A Control-Oriented Model for Combined Building Climate Comfort and ATES System

Vahab Rostampour, Martin Bloemendal, Marc Jaxa-Rozen and Tamás Keviczky

Delft University of Technology

European Geothermal Congress 19 - 23 September, 2016 Strasbourg, France

313 NQO

Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Cold season:

- The building requests thermal energy for the heating purpose
- Water is injected into cold well and is taken from warm well
- The stored water contains cold thermal energy for next season

A = A = A = A = A = A = A

Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Warm season:

- The building requests thermal energy for the cooling purpose
- Water is injected into warm well and is taken from cold well
- The stored water contains warm thermal energy for next season

Building Climate Comfort with ATES System (Agent)

Outline

- Single Agent Model
- **2** Control Problem Formulation
- **3** Simulation Study and Estimation
- **4** Ongoing Work and Results

Single Agent System

Building Thermal Comfort Relations

Building Thermal Comfort Relations

Building Thermal Comfort Relations

Building Thermal Comfort Model Formulation

We define the following model:

Building Dynamical Model

$$\begin{aligned} x_{\mathrm{B},k+1} &= x_{\mathrm{B},k} + f_{\mathrm{B}}(x_{\mathrm{B},k}, u_{\mathrm{B},k}, \nu_{\mathrm{B},k}, \nu_{\mathrm{B}ext,k})\tau \\ y_{\mathrm{B},k} &= g_{\mathrm{B}}(x_{\mathrm{B},k}, u_{\mathrm{B},k}) \end{aligned}$$

- Building inside variables (states): $x_{\mathrm{B},k} \in \mathbb{R}^3$
- Building outside variables (uncertain): $u_{ ext{Bext},k} \in \mathbb{R}^3$
- Pump flow rate variable (control): u_{B,k}
- Supplied water temperature: ν_{B,k}
- Returned water temperature: y_{B,k}
- Sampling period: au

A ∃ ► A ∃ ► ∃ E

Single Agent System

Heat Exchanger Model

A countercurrent heat exchanger is used and it presents via a static model.

Static Model Variables:

- Input water temperatures: $u_{\text{he},k} \in \mathbb{R}^2$
- Pump flow rates (control variables): $u_{A,k}, u_{S,k}$
- Output water temperatures: $y_{ ext{he.}k} \in \mathbb{R}^2$

Heat Exchanger Static Model

$$\mathbf{y}_{ ext{he}, \mathbf{k}} = \mathsf{H}(\mathbf{
u}_{ ext{he}, \mathbf{k}}, \mathbf{u}_{ ext{A}, \mathbf{k}}, \mathbf{u}_{ ext{S}, \mathbf{k}})$$

ELE NOR

Single Agent System

Heat Pump Model

An electrical water to water heat pump is used with static model.

Static Model Variables:

- Input water temperatures: $u_{\mathrm{hp},k} \in \mathbb{R}^2$
- Pump flow rates (control variables): u_{B,k}, u_{S,k}
- Output water temperatures: $y_{hp,k} \in \mathbb{R}^2$

Heat Pump Static Model

$$y_{\text{hp},k} = P(\nu_{\text{hp},k}, u_{\text{B},k}, u_{\text{S},k})$$

A ∃ ► A ∃ ► ∃ E

Single Agent System

Storage Tank Model

We define an storage tank model with the following first order difference equations:

$$V_{s,k+1} = V_{s,k} + V_{in,k} - V_{out,k}$$
$$T_{s,k+1} = \frac{V_{s,k}}{V_{s,k} + V_{in,k}} T_{s,k} + \frac{V_{in,k}}{V_{s,k} + V_{in,k}} T_{in,k}$$

Storage Dynamical Model

$$x_{S,k+1} = f_S(x_{S,k}, u_{S,k}, \nu_{S,k})$$

$$y_{S,k} = g_S(x_{S,k})$$

- Tank temperature and volume variables (state): $x_{S,k} \in \mathbb{R}^2$
- Pump flow rate variable (control): u_{S,k}
- Input water temperature: ν_{S,k}
- Output water temperature: y_{S,k}

ELE NOR

< 回 > < 回 > < 回 >

Single Agent System

Boiler and Chiller Model

We define the boiler and chiller water temperatures with the following relations:

Boiler:
$$\begin{cases} \mathsf{T}_{out,k}^{\text{boi}} = \mathbf{90}^{\circ}\mathsf{C} \\ \mathsf{T}_{in,k}^{\text{boi}} = \mathsf{T}_{\text{bypass},k} \\ u_{b,k} = \mathbf{v}_{b,k}\mathbf{u}_{\text{B},k} \end{cases} \qquad \text{Chiller:} \begin{cases} \mathsf{T}_{out,k}^{\text{chi}} = \mathbf{5}^{\circ}\mathsf{C} \\ \mathsf{T}_{in,k}^{\text{chi}} = \mathsf{T}_{\text{bypass},k} \\ u_{c,k} = \mathbf{v}_{c,k}\mathbf{u}_{\text{S},k} \end{cases}$$

- Boiler value position (control): $v_{b,k} \in [0,1]$
- Chiller valve position (control): $v_{c,k} \in [0,1]$

ELE SOC

Single Agent System

Aquifer Thermal Energy Storage System Principle

Similar modeling as the storage model by introducing different modes:

- Water is taken from one of the wells and is injected into the counterpart well.
- Taken water has constant temperature until the aquifer water temperature dominates.
- Injected water has gained thermal energy and it is stored for the next upcoming season.

ELE SQC

Aquifer Thermal Energy Storage System Model

We define the following Model:

ATES system Dynamical Model

$$\begin{aligned} \mathbf{x}_{\mathsf{A},k+1} &= f_{\mathsf{A}}(\mathbf{x}_{\mathsf{A},k},\mathbf{u}_{\mathsf{A},k},\nu_{\mathsf{A},k},s_{\mathsf{w},k},s_{c,k})\\ \mathbf{y}_{\mathsf{A},k} &= \mathbf{g}_{\mathsf{A}}(\mathbf{x}_{\mathsf{A},k},s_{\mathsf{w},k},s_{c,k}) \end{aligned}$$

- Wells temperature and volume variables (state): $x_{A,k} \in \mathbb{R}^4$
- Pump flow rate variable (control): u_{A,k}
- Output water temperature: y_{A,k}
- Input water temperature: v_{A,k}

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Interconnections Between Each Subsystem

Interconnections Between Each Subsystem

1 ATES system: $\nu_{A,k} := T_{ink}^{aq}$, $y_{A,k} := T_{outk}^{aq}$ • $T_{in k}^{aq} = T_{out k}^{ap}$ **2** Heat exchanger: $\nu_{\text{he},k} := [\mathsf{T}_{in\,k}^{\text{ap}}, \mathsf{T}_{in\,k}^{\text{bp}}], \quad y_{\text{he},k} := [\mathsf{T}_{out\,k}^{\text{ap}}, \mathsf{T}_{out\,k}^{\text{bp}}]$ • $T_{ink}^{ap} = T_{outk}^{aq}$ and $T_{ink}^{bp} = (1 - v_{c,k})T_{s,k} + v_{c,k}T_{outk}^{chi}$ **3 Heat pump:** $\nu_{hp,k} := [T_{in,k}^{con}, T_{in,k}^{eva}], \quad y_{hp,k} := [T_{out,k}^{con}, T_{out,k}^{eva}]$ • $\mathsf{T}_{in,k}^{con} = s_{n,k}(s_{w,k}\mathsf{T}_{out,k}^{bp} + s_{c,k}\mathsf{T}_{ret,k}^{B}) + (1 - s_{n,k})(s_{w,k}\mathsf{T}_{out,k}^{ext} + s_{c,k}\mathsf{T}_{ret,k}^{B})$ • $T_{in,k}^{eva} = s_{n,k}(s_{c,k}T_{out,k}^{bp} + s_{w,k}T_{ret,k}^{B}) + (1 - s_{n,k})(s_{w,k}T_{out,k}^{ext} + s_{c,k}T_{ret,k}^{B})$ **4** Storage model: $\nu_{S,k} := T_{in,k}, \quad y_{S,k} := T_{out,k}^s$ • $T_{in,k}^{s} = v_{h,k}(s_{w,k}T_{out,k}^{con} + s_{c,k}T_{out,k}^{eva}) + (1 - v_{h,k})T_{ret,k}^{B}$ **6** Building model: $\nu_{B,k} := T^B_{sup,k}, \quad y_{B,k} := T^B_{ret,k}$ $\mathsf{T}^{\mathsf{B}}_{\sup,k} = \mathsf{v}_{h,k}(s_{w,k}\mathsf{T}^{\mathsf{eva}}_{out,k} + s_{c,k}((1-\mathsf{v}_{b,k})\mathsf{T}^{\mathsf{con}}_{out,k} + \mathsf{v}_{b,k}\mathsf{T}^{\mathsf{boi}}_{out,k})) + (1-\mathsf{v}_{h,k})\mathsf{T}^{\mathsf{bp}}_{out,k}$

