A Set Based Probabilistic Approach to Threshold Design for Optimal Fault Detection

Vahab Rostampour, Riccardo Ferrari, and Tamás Keviczky

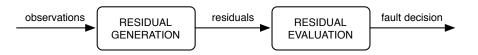
Delft Center of Systems and Control Delft University of Technology

May 24 - 26, 2017 American Control Conference Seattle, WA, USA

Model Based Fault Detection

General Concepts

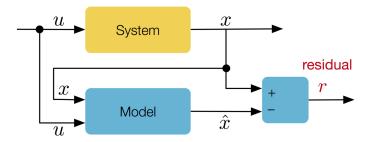
• The basis of model based fault detection concept is:



Model Based Fault Detection

General Concepts: Residual Generation

• A basic point is to have observer that generate residual:

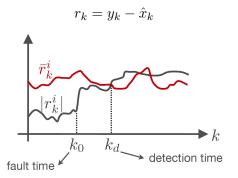


Model Based Fault Detection

General Concepts: Residual Evaluation

Define the residual signal to be as:

- \bar{r}_k : corresponding threshold
- faults can be detected by comparing $|r_k|$ with \bar{r}_k
- the threshold is needed to be robust w.r.t. uncertainties



Detectability Concept

A fault will be detected if the absolute value of at least one component of the residual crosses the threshold.

Why Go Set Based Probabilistic Residual Evaluation?

From Research Questions To Contributions

- How one can develop a fault detection framework for uncertain nonlinear systems?
- What sort of requirements are necessary to formalize the level of robustness in a probabilistic sense?
 - Existing approaches are based on the **robust notation of thresholds** w.r.t the uncertainties. How one can **relax** such a condition?
 - What are the requirements about the uncertainty sources?
 - Can we relax such a requirements (assumptions)?
- How one can achieve to a notation for the level of detectability as a design variable?

- 1 Residual Generation Setup
- **2** Residual Evaluation Frameworks
- **3** Simulation Study
- **4** Conclusions

Uncertain Nonlinear Systems Fault Detection

• Uncertain nonlinear system under fault: additive terms of system nominal behavior, uncertainties, and fault functions

nominal
$$y_k = Hx_k + v_k$$
 uncertainties fault

• w_k , v_k are two independent random variables

Problem Statement

- **1** In the presence of w_k , v_k with unknown distribution and no specific structure, can we detect a faulty parameter from uncertainties in a fairly enough general class of dynamical (nonlinear) system?
- If so, can we develop a formalize flexible framework for such a problem?

Uncertain Nonlinear Systems Fault Detection

• Uncertain nonