Robust Randomized Model Predictive Control for Energy Balance in Smart Thermal Grids

Vahab Rostampour, Tamás Keviczky

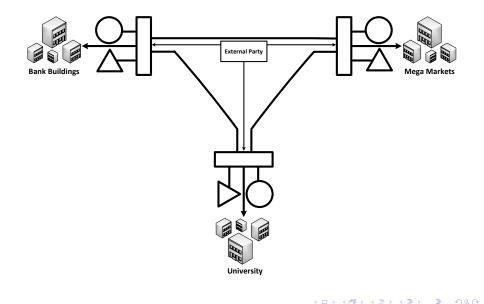
Delft University of Technology Delft Center of Systems and Control

15th European Control Conference June 29 - July 1, 2016 Aalborg, Denmark

RRMPC for Energy Balance in STGs

Bank Buildings

Mega Markets

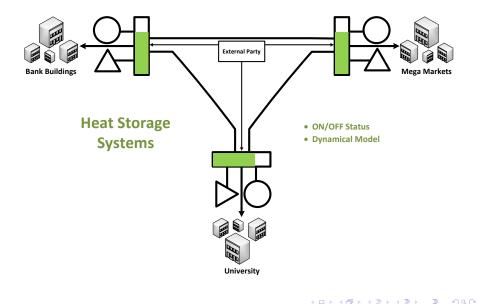

V. Rostampour, T. Keviczky (TUD)

RMPC for Energy Balance in STGs

June 29 - July 1 (ECC'16)

A B A A B A

■ト ■ つへで CC'16) 2/20

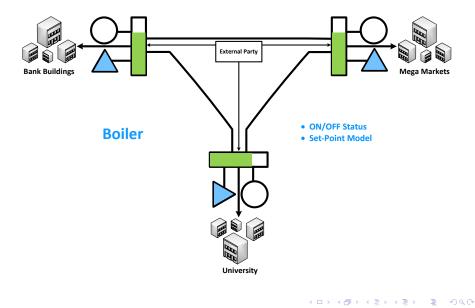


V. Rostampour, T. Keviczky (TUD)

RRMPC for Energy Balance in STGs

June 29 - July 1 (ECC'16)

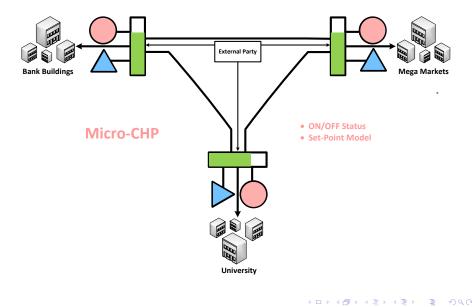
ECC'16) 2 / 20



V. Rostampour, T. Keviczky (TUD)

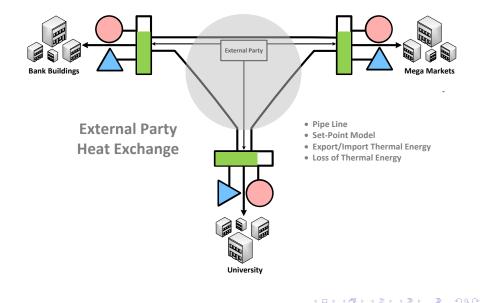
RMPC for Energy Balance in STG

June 29 - July 1 (ECC'16)


ECC'16) 2 / 20

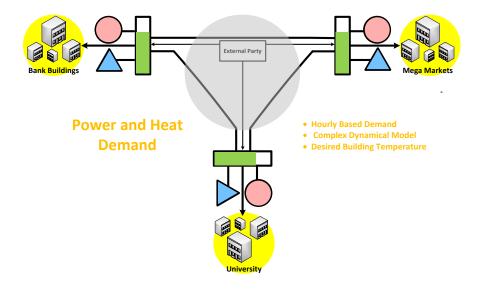
V. Rostampour, T. Keviczky (TUD)