Vahab Rostampour (TUD)

19-23 September (EGC 2016) 20 / 35

A ∃ ► A ∃ ► ∃ E

Single Agent Representation

Consider compact formulation of dynamical agent system:

Single Agent Model

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, \mathbf{v}_k, \mathbf{s}_k, \mathbf{w}_k)$$

- State variables: $x_k := [x_{\mathrm{B},k}, x_{\mathrm{S},k}, x_{\mathrm{A},k}] \in \mathbb{R}^9$
- Pump flow rate variables: $u_k := [u_{B,k}, u_{S,k}, u_{A,k}] \in \mathbb{R}^3$
- Valve position variables: $\mathbf{v}_k := [\mathbf{v}_{b,k}, \mathbf{v}_{c,k}, \mathbf{v}_{h,k}] \in [0,1]^3$
- Operating mode variables: $s_k := [s_{w,k}, s_{c,k}, s_{n,k}] \in \{0,1\}^3$
- Uncertain variables: $w_k := [\mathsf{T}_{o,k},\mathsf{I}_{o,k},\mathsf{V}_{o,k}] \subseteq \Delta \in \mathbb{R}^3$
- State variables are available at each sampling time **k**.

Outline

1 Single Agent Model

Ontrol Problem Formulation

3 Simulation Study and Estimation

④ Ongoing Work and Results

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 つく⊙

We formulate an optimization problem as follows:

$\min_{\substack{\{u_k,v_k\}_{k=1}^N}}$	Objective Function: Reference Tracking
subject to:	Nonlinear System Dynamics
	State and Control Bounds
	Valves, Modes and Uncertainty Sets
	Heat Exchanger Capacity Constraints
	Heat Pump Capacity Constraints

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

<<p>A 目 > A 目 > A 目 > 目 = のQQ

We formulate an optimization problem as follows:

min $\{u_k, v_k\}_{k=1}^N$

$$\mathbb{E}\left[\sum_{k=1}^{N} \gamma (\mathsf{T}^{\mathsf{B}}_{z,k} - \mathsf{T}_{\mathsf{set}})^2\right]$$

subject to:

Nonlinear System Dynamics State and Control Bounds Valves, Modes and Uncertainty Sets Heat Exchanger Capacity Constraints Heat Pump Capacity Constraints

ELE NOR

We formulate an optimization problem as follows:

 $\min_{\{u_k,v_k\}_{k=1}^N}$

subject to:

$$\mathbb{E}\left[\sum_{k=1}^{N} \gamma(\mathsf{T}_{z,k}^{\mathsf{B}} - \mathsf{T}_{\mathsf{set}})^{2}\right]$$

 $\mathbf{x}_{k+1} = f(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{v}_{k}, \mathbf{s}_{k}, \mathbf{w}_{k})$
State and Control Bounds
Valves, Modes and Uncertainty Sets
Heat Exchanger Capacity Constraints
Heat Pump Capacity Constraints

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

<<p>A 目 > A 目 > A 目 > 目 = のQQ

We formulate an optimization problem as follows:

