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Thermal Energy Demand Profile:

• Complete and detailed building dynamical model

• Desired building temperatures (local controller unit)

• In specific weather realization, certain demand profiles are generated
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Thermal Energy Demand Generator:

• Complete and detailed building dynamical model

• Desired building temperature (local controller unit)

• In uncertain weather conditions, uncertain demand profiles are generated
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Recap: Building Climate Comfort System
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Building Control Unit

Optimal Energy Management

Building Control Unit:

• Main components: Boiler, HP, HE, micro-CHP, Storage Tank

• ON/OFF status together with production schedule as decisions

• Control Objective: thermal energy balance for the overall systems
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Building Climate Comfort and ATES Systems 1
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· Incorporate ATES System 
· Interaction between components
· Different prediction horizon lengths
· Additional degrees of freedom
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[Rostampour, Keviczky, Submitted to IFAC World Congress, 2017]
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ATES Systems in Smart Thermal Grids 1
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[Rostampour, Keviczky, Submitted to IFAC World Congress, 2017]
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Control Frameworks and Solutions

1 Control formulations:

• Decoupled Solution (DS): each agent problem w/o common constraint
• Centralized Solution (CS): a complete problem with coupling constraint
• Move-Blocking Centralized Solution (MCS): CS + multi-rate actions
• Deterministic DS: we fixed the uncertain elements (wi)

2 Simulation Setup:

• Actual registered weather data; realistic buildings parameters
• Three-agent example in city center of Utrecht, the Netherlands
• simulation time is one year with hourly-based sampling time
• DS and CS with a day-ahead (24 hours) prediction horizon
• MS with a season long (3 month) prediction horizon
• MCS with multi-rate actions:

• hourly-based during first day
• daily-based in the first week
• weekly-based within the first month, and monthly-based in the rest of

season
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Simulations Results: A-Posteriori Feasibility Validation
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Conclusions and Future Works

• Remarks:

1 ATES System Modeling + Energy Balance Problem

2 Integrated ATES System into Building Climate Comfort System

3 ATES in STGs + Preventing Unwanted Mutual Interactions

4 DS, CS, and MCS Control Problem Formulations

5 Simulation Results Showed Expected Results

• Next Steps:

1 Refinement of the ATES System Model

2 Develop/Formulate A Hierarchical Framework to Predict longer horizon
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Scientific Output

• Building Climate Energy Management in Smart Thermal Grids via Aquifer Thermal Energy Storage Systems
Journal of Energy Procedia, Elsevier. (2016, to appear)

• A Model Predictive Framework of GSHP coupled with ATES System in Heating and Cooling Networks of a Building
Accepted for the IEA Conference on Heat Pump, Rotterdam, The Netherlands. (2017, May)

• Chance Constrained Model Predictive Controller Synthesis for Stochastic Max-Plus Linear Systems
IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary. (2016, October)

• A Control-Oriented Model for Combined Building Climate Comfort and Aquifer Thermal Energy Storage System
European Geothermal Congress, Strasbourg, France. (2016, September)

• Robust Randomized Model Predictive Control for Energy Balance in Smart Thermal Grids
European Control Conference, Aalborg, Denmark. (2016, June)

• Distributed Energy Management in Smart Thermal Grids with Uncertain Demands
MSc thesis ( Ananduta, W.W.), DCSC, TU Delft. (2016, August)

• A Set Based Probabilistic Approach to Threshold Design for Optimal Fault Detection
Submitted to American Control Conference 2017

• Probabilistic Energy Management for Building Climate Comfort in Smart Thermal Grids with Seasonal Storage Systems
Submitted to IFAC World Congress 2017
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Current Research Status

Under Progress:

• Stochastic Distributed MPC for Chance Constrained Linear Systems

• Computationally Distributed Algorithm for Chance Constrained Optimization

• On the Road Between Convex and Nonconvex Scenario Program for
Chance Constrained Optimization Problems

• Privacy Preserving Scheme in Distributed Constrained Optimization

Master Students’ Thesis:

• Distributed Stochastic Production Scheduling in Smart Grids
Ole ter Haar (Expected Graduation February 2017)
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Outline

1 Single Agent System

2 Multi-Agent Network: ATES-SGs

3 Frameworks and Simulation Results
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ATES System: Conceptual Block Diagram
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ATES System: Model Dynamics — Heating Mode
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ATES System: Model Dynamics — Cooling Mode
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ATES System: Energy Balance between Wells

An important operational limitation of ATES system is that the sum of
injected and extracted thermal energy over a period of time has to be zero:∑Ny

t=k (hha,t − hca,t) = 0∑Ny

t=k (cca,t − cha,t) = 0

 −→ Sh
a,t + Sc

a,t = S̄a

Sh
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a,t ≤ S̄a + ei,t

Sh
a,t + Sc

a,t ≥ S̄a − ei,t

ei,t is an auxiliary control variable to soften the formulated constraint
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Energy Management in Single Agent System

At each sampling time, a finite-horizon chance-constrained mixed-integer
quadratic optimization problem is formulated for each agent i:

minimize
ui,vi

Vi(xi,ui) = Ewi

[
Ji(xi,ui)

]
subject to Eiui + Fivi + Pi ≤ 0,

Pwi

[
Aixi,k +Biui + Ciwi ≥ 0

]
≥ 1− εi

wi ∈ Wi

The index of Ewi ,Pwi denotes the dependency of the state trajectory on
the string of random scenarios wi
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ATES Systems in STGs
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ATES Systems in STGs: Mutual Interactions

Thermal radius can be determined using the water volume in each well:

rla,t =

√
cpw Vl

a,t

caq π`
, l ∈ {h, c}

where caq = (1− np)csand + npcpw, and csand, cpw, np, are parameters.

We restrict the thermal radius between the neighboring agents:

(rha,t)i + (rca,t)j ≤ dij

where dij is a given distance between the neighboring agents.
δij,t = 2caqπ` (r̄ha,t)i (r̄ca,t)j/cpw to be a common uncertainty source
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rla,t =

√
cpw Vl

a,t

caq π`
, l ∈ {h, c}

where caq = (1− np)csand + npcpw, and csand, cpw, np, are parameters.

We restrict the stored volume of water between the neighboring agents:

(Vh
a,t)i + (Vc

a,t)j ≤ Vij − δij,t

where Vij is an upper-bound on the capacity of common resource pool
and δij,t = 2caqπ` (r̄ha,t)i (r̄ca,t)j/cpw is a common uncertainty source.
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Energy Management in ATES-SGs

At each sampling time, the energy management problem for ATES systems
in STGs is as follows:

minimize
{ui,vi}Ni=1

N∑
i=1

Vi(xi,ui)

subject to Eiui + Fivi + Pi ≤ 0

Pwi

[
Aixi,k +Biui + Ciwi ≥ 0

]
≥ 1− εi

Pδij
[
Hixi +Hjxj ≤ V̄ij − δij

]
≥ 1− ε̄ij

wi ∈ Wi , δij ∈ ∆ij , ∀j ∈ Ni

∀i ∈ {1, 2, · · · , N}
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Control Frameworks and Solutions

1 Control formulations:

• Decoupled Solution (DS): each agent problem w/o common constraint
• Centralized Solution (CS): a complete problem with coupling constraint
• Move-Blocking Centralized Solution (MCS): CS + multi-rate actions
• Deterministic DS: we fixed the uncertain elements (wi)

2 Simulation Setup:

• Actual registered weather data; realistic buildings parameters
• Three-agent example in city center of Utrecht, the Netherlands
• simulation time is one year with hourly-based sampling time
• DS and CS with a day-ahead (24 hours) prediction horizon
• MS with a season long (3 month) prediction horizon
• MCS with multi-rate actions:

• hourly-based during first day
• daily-based in the first week
• weekly-based within the first month, and monthly-based in the rest of

season
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Simulations Results: A-Posteriori Feasibility Validation
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MODFLOW Results: Average Thermal Efficiency
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