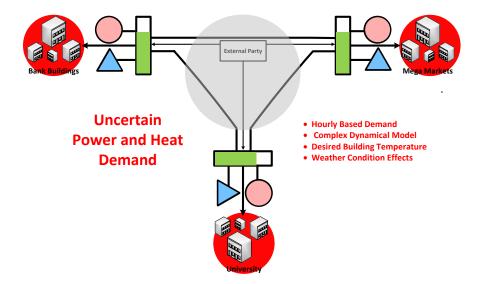
RMPC for Energy Balance in STGs


June 29 - July 1 (ECC'16)

V. Rostampour, T. Keviczky (TUD)

RMPC for Energy Balance in STG


June 29 - July 1 (ECC'16)


V. Rostampour, T. Keviczky (TUD)

RRMPC for Energy Balance in ST

June 29 - July 1 (ECC'16)

э

V. Rostampour, T. Keviczky (TUD)

RRMPC for Energy Balance in STGs

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 June 29 - July 1 (ECC'16)

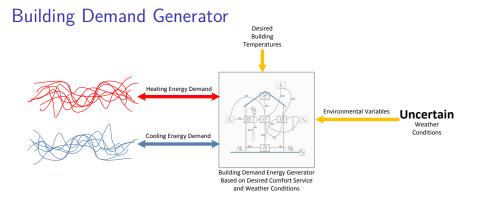
▲ 重 ト 重 少 へ ペ 1 (ECC'16) 2 / 20


Outline

- 1 Mathematical Model
- **2** Stochastic Control
- **3** Simulation Study

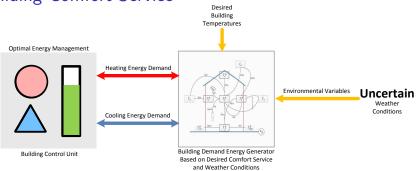
4 Conclusions

æ


▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Demand Profile Generator:

- Complete and detailed building dynamical model
- Desired building temperature (local controller unit)
- In a specific weather realization, deterministic demand profiles are generated


같아. 김 같이

Demand Profile Generator:

- Complete and detailed building dynamical model
- Desired building temperature (local controller unit)
- In uncertain weather conditions, uncertain demand profiles are generated

Building Comfort Service

Building Control Unit:

- Main components: Boiler, HP, HE, micro-CHP, Buffer Storage
- ON/OFF status together with production schedule as decisions
- Thermal energy balance for dynamical systems

Mathematical Model

Define x_k to be **imbalance error** between production and building energy demand

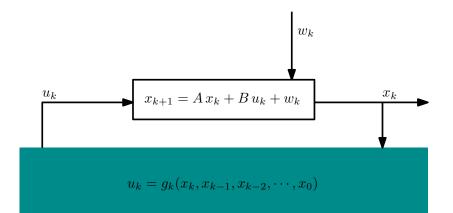
Our objective: design a state feedback control policy that aims at:

- Keeping room temperatures between comfortable limits
- Minimizing building operational cost and energy consumption
- Taking into account uncertain weather conditions, operational constraints

• • = • • = •

Constrained Control Problem

Finite horizon open loop control problem for each agent:

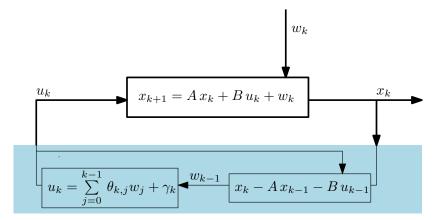

$$\begin{array}{ll} \underset{(u_k,y_k)_{k=1}^M}{\text{minimize}} & J(x_k,u_k) := \mathbb{E}\left[\sum_{k=0}^M x_k^\top Q x_k + \sum_{k=0}^{M-1} u_k^\top R u_k\right], \ Q \succeq 0 \ , \ R \succ 0 \\ \text{subject to} & f_k(x_k,u_k,y_k) \le 0 \ , \ y_k \in \{0,1\} \\ & x_k \in \mathcal{X} \ , \ k = 0, 1, \cdots, M \quad \Rightarrow \text{hard constraints} \end{array}$$

Challenges:

