Demand Profile Generator by using a detailed building
dynamical model

• Incorporating Aquifer Thermal Energy Storage System (ATES) in the
developed framework
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Future Directions

Decision making under uncertainty:

• Traditional Approach: perfect information, i.e. accurate system
parameters and specific measures for the random variable

• Modern Approach: Big Data, i.e. historical data, data driven approaches
• Randomization (Scenario) Based Optimization

Current works concentrate toward:

• Computational algorithm for on-line data driven optimization

• Distributed algorithm for stochastic complex network problem
• Incremental algorithm for aggregated mathematical optimization

Thank you! Questions?

Vahab Rostampour (TUD) Stochastic Constrained Control February 17, 2016 19 / 20



Future Directions

Decision making under uncertainty:

• Traditional Approach: perfect information, i.e. accurate system
parameters and specific measures for the random variable

• Modern Approach: Big Data, i.e. historical data, data driven approaches
• Randomization (Scenario) Based Optimization

Current works concentrate toward:

• Computational algorithm for on-line data driven optimization

• Distributed algorithm for stochastic complex network problem
• Incremental algorithm for aggregated mathematical optimization

Thank you! Questions?

Vahab Rostampour (TUD) Stochastic Constrained Control February 17, 2016 19 / 20



Stochastic Constrained Control
For Large Scale Complex Systems

Vahab Rostampour

Delft University of Technology
Deft Center of Systems and Control

February 17, 2016

Vahab Rostampour (TUD) Stochastic Constrained Control February 17, 2016 20 / 20


	Mathematical Model
	Stochastic Control
	Simulation Study
	Conclusions

