Optimal Energy Management for Building Comfort Service together with ATES Operational Planning

Vahab Rostampour

Delft University of Technology Deft Center of Systems and Control

User Group Meeting

Tuesday 5th April, 2016

Recapitulate Last UG Meeting

Feedbacks & Comments:

- · A comment on building model, e.g. heat transfer between fluid and air
- Using existing building models in literature instead of developing new model
- Contact Prof. Hensen from TU Eindhoven for simulation time issues

Taken Actions:

- Preparing a note on the developed building model & describing relations between different variables
- Studying further literature to determine a better building model
- Contacting Prof. Hensen regarding our simulation time problems

Recapitulate Last UG Meeting

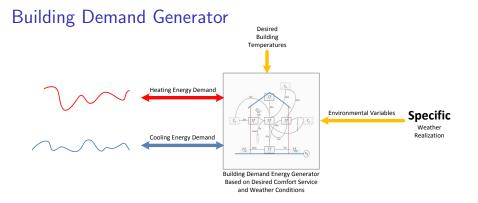
Results:

- Developed model has a lumped heat transfer between the fluid and the room air temperature because it is aimed to be used within MPC
- Recommendation for the book 'Building Performance Simulation for design and operation' by Prof. Hensen, et al.
- We distinguished between building simulation model use for assessment (with existing tools/models) and simplified internal model used within MPC
- Internal model used within MPC: it can be a very strongly reduced order model w.r.t prediction horizon and computational complexity
- Building simulation model to assess MPC: obviously include all phenomena and dynamics relevant, e.g. TRNSYS, EnergyPlus, and etc.
- Recommendation for the 'Geotabs Project' deliverable, documents

Recapitulate Last UG Meeting

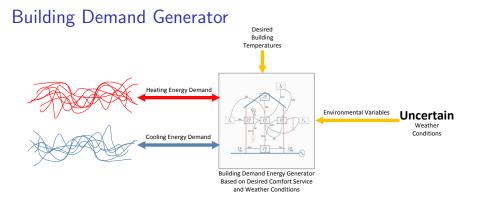
Vahab Rostampour (TUD)

DEM Building Comfort Service + ATES


Tuesday 5th April, 2016

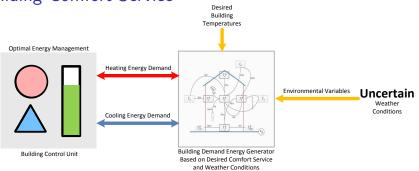
016 4 / 29

Outline


- **1** OEM of Building Comfort Service
- **2** OEM for Smart Thermal Grids
- 3 Simulation Results & Next Steps
- **4** Current Research Status

- ∢ ≣ →

Demand Profile Generator:


- Complete and detailed building dynamical model
- Desired building temperatures (local controller unit)
- In specific weather realization, certain demand profiles are generated

Demand Profile Generator:

- Complete and detailed building dynamical model
- Desired building temperature (local controller unit)
- In uncertain weather conditions, uncertain demand profiles are generated

Building Comfort Service

Building Control Unit:

- Main components: Boiler, HP, HE, micro-CHP, Buffer Storage
- ON/OFF status together with production schedule as decisions
- Thermal energy balance for dynamical systems

Mathematical Model

Define x_k to be the imbalance error between demand and production level. This yields the following dynamical model for imbalance error:

$$u_k \xrightarrow{w_k \to x_{k+1} = h(x_k, u_k, w_k)} x_k$$

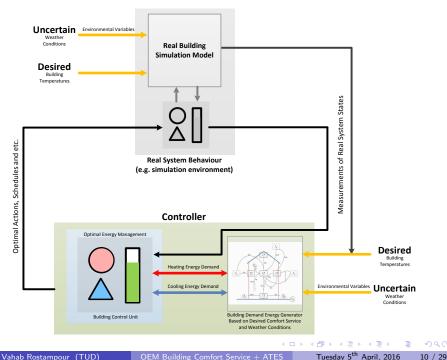
Our objective: design a state feedback control policy that minimizes the energy consumption of buildings, while keeping room temperatures between comfortable limits, despite *uncertain weather conditions*, and subject to the operational constraints

