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Aquifer Thermal Energy Storage (ATES)

• A large-scale natural subsurface storage for thermal energy
• An innovative method for thermal energy balance in smart grids

Cold season:
• The building requests thermal

energy for the heating purpose
• Water is injected into cold well

and is taken from warm well
• The stored water contains cold

thermal energy for next season
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How to Develop a Predictive System Dynamics Model?
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Outline

1 Single Agent System Dynamics

2 Control Problem Formulation

3 Simulation Study
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Building Thermal Comfort Relations
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Building Thermal Comfort Model Formulation

We define the following model:

Building Dynamical Model
xB,k+1 = xB,k + fB(xB,k , uB,k , νB,k , νBext,k)τ

yB,k = gB(xB,k , uB,k)

• Building inside variables (states): xB,k ∈ R3

• Building outside variables (uncertain): νBext,k ∈ R3

• Pump flow rate variable (control): uB,k

• Supplied water temperature: νB,k

• Returned water temperature: yB,k

• Sampling period: τ
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Heat Exchanger Model

A countercurrent heat exchanger is used and it presents via a static model.
Static Model Variables:

• Input water temperatures:
νhe,k ∈ R2

• Pump flow rates
(control variables): uA,k , uS,k

• Output water temperatures:
yhe,k ∈ R2
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Heat Exchanger Static Model
yhe,k = H(νhe,k , uA,k , uS,k)
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Heat Pump Model

An electrical water to water heat pump is used with static model.

Static Model Variables:
• Input water temperatures:
νhp,k ∈ R2

• Pump flow rates
(control variables): uB,k , uS,k

• Output water temperatures:
yhp,k ∈ R2
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yhp,k = P(νhp,k , uB,k , uS,k)
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Storage Tank Model

We define an storage tank model with the following first order difference
equations:

Vs,k+1 = Vs,k + Vin,k − Vout,k

Ts,k+1 =
Vs,k

Vs,k + Vin,k
Ts,k +

Vin,k

Vs,k + Vin,k
Tin,k

Storage Dynamical Model
xS,k+1 = fS(xS,k , uS,k , νS,k)

yS,k = gS(xS,k)

• Tank temperature and volume variables (state): xS,k ∈ R2

• Pump flow rate variable (control): uS,k

• Input water temperature: νS,k

• Output water temperature: yS,k
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Boiler and Chiller Model

We define the boiler and chiller water temperatures with the following
relations:

Boiler:


Tboi

out,k = 90◦C
Tboi

in,k = Tbypass,k

ub,k = vb,kuB,k

Chiller:


Tchi

out,k = 5◦C
Tchi

in,k = Tbypass,k

uc,k = vc,kuS,k

• Boiler valve position (control): vb,k ∈ [0, 1]
• Chiller valve position (control): vc,k ∈ [0, 1]
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Aquifer Thermal Energy Storage System Principle

Similar modeling as the storage model by introducing different modes:

• Water is taken from one
of the wells and is injected
into the counterpart well.

• Taken water has constant
temperature until the
aquifer water temperature
dominates.

• Injected water has gained
thermal energy and it is
stored for the next
upcoming season.
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Aquifer Thermal Energy Storage System Model

We define the following Model:

ATES system Dynamical Model
xA,k+1 = fA(xA,k , uA,k , νA,k , sw,k , sc,k)

yA,k = gA(xA,k , sw,k , sc,k)

• Wells temperature and volume variables (state): xA,k ∈ R4

• Pump flow rate variable (control): uA,k

• Output water temperature: yA,k

• Input water temperature: νA,k
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Interconnections Between Each Subsystem
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Single Agent Representation

Consider compact formulation of dynamical agent system:

Single Agent Model
xk+1 = f (xk , uk , vk , sk ,wk)

• State variables: xk := [xB,k , xS,k , xA,k] ∈ R9

• Pump flow rate variables: uk := [uB,k , uS,k , uA,k] ∈ R3

• Valve position variables: vk := [vb,k , vc,k , vh,k] ∈ [0, 1]3

• Operating mode variables: sk := [sw,k , sc,k , sn,k] ∈ {0, 1}3

• Uncertain variables: wk := [To,k , Io,k ,Vo,k] ⊆ ∆ ∈ R3

• State variables are available at each sampling time k.
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Outline

1 Single Agent System Dynamics

2 Control Problem Formulation

3 Simulation Study

4 Conclusions
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Control Problem Formulation

We formulate an optimization problem as follows:

min
{uk ,vk}N

k=1

Objective Function: Reference Tracking

subject to: Nonlinear System Dynamics
State and Control Bounds
Valves, Modes and Uncertainty Sets
Heat Exchanger Capacity Constraints
Heat Pump Capacity Constraints

Proposed Formulation
Stochastic Mixed-Integer Nonlinear Optimization Problem
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Simulation Study

A single agent model control problem formulation:
• Sampling period: 1h
• Prediction horizon: 24h
• No integer variables (fixed)
• No stochastic terms (deterministic controller)
• Linear approximation of HP & HE complex subsystems
• Remove complex constraints of HP & HE:

νmin
he ≤ νhe,k ≤ νmax

he , ymin
he ≤ yhe,k ≤ ymax

he

νmin
hp ≤ νhp,k ≤ νmax

hp , ymin
hp ≤ yhp,k ≤ ymax

hp
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Simulation Results
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Concluding Remarks

• ATES System Dynamics Model
• Building Climate Comfort System Dynamics Model
• Integrated ATES System into Building Climate Comfort System

• Important Features:
• Complete mathematical models of building thermal equipment
• Developed model is highly complex and nonlinear; it can be considered

as a thermal energy demand of a building
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Achievements & Developments

• Complete Predictive Model of the ATES System
[Rostampour et al., EGU, 2017]

• ATES in Smart Thermal Grids + Preventing Mutual Interactions
[Rostampour et al., IFAC, 2017]

• Distributed Stochastic MPC for ATES in Smart Thermal Grids
[Rostampour et al., Submitted, 2017]
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