 $\begin{array}{ll} \min_{\{u_k,v_k\}_{k=1}^N} & \mathbb{E}\left[\sum_{k=1}^N \ \gamma(\mathsf{T}^{\mathsf{B}}_{z,k} - \mathsf{T}_{\mathsf{set}})^2\right] \\ \text{subject to:} & x_{k+1} = f(x_k, u_k, v_k, s_k, w_k) \\ & x_{\min} \leq x_k \leq x_{\max} \ , \ u_{\min} \leq u_k \leq u_{\max} \\ & \mathsf{Valves}, \ \mathsf{Modes and \ Uncertainty \ Sets} \\ & \mathsf{Heat \ Exchanger \ Capacity \ Constraints} \\ & \mathsf{Heat \ Pump \ Capacity \ Constraints} \end{array}$

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

We formulate an optimization problem as follows:

$$\begin{array}{ll} \min_{\{u_k,v_k\}_{k=1}^N} & \mathbb{E}\left[\sum_{k=1}^N \ \gamma(\mathsf{T}^{\mathsf{B}}_{z,k} - \mathsf{T}_{\mathsf{set}})^2\right] \\ \text{subject to:} & x_{k+1} = f(x_k, u_k, v_k, s_k, w_k) \\ & x_{\min} \leq x_k \leq x_{\max} \ , \ u_{\min} \leq u_k \leq u_{\max} \\ & 0 \leq v_k \leq 1 \ , \ s_k \in \{0,1\} \ , \ w_k \in \Delta \\ & \text{Heat Exchanger Capacity Constraints} \\ & \text{Heat Pump Capacity Constraints} \end{array}$$

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

<<p>A 目 > A 目 > A 目 > 目 = のQQ

We formulate an optimization problem as follows:

$$\begin{split} \min_{\{u_k, v_k\}_{k=1}^N} & \mathbb{E}\left[\sum_{k=1}^N \ \gamma(\mathsf{T}^\mathsf{B}_{z,k} - \mathsf{T}_{\mathsf{set}})^2\right] \\ \text{subject to:} & x_{k+1} = f(x_k, u_k, v_k, s_k, w_k) \\ & x_{\min} \leq x_k \leq x_{\max} \ , \ u_{\min} \leq u_k \leq u_{\max} \\ & 0 \leq v_k \leq 1 \ , \ s_k \in \{0, 1\} \ , \ w_k \in \Delta \\ & \nu_{\mathsf{he}}^{\mathsf{min}} \leq \nu_{\mathsf{he},k} \leq \nu_{\mathsf{he}}^{\mathsf{max}} \ , \ y_{\mathsf{he}}^{\mathsf{min}} \leq y_{\mathsf{he},k} \leq y_{\mathsf{he}}^{\mathsf{max}} \\ & \mathsf{Heat Pump Capacity Constraints} \end{split}$$

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

<<p>A 目 > A 目 > A 目 > 目 = のQQ

We formulate an optimization problem as follows:

$$\begin{array}{ll} \displaystyle \min_{\{u_k,v_k\}_{k=1}^N} & \mathbb{E}\left[\sum_{k=1}^N \ \gamma(\mathsf{T}^\mathsf{B}_{z,k} - \mathsf{T}_{\mathsf{set}})^2\right] \\ \text{subject to:} & x_{k+1} = f(x_k, u_k, v_k, s_k, w_k) \\ & x_{\min} \leq x_k \leq x_{\max} \ , \ u_{\min} \leq u_k \leq u_{\max} \\ & 0 \leq v_k \leq 1 \ , \ s_k \in \{0,1\} \ , \ w_k \in \Delta \\ & \nu^{\min}_{\mathsf{he}} \leq \nu_{\mathsf{he},k} \leq \nu^{\max}_{\mathsf{he}} \ , \ y^{\min}_{\mathsf{he}} \leq y_{\mathsf{he},k} \leq y^{\max}_{\mathsf{he}} \\ & \nu^{\min}_{\mathsf{hp}} \leq \nu_{\mathsf{hp},k} \leq \nu^{\max}_{\mathsf{hp}} \ , \ y^{\min}_{\mathsf{hp}} \leq y_{\mathsf{hp},k} \leq y^{\max}_{\mathsf{hp}} \end{array}$$