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Optimal Control Strategies

Finite horizon predictive control problem:

$$\min_{(u_k, y_k)_{k=0}^M} \quad J(x_k, u_k) := \sum_{k=0}^M x_k^\top Q x_k + \sum_{k=0}^{M-1} u_k^\top R u_k, \, Q \succeq 0, \, R \succ 0$$


subject to: $f_k(x_k, u_k, y_k) \le 0, y_k \in \{0, 1\}, k = 0, 1, \cdots, M$

Objective function: $J(x_k, u_k)$ consists of the following parts:

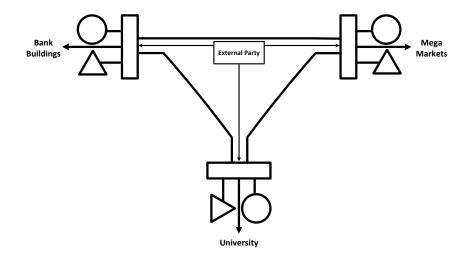
- Tracking building comfort profile
- Minimizing building operational cost

Additional parts of objective function for the future studies:

- Reducing carbon emission gas
- Planning ATES operations

Tuesday 5th April, 2016

Outline

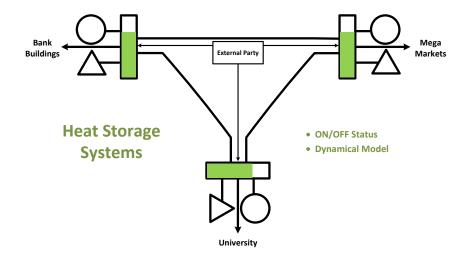

OEM of Building Comfort Service

2 OEM for Smart Thermal Grids

Simulation Results & Next Steps

4 Current Research Status

∃ → (∃ →

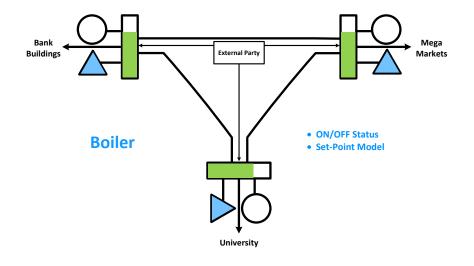

Vahab Rostampour (TUD)

OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

3 K (3 K

12 / 29


Vahab Rostampour (TUD)

OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

E + 4 E +

12 / 29

Vahab Rostampour (TUD)

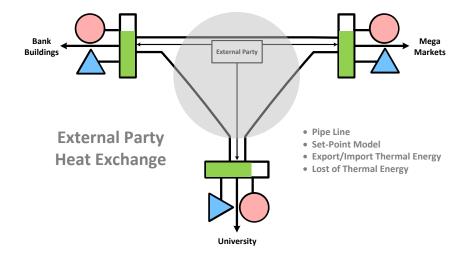
OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

ヨト・イヨト

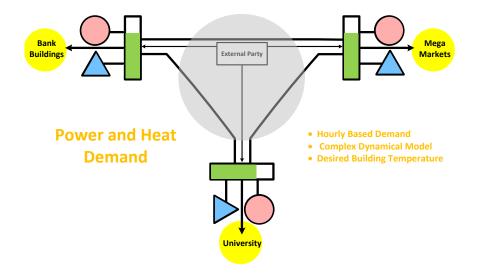
12 / 29

Vahab Rostampour (TUD)


DEM Building Comfort Service + ATES

Tuesday 5th April, 2016

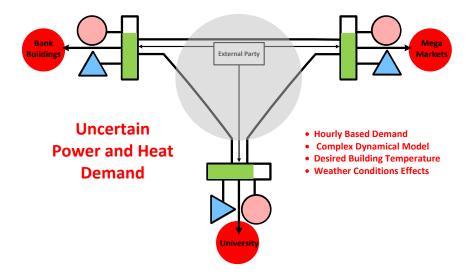
< A


ヨト・イヨト

16 12 / 29

Tuesday 5th April, 2016

∃ ► < ∃ ►</p>



Vahab Rostampour (TUD)