- Control policy parametrization to obtain a less conservative formulation
- 2 Probabilistic interpretation of robustness feature of hard constraints
- 3 Handling mixed-integer optimization together with stochastic programming

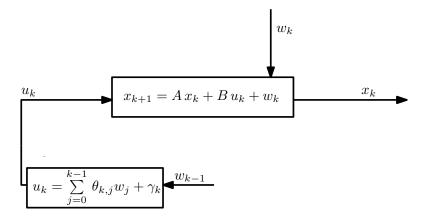
A B M A B M

Step 1: Control Policy Parametrization

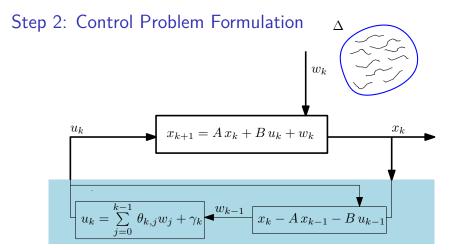


state feedback control policy

V. Rostampour, T. Keviczky (TUD) RRMPC for Energy Balance in STGs June 29 - July 1 (ECC'16) 7 / 20

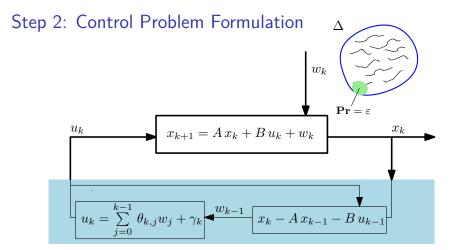

過 ト イ ヨ ト イ ヨ ト ニ ヨ

Step 1: Control Policy Parametrization



Affine feedback policy in the reconstructed (and possibly saturated) noise

Step 1: Control Policy Parametrization



Control input and state variables depend linearly on the parameters: $\theta_{k,j}, \gamma_k$

Robust approach:

- Constraints must be satisfied for every disturbance realization in Δ Disturbance realizations are treated equally likely (hard constraints)
- Intractable problem formulation due to the unknown disturbance set Δ

Chance constrained approach:

- Constraints must be satisfied for most disturbance realizations except for a set of probability ≤ ε (soft constraints)
- Nonconvex optimization problem and in general hard to solve

ヨト イヨト

Step 2: Randomized Approximation

optimization variables

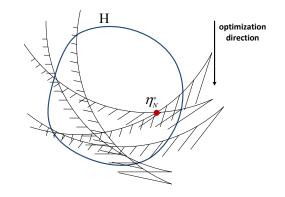
$$\eta = \{u_k | k = 1, \dots, M\}$$
 $\min_{\eta \notin \mathbf{H}} J(\eta)$
 $s.t. \quad \mathbf{Pr} [h(\eta, \delta) \leq 0] \geq 1 - \varepsilon$

The following **randomized approximation** that **only relies on data** can provide a (conservative) solution to the chance constrained problem:

$$\min_{\eta \in \mathbf{H}} \quad J(\eta)$$
s.t. $h(\eta, \delta^{(i)}) \le 0$, $i = 1, 2, \cdots, N$

N is the number of required disturbance realizations that one needs to generate. This approach provides a solution guaranteed to be probabilistically fulfilling the chance constraints¹.

¹ [Calafiore, Campi, TAC, 2005]		< □	• • ₽ •	<.≣→	∢ ≣ ⊁	æ	୬ବ୍ଦ
V. Rostampour, T. Keviczky (TUD)	RRMPC for Energy Balance in STGs		June 29	- July :	1 (ECC'16)		9 / 20


Step 2: Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

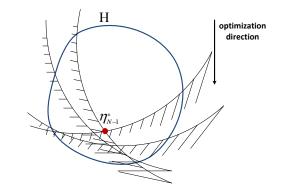
- Convex reformulation is . usually computationally demanding
- Still conservative . performance with respect to the desired level of violation

One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm²,etc.

²[Campi, Garatti, OTA, 2010]

V. Rostampour, T. Keviczky (TUD)

June 29 - July 1 (ECC'16)


Step 2: Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

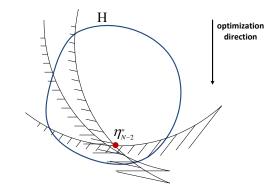
- Convex reformulation is . usually computationally demanding
- Still conservative . performance with respect to the desired level of violation

One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm²,etc.