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

We formulate an optimization problem as follows:

$$\begin{array}{ll} \displaystyle \min_{\{u_k,v_k\}_{k=1}^N} & \mathbb{E}\left[\sum_{k=1}^N \ \gamma(\mathsf{T}_{z,k}^\mathsf{B} - \mathsf{T}_{\mathsf{set}})^2\right] \\ \text{subject to:} & x_{k+1} = f(x_k, u_k, v_k, s_k, w_k) \\ & x_{\min} \leq x_k \leq x_{\max} \ , \ u_{\min} \leq u_k \leq u_{\max} \\ & 0 \leq v_k \leq 1 \ , \ s_k \in \{0,1\} \ , \ w_k \in \Delta \\ & \nu_{\mathsf{he}}^{\mathsf{min}} \leq \nu_{\mathsf{he},k} \leq \nu_{\mathsf{he}}^{\mathsf{max}} \ , \ y_{\mathsf{he}}^{\mathsf{min}} \leq y_{\mathsf{he},k} \leq y_{\mathsf{he}}^{\mathsf{max}} \\ & \nu_{\mathsf{hp}}^{\mathsf{min}} \leq \nu_{\mathsf{hp},k} \leq \nu_{\mathsf{hp}}^{\mathsf{max}} \ , \ y_{\mathsf{hp}}^{\mathsf{min}} \leq y_{\mathsf{hp},k} \leq y_{\mathsf{hp}}^{\mathsf{max}} \end{array}$$

Proposed Formulation

Stochastic Mixed-Integer Nonlinear Optimization Problem

Vahab Rostampour (TUD)

19-23 September (EGC 2016) 23 / 35

A ∃ ► A ∃ ► ∃ E

Outline

- 1 Single Agent Model
- **2** Control Problem Formulation
- **3** Simulation Study and Estimation
- Ongoing Work and Results

Simulation Study

A single agent model control problem formulation:

- Sampling period: 1h
- Prediction horizon: 24h
- No integer variables (fixed)
- No stochastic terms (deterministic controller)
- Linear approximation of HP & HE complex subsystems
- Remove complex constraints of HP & HE:

$$egin{aligned} &
u_{ ext{he}}^{ ext{min}} \leq
u_{ ext{he},k} \leq
u_{ ext{he}}^{ ext{max}}, \ oldsymbol{y}_{ ext{he}}^{ ext{min}} \leq oldsymbol{y}_{ ext{he},k} \leq oldsymbol{y}_{ ext{he}}^{ ext{max}} \
u_{ ext{hp}}^{ ext{min}} \leq oldsymbol{v}_{ ext{hp},k} \leq oldsymbol{v}_{ ext{hp}}^{ ext{max}}, \ oldsymbol{y}_{ ext{hp}}^{ ext{min}} \leq oldsymbol{y}_{ ext{hp},k} \leq oldsymbol{y}_{ ext{hp}}^{ ext{max}} \end{aligned}$$

Simulation Results

Vahab Rostampour (TUD)

Building with ATE

19-23 September (EGC 2016) 26 / 35

313 DQC

Simulation Results

Vahab Rostampour (TUD)

19-23 September (EGC 2016) 27 / 35

三日 のへの

Parameter Estimation (loss-term)

Outline

- Single Agent Model
- Ontrol Problem Formulation
- **3** Simulation Study and Estimation
- **4** Ongoing Work and Results

Large Scale Complex Systems: ATES Smart Grids

Vahab Rostampour (TUD)

Building with ATES

Ongoing Developments: Interactions Model

Vahab Rostampour (TUD)

Building with ATE

19-23 September (EGC 2016) 31 / 35

Ongoing Developments: Optimal Operation

Ongoing Developments: Effective Operation

Ongoing Developments: Cooperative Approach

Vahab Rostampour (TUD)