DEM Building Comfort Service + ATE

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
Tuesday 5th April, 2016

12 / 29

∃ ► < ∃ ►</p>

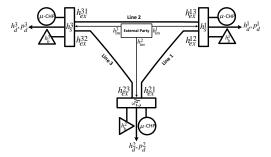
Outline

1 OEM of Building Comfort Service

2 OEM for Smart Thermal Grids

3 Simulation Results & Next Steps

4 Current Research Status


∃ → (∃ →

Three Agents Case Study

Simulation Study Settings:

- Day-ahead control problem
- Economical cost function
- Operational constraints
- Uncertain energy demand
- Unit commitment problem
- Production scheduling problem

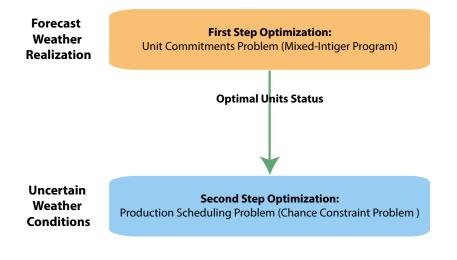
households, greenhouses smart thermal grid example

Mixed-Integer Chance-Constrained Linear Optimization Problem

Tuesday 5th April, 2016

Developed Unified Framework

Resulting optimization problem in each sampling time:

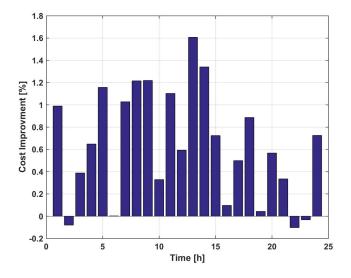

$$\begin{split} \min_{\substack{(u_k, y_k)_{k=0}^M}} & J(x_k, u_k) \\ \text{subject to:} & f_k(x_k, u_k, y_k) \leq 0, \, y_k \in \{0, 1\}, \, k = 0, 1, \cdots, M \\ & \mathbb{P}\{x_k \in \mathcal{X}\} \geq 1 - \varepsilon \quad \Rightarrow \text{chance constraints} \end{split}$$

where $\varepsilon \in (0,1)$ is defined as the desired level of constraints violation

Optimal Solution in Theoretical Probability Sense:

- robustness features of constraints in a relaxed probabilistic setting based on randomization of the constraints
- extracting at random some instances of the uncertainty, and then finding the optimal solution of a problem