²[Campi, Garatti, OTA, 2010]

V. Rostampour, T. Keviczky (TUD)

June 29 - July 1 (ECC'16)


Step 2: Randomized Approximation & Constraint Removal

Advantages:

- Only relies on the data
- Reformulation is a convex optimization problem

Disadvantages:

- Convex reformulation is . usually computationally demanding
- Still conservative . performance with respect to the desired level of violation

One way, to improve performance of the solution, is by using **constraint removal** techniques such as greedy algorithm²,etc.

²[Campi, Garatti, OTA, 2010]

V. Rostampour, T. Keviczky (TUD)

June 29 - July 1 (ECC'16)

Step 3: Nonconvex Randomized Approximation

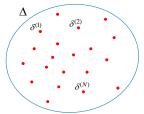
- $\begin{cases} \min_{\eta \in \mathbf{H}, y} & J(\eta) \\ \text{s.t.} & \mathbf{Pr} \left[h(\eta, y, \delta) \leq 0 \right] \geq 1 \varepsilon \\ & y \in \{0, 1\}^M \\ & y : \left(\substack{\text{vector of integer variables} \\ \text{along the horizon length} \right) \end{cases}$ Mixed Integer Program

Can be reformulated via robust (worst-case) programming as follows:

 $\begin{array}{ll} \bullet \quad \text{Worst Case Program} & \left\{ \begin{array}{ll} \min_{\eta \in \mathbf{H}} & J(\eta) \\ & h_j(\eta, \delta) := h(\eta, y_j, \delta) \end{array} \right. & \left\{ \begin{array}{ll} \min_{\eta \in \mathbf{H}} & J(\eta) \\ \text{s.t.} & \max_{j \in \{1, \cdots, 2^M\}} \mathbf{Pr}\left[h_j(\eta, \delta) \le 0\right] \ge 1 - \varepsilon \end{array} \right. \end{array}$

Using randomized approximation, we need to generate at least $2^M N$ disturbance realizations to provide a solution guaranteed to be chance constrained feasible. This leads to intractable optimization formulation³.

³[Esfahani, Sutter, et al., TAC, 2015] V. Rostampour, T. Keviczky (TUD) June 29 - July 1 (ECC'16) 11 / 20


Step 3: Robust Randomized Optimization

Instead we provide two-step approach⁴ in a receding horizon setting:

1 Determining a bounded set that contains $1 - \varepsilon$ portion of Δ :

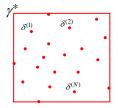
$$\begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_k - \underline{\gamma}_k \\ \text{s.t.} & \mathbf{Pr} \left[\delta_{i,k} \in \left[\underline{\gamma}_k, \overline{\gamma}_k \right], \, \forall k \right] \geq 1 - \varepsilon \end{cases}$$

② Solving the robust counterpart of problem w.r.t. the bounded set γ^* :

⁴[Margellos, Rostampour, et al., ECC, 2013]

V. Rostampour, T. Keviczky (TUD) RRMPC for Energy Balance in STGs June 29 - July 1 (ECC'16) 12 / 20

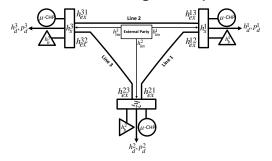
Step 3: Robust Randomized Optimization


Instead we provide two-step approach⁴ in a receding horizon setting:

1 Determining a bounded set that contains $1 - \varepsilon$ portion of Δ :

$$\begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_k - \underline{\gamma}_k \\ \text{s.t.} & \mathbf{Pr} \Big[\delta_{i,k} \in [\underline{\gamma}_k, \overline{\gamma}_k], \, \forall k \Big] \ge 1 - \varepsilon \end{cases} \qquad \begin{cases} \min_{\gamma} & \sum_{k=0}^{M-1} \overline{\gamma}_k - \underline{\gamma}_k \\ \text{s.t.} & \delta_{i,k}^j \in [\underline{\gamma}_k, \overline{\gamma}_k], \, \left\{ \begin{array}{c} \forall k \\ \forall j \end{array} \right. \end{cases}$$

