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Demand Profile Generator:

• Complete and detailed building dynamical model
• Desired building temperature (local controller unit)
• In uncertain weather conditions, uncertain demand profiles are generated
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Building Control Unit

Optimal Energy Management

Building Control Unit:

• Main components: Boiler, HP, HE, micro-CHP, Buffer Storage
• ON/OFF status together with production schedule as decisions
• Thermal energy balance for dynamical systems
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Mathematical Model

Define xk to be imbalance error between production and building energy demand

xk+1 = Axk +B uk + wk
uk xk

wk
stochastic disturbance
with unknown set

Our objective: design a state feedback control policy that aims at:
• Keeping room temperatures between comfortable limits
• Minimizing building operational cost and energy consumption
• Taking into account uncertain weather conditions, operational constraints
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Constrained Control Problem

Finite horizon open loop control problem for each agent:

minimize
(uk ,yk)M

k=1

J (xk , uk) := E

[ M∑
k=0

x>k Qxk +
M−1∑
k=0

u>k Ruk

]
, Q � 0 , R � 0

subject to fk(xk , uk , yk) ≤ 0 , yk ∈ {0, 1}

xk ∈ X , k = 0, 1, · · · ,M ⇒ hard constraints

Challenges:

1 Control policy parametrization to obtain a less conservative formulation
2 Probabilistic interpretation of robustness feature of hard constraints
3 Handling mixed-integer optimization together with stochastic programming
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Step 1: Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk = gk(xk, xk−1, xk−2, · · · , x0)

state feedback control policy
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Step 1: Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

Affine feedback policy in the reconstructed (and possibly saturated) noise
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Step 1: Control Policy Parametrization

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk
wk−1

Control input and state variables depend linearly on the parameters: θk,j , γk
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Step 2: Control Problem Formulation

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

∆

Robust approach:
• Constraints must be satisfied for every disturbance realization in ∆

Disturbance realizations are treated equally likely (hard constraints)
• Intractable problem formulation due to the unknown disturbance set ∆
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Step 2: Control Problem Formulation

xk+1 = Axk +B uk + wk
uk xk

wk

uk =
k−1∑
j=0

θk,jwj + γk xk −Axk−1 −B uk−1

wk−1

Pr = ε

∆

Chance constrained approach:
• Constraints must be satisfied for most disturbance realizations except for a

set of probability ≤ ε (soft constraints)
• Nonconvex optimization problem and in general hard to solve
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Step 2: Randomized Approximation

min
η∈H

J(η)

s.t. Pr [h(η, δ) ≤ 0] ≥ 1− ε

optimization variables uncertainty parameters
δ = {wk|k = 1, · · · ,M}η = {uk|k = 1, · · · ,M}

The following randomized approximation that only relies on data can provide
a (conservative) solution to the chance constrained problem:

min
η∈H

J (η)

s.t. h(η, δ(i)) ≤ 0 , i = 1, 2, · · · ,N

N is the number of required disturbance realizations that one needs to generate.
This approach provides a solution guaranteed to be probabilistically fulfilling the
chance constraints1.

1[Calafiore, Campi, TAC, 2005]
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Step 2: Randomized Approximation & Constraint Removal

Advantages:

• Only relies on the data
• Reformulation is a convex

optimization problem
Disadvantages:

• Convex reformulation is
usually computationally
demanding

• Still conservative
performance with respect to
the desired level of violation



*
N


optimization 
direction

One way, to improve performance of the solution, is by using constraint removal
techniques such as greedy algorithm2,etc.

2[Campi, Garatti, OTA, 2010]
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Step 3: Nonconvex Randomized Approximation

• Mixed Integer
Program


min
η∈H,y

J (η)

s.t. Pr [h(η, y, δ) ≤ 0] ≥ 1− ε
y ∈ {0, 1}M

y :
(vector of integer variables

along the horizon length
)

Can be reformulated via robust (worst-case) programming as follows:

• Worst Case Program
• hj(η, δ) := h(η, yj , δ)

min
η∈H

J (η)

s.t. max
j∈{1,··· ,2M}

Pr [hj(η, δ) ≤ 0] ≥ 1− ε

Using randomized approximation, we need to generate at least 2M N disturbance
realizations to provide a solution guaranteed to be chance constrained feasible.
This leads to intractable optimization formulation3.

3[Esfahani, Sutter, et al., TAC, 2015]
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Step 3: Robust Randomized Optimization
Instead we provide two-step approach4 in a receding horizon setting:

1 Determining a bounded set that contains 1− ε portion of ∆:min
γ

M−1∑
k=0

γk − γk

s.t. Pr
[
δi,k ∈ [γk , γk ] , ∀k

]
≥ 1− ε

2 Solving the robust counterpart of problem w.r.t. the bounded set γ∗:

(1)
(2)

( )N



4[Margellos, Rostampour, et al., ECC, 2013]
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Instead we provide two-step approach4 in a receding horizon setting:

1 Determining a bounded set that contains 1− ε portion of ∆:min
γ

M−1∑
k=0

γk − γk

s.t. Pr
[
δi,k ∈ [γk , γk ] , ∀k

]
≥ 1− ε


min
γ

M−1∑
k=0

γk − γk

s.t. δj
i,k ∈ [γk , γk ] ,

{
∀k
∀j

2 Solving the robust counterpart of problem w.r.t. the bounded set γ∗:


min
η∈H,y

J (η)

s.t. h(η, y, γo) + h(η, y, γworst) ≤ 0
y ∈ {0, 1}M

(1)
(2)

( )N

*

4[Margellos, Rostampour, et al., ECC, 2013]
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Three-Agent Case Study

• Day-ahead control problem
• Economical cost function
• Operational constraints
• Uncertain energy demand
• Unit commitment problem
• Production scheduling problem

households, greenhouses
smart thermal grid example
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Mixed-Integer Chance-Constrained Linear Optimization Problem
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Proposed Approach

Resulting optimization problem for each agent:

minimize
(uk ,yk)M

k=1

J (xk , uk)

subject to fk(xk , uk , yk) ≤ 0 , yk ∈ {0, 1} , k = 0, 1, · · · ,M

Pr{xk ∈ X} ≥ 1− ε ⇒ chance constraints

Theoretical features/contributions of proposed framework:

• Unified framework to solve mixed-integer stochastic optimization problems
• Robustness features of constraints in a relaxed probabilistic setting based on

randomization of the constraints
• A-priori probabilistic guarantee on the feasibility of the optimal solution of

the problem
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Comparison: Benchmark Approach

Forecast 
Weather

 Realization

Uncertain
Weather

 Conditions

Optimal Unit Status

Second Step Optimization:
Production Scheduling Problem (Chance Constrained Problem )

First Step Optimization:
Unit Commitment Problem (Mixed-Integer Program)
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Simulation Results: Relative Cost Improvement
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Simulation Results: ON/OFF Status of Boilers
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Simulation Results: Imbalance Error Trajectories
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Conclusions

Contributions:

• Centralized control problem formulation for a SmartThermal Grid

• Affine Uncertainty Feedback Policy with chance constraint formulation
• Convex Reformulation of the proposed stochastic constrained control
• A-priori Probabilistic Feasibility Certificate for a mixed-integer

chance-constrained program in a receding horizon scheme

Next Steps:

• Developing a more realistic Building Demand Profile Generator by using
a more detailed dynamical model

• Developing a new scheme to Distribute Computations in the developed
framework among the agents
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