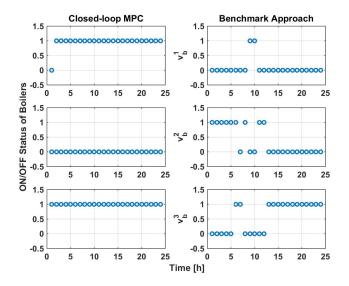
Comparison: Benchmark Approach



OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

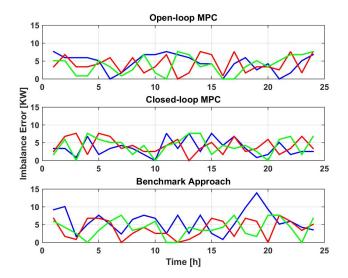
프 에 에 프 어


Simulation Results: Relative Cost Improvement

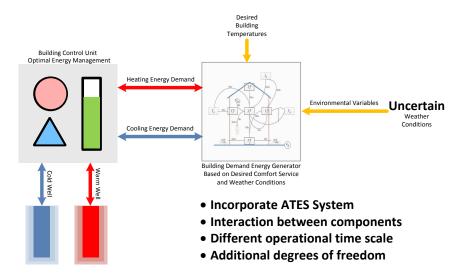
Tuesday 5th April, 2016

April, 2016 17 / 29

Simulation Results: ON/OFF Status of Boilers



Tuesday 5th April, 2016


pril, 2016 18 / 29

- < ∃ →

Simulation Results: Imbalance Error Trajectories

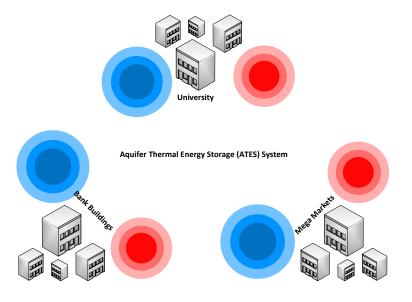
Next Steps: ATES Systems

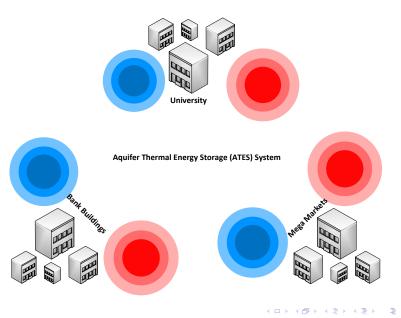
Tuesday 5th April, 2016

→ Ξ →

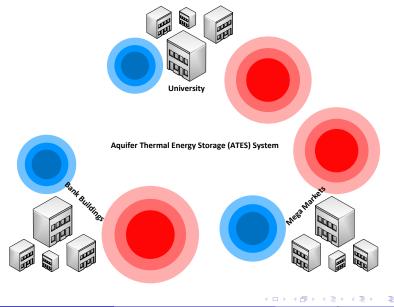

< A >

16 20 / 29

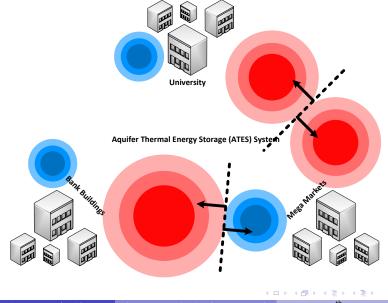

Aquifer Thermal Energy Storage (ATES) System


OEM Building Comfort Service + ATES

- ∢ ≣ →


OEM Building Comfort Service + ATES

∃ →



OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

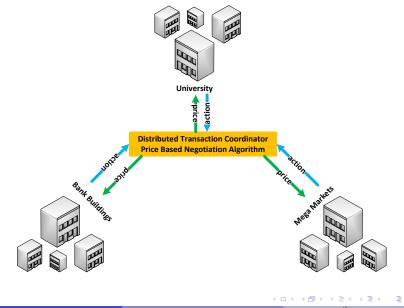
OEM Building Comfort Service + ATES

OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

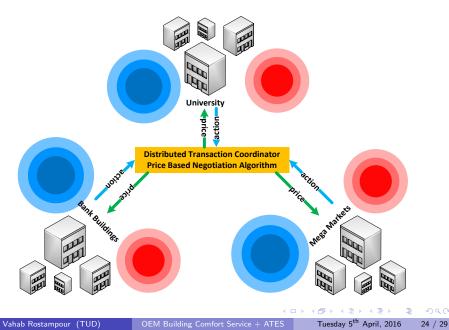
$$\begin{split} \sum_{i=1}^{N} \min_{\substack{(u_{k}^{i}, y_{k}^{i})_{k=0}^{M} \\ \text{subject to:}}} & J_{i}(x_{k}^{i}, u_{k}^{i}) & \text{local constraints} \\ & f_{k}^{i}(x_{k}^{i}, u_{k}^{i}, y_{k}^{i}) \leq 0, \\ & f_{k}^{i} \in \{0, 1\}, \ k = 0, 1, \cdots, M \\ & f_{k}^{i} + r_{k}^{j} \leq \bar{r}_{(i,j)}, \\ & f_{k}^{i} = g(x_{k}^{i}, u_{k}^{i}, y_{k}^{i}), \ \forall i, j \in N_{-i} \\ & \text{coupling constrains} \end{split}$$