2 Solving the robust counterpart of problem w.r.t. the bounded set γ^* :


$$\begin{cases} \min_{\eta \in \mathbf{H}, y} & J(\eta) \\ \text{s.t.} & h(\eta, y, \gamma^o) + h(\eta, y, \gamma^{worst}) \le 0 \\ & y \in \{0, 1\}^M \end{cases}$$

Three-Agent Case Study

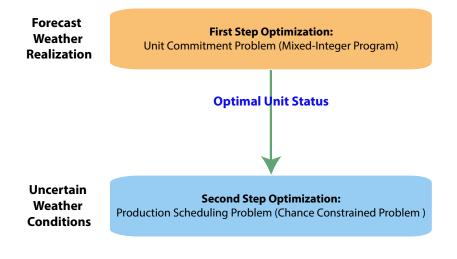
- Day-ahead control problem
- Economical cost function
- Operational constraints
- Uncertain energy demand
- Unit commitment problem
- Production scheduling problem

households, greenhouses smart thermal grid example

Mixed-Integer Chance-Constrained Linear Optimization Problem

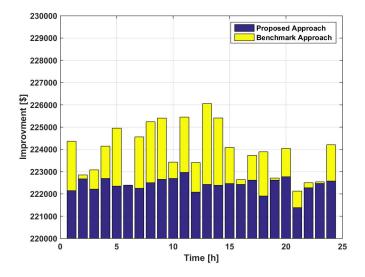
Proposed Approach

Resulting optimization problem for each agent:


Theoretical features/contributions of proposed framework:

- Unified framework to solve mixed-integer stochastic optimization problems
- Robustness features of constraints in a relaxed probabilistic setting based on randomization of the constraints
- A-priori probabilistic guarantee on the feasibility of the optimal solution of the problem

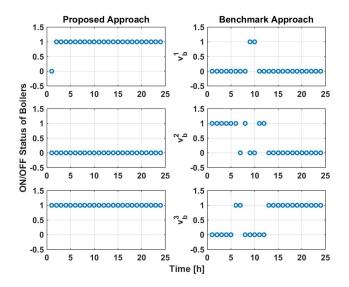
June 29 - July 1 (ECC'16)


3

Comparison: Benchmark Approach

(B)

Simulation Results: Relative Cost Improvement

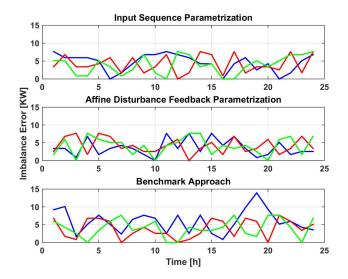


V. Rostampour, T. Keviczky (TUD)

June 29 - July 1 (ECC'16)

∃ →

Simulation Results: ON/OFF Status of Boilers


V. Rostampour, T. Keviczky (TUD)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

June 29 - July 1 (ECC'16) 17 / 20

Simulation Results: Imbalance Error Trajectories

June 29 - July 1 (ECC'16)

C'16) 18 / 20

Conclusions

Contributions:

- Centralized control problem formulation for a SmartThermal Grid
- Affine Uncertainty Feedback Policy with chance constraint formulation
- Convex Reformulation of the proposed stochastic constrained control
- A-priori Probabilistic Feasibility Certificate for a mixed-integer chance-constrained program in a receding horizon scheme

Next Steps:

- Developing a more realistic Building Demand Profile Generator by using a more detailed dynamical model
- Developing a new scheme to Distribute Computations in the developed framework among the agents

Balance in STGs Jun

 3

Robust Randomized Model Predictive Control for Energy Balance in Smart Thermal Grids

Vahab Rostampour, Tamás Keviczky

Delft University of Technology Delft Center of Systems and Control

15th European Control Conference June 29 - July 1, 2016 Aalborg, Denmark