Building with ATE

Results: Centralized vs. Decoupled

Vahab Rostampour (TUD)

Building with ATE

19-23 September (EGC 2016) 32 / 35

Results: Centralized vs. Decoupled

A 3 5 A 3 19-23 September (EGC 2016) 33 / 35

EL SQA

< 1[™] >

Results: Centralized vs. Decoupled

Vahab Rostampour (TUD)

< 回 > < 三 > < 三 > 19-23 September (EGC 2016)

34 / 35

A Control-Oriented Model for Combined Building Climate Comfort and ATES System

Vahab Rostampour, Martin Bloemendal, Marc Jaxa-Rozen and Tamás Keviczky

Delft University of Technology

European Geothermal Congress 19 - 23 September, 2016 Strasbourg, France

ELE DOG

Building Thermal Comfort Energy Demand

Main goal is to keep building zone temperature at the desired level.

- Building energy demand level is: $E_d = E_{gain} E_{loss}$
- Endogenous source of losses: $E_{\text{loss}} = Q_{zo} + Q_{so} + Q_{\text{vent}}$
- Convection heat transfer from zone and solid to outside air: $m{Q}_{zo}, m{Q}_{so}$
- Ventilation thermal energy lost: $oldsymbol{Q}_{\mathsf{vent}}$
- Endogenous source of energy: $E_{gain} = Q_{radz} + Q_{rads} + Q_p + Q_e$
- Radiation absorption by building zone and solid: Q_{radz}, Q_{rads}
- Occupancy and heat gain due to the electrical devices: $oldsymbol{Q}_{oldsymbol{p}},oldsymbol{Q}_{oldsymbol{e}}$

Heat Exchanger Model

Having the following relations:

- Aquifer plate thermal energy: $Q_{he,k} = \rho_w c_{p,w} u_{A,k} (T_{out,k}^{ap} T_{in,k}^{ap})$
- Building plate thermal energy: $Q_{he,k} = \rho_w c_{p,w} u_{S,k} (T_{in,k}^{bp} T_{out,k}^{bp})$
- Using the internal thermal energy conditions: $Q_{he,k} = k_{he}A_{he}\Delta T_m^{he}$
- ΔT_m^{he} is the mean temperature difference for the heat transfer.

Heat Exchanger Static Model

$$m{\Pi}_{ ext{he}} := egin{cases} m{y}_{ ext{he},k} = m{H}(m{
u}_{ ext{he},k},m{u}_{ ext{A},k},m{u}_{ ext{S},k}) \ orall m{k} \in \{m{0},m{1},m{2},\cdots\} \end{cases}$$

Heat Pump Model

Having the following relations:

- The thermal energy of condenser $Q_{h,k}$ and evaporator $Q_{c,k}$ sides: $Q_{h,k} = \rho_w c_{p,w} u_{B,k} (T_{out,k}^{con} - T_{in,k}^{con})$ $Q_{c,k} = \rho_w c_{p,w} u_{S,k} (T_{in,k}^{eva} - T_{out,k}^{eva})$
- Using the internal thermal energies conditions: $Q_{h,k} = k_{hp}A_{hp}\Delta T^{hp}_{m,h}$ and $Q_{c,k} = k_{hp}A_{hp}\Delta T^{hp}_{m,c}$
- The coefficient of performance: $COP = Q_{h,k} (Q_{h,k} Q_{c,k})^{-1}$
- Using Carnot cycle: $\text{COP} = \eta_{\text{hp}} \mathsf{T}_{hs} \left(\mathsf{T}_{hs} \mathsf{T}_{cs}\right)^{-1}$

Heat Pump Static Model

$$\boldsymbol{\Pi}_{\mathrm{hp}} := \begin{cases} \boldsymbol{y}_{\mathrm{hp},\boldsymbol{k}} = \mathsf{P}(\boldsymbol{\nu}_{\mathrm{hp},\boldsymbol{k}},\boldsymbol{u}_{\mathrm{B},\boldsymbol{k}},\boldsymbol{u}_{\mathrm{S},\boldsymbol{k}}) \\ \forall \boldsymbol{k} \in \{\boldsymbol{0},\boldsymbol{1},\boldsymbol{2},\cdots\} \end{cases}$$