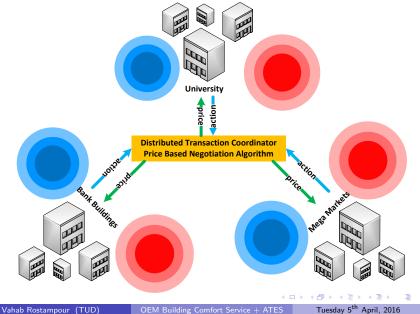
Centralized Framework:

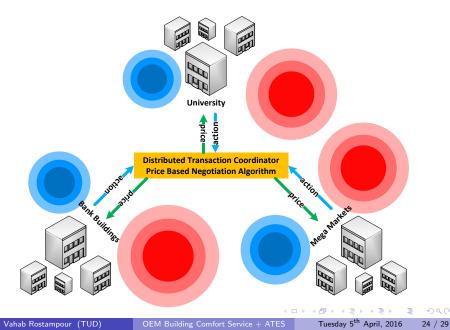

- Local constraints: limitation of operations
- Thermal capacity radius: r_k^i for each agent i
- Coupling constraints: limitation of ATES capacity
- Total distance between agents: $\bar{r}_{(i,j)}$ for neighboring agents i,j

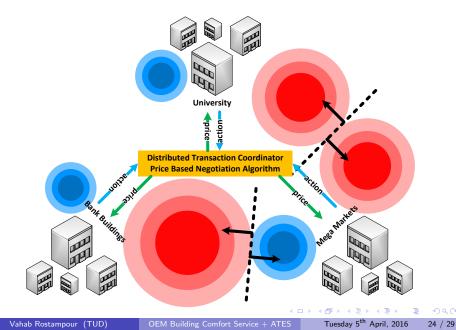
$$\begin{array}{ll} \min_{\substack{(u_k^i, y_k^i)_{k=0}^M\\ \text{subject to:} \end{array}} & J_i(x_k^i, u_k^i) + p_{(i,j)} r_k^i \longrightarrow \text{coordination price} \\ \text{subject to:} & f_k^i(x_k^i, u_k^i, y_k^i) \le 0 \,, \quad y_k^i \in \{0, 1\} \,, \ k = 0, 1, \cdots, M \\ & r_k^i := g(x_k^i, u_k^i, y_k^i) \end{array}$$

local problems


Distributed Transaction Coordinator:


- · Local problems: completely decoupled framework for all agents
- Driven under the influence of the coordination price: $p_{(i,j)}$
- Coordinator task: updating price w.r.t local actions




OEM Building Comfort Service + ATES

Tuesday 5th April, 2016

Outline

- **1** OEM of Building Comfort Service
- **2** OEM for Smart Thermal Grids
- Simulation Results & Next Steps
- **4** Current Research Status

∃ ► < ∃ ►</p>

Current Research Status

Achievements:

- Robust Randomized MPC for Energy Management in Smart Thermal Grids Accepted for European Control Conference 2016
- Building and Aquifer Thermal Energy Storage Model in Smart Grids Accepted for European Geothermal Congress 2016
- Novel Probabilistic FDI Threshold Design for Uncertain Nonlinear Systems Submitted for Conference on Decision and Control 2016
- Chance Constrained MPC for Stochastic Discrete Event Nonlinear Systems Under Revision for Conference on Systems, Man, and Cybernetics 2016

Current Research Status

Under Progress:

- Dual Scenario Program for Chance Constrained Optimization Problems
- On the Road Between Convex and Nonconvex Scenario Program for Chance Constrained Optimization Problems
- Stochastic Distributed MPC for Chance Constrained Linear Systems

Master Students Thesis:

- Stochastic Distributed Coordination in Smart Thermal Grids Wicak Ananduta (Expected Graduation August 2016)
- Distributed Stochastic Production Scheduling in Smart Grids Ole ter Haar (Expected Graduation February 2017)

• • = • • = •

Thank You! Questions?

Optimal Energy Management for Building Comfort Service together with ATES Operational Planning

Vahab Rostampour

Delft University of Technology Deft Center of Systems and Control

User Group Meeting

Tuesday 5th April, 2016

DEM Building Comfort Service + ATE

A B F A B F