A = A = A = E = O Q Q

Aquifer Thermal Energy Storage System Model

Consider the following mixed-integer first-order difference equations:

$$V_{w,k+1}^{aq} = V_{w,k}^{aq} + (s_{w,k} - s_{c,k})V_{in,k}^{aq}$$

$$V_{c,k+1}^{aq} = V_{c,k}^{aq} + (s_{c,k} - s_{w,k})V_{in,k}^{aq}$$

$$T_{w,k+1}^{aq} = \frac{V_{w,k}^{aq}}{V_{w,k}^{aq} + s_{w,k}V_{in,k}^{aq}}T_{w,k}^{aq} + \frac{s_{w,k}V_{in,k}^{aq}}{V_{w,k}^{aq} + s_{w,k}V_{in,k}^{aq}}T_{in,k}^{aq} - \frac{\alpha(T_{w,k}^{aq} - T_{amb,k}^{aq})}{V_{w,k}^{aq} + s_{w,k}V_{in,k}^{aq}}$$

$$T_{c,k+1}^{aq} = \frac{V_{c,k}^{aq}}{V_{c,k}^{aq} + s_{c,k}V_{in,k}^{aq}}T_{c,k}^{aq} + \frac{s_{c,k}V_{in,k}^{aq}}{V_{c,k}^{aq} + s_{c,k}V_{in,k}^{aq}}T_{in,k}^{aq} - \frac{\alpha(T_{c,k}^{aq} - T_{amb,k}^{aq})}{V_{c,k}^{aq} + s_{c,k}V_{in,k}^{aq}}$$

- Integer variables of warm and cold season: $s_{w,k}, s_{c,k} \in \{0,1\}$

• Output water temperature is: $T_{out,k}^{aq} = s_{c,k}T_{w,k}^{aq} + s_{w,k}T_{c,k}^{aq}$

Interconnections Between Each Subsystem

1 ATES system:
$$\nu_{A,k} := T_{in,k}^{aq}$$
, $y_{A,k} := T_{out,k}^{aq}$
 $\cdot T_{in,k}^{aq} = T_{out,k}^{ap}$
2 Heat exchanger: $\nu_{he,k} := [T_{in,k}^{ap}, T_{in,k}^{bp}]$, $y_{he,k} := [T_{out,k}^{ap}, T_{out,k}^{bp}]$
 $\cdot T_{in,k}^{ap} = T_{out,k}^{aq}$ and $T_{in,k}^{bp} = (1 - v_{c,k})T_{s,k} + v_{c,k}T_{out,k}^{chi}$
3 Heat pump: $\nu_{hp,k} := [T_{in,k}^{con}, T_{in,k}^{eva}]$, $y_{hp,k} := [T_{out,k}^{con}, T_{out,k}^{eva}]$
 $\cdot T_{in,k}^{con} = s_{n,k}(s_{w,k}T_{out,k}^{bp} + s_{c,k}T_{ret,k}^{B}) + (1 - s_{n,k})(s_{w,k}T_{out,k}^{ext} + s_{c,k}T_{ret,k}^{B})$
 $\cdot T_{in,k}^{eva} = s_{n,k}(s_{c,k}T_{out,k}^{bp} + s_{w,k}T_{ret,k}^{B}) + (1 - s_{n,k})(s_{w,k}T_{out,k}^{ext} + s_{c,k}T_{ret,k}^{B})$
4 Storage model: $\nu_{S,k} := T_{in,k}$, $y_{S,k} := T_{out,k}^{s}$
 $\cdot T_{in,k}^{s} = v_{h,k}(s_{w,k}T_{out,k}^{con} + s_{c,k}T_{out,k}^{eva}) + (1 - v_{h,k})T_{ret,k}^{B}$
5 Building model: $\nu_{B,k} := T_{sup,k}^{B}$, $y_{B,k} := T_{et,k}^{B}$

三日 のへの

Simulation Results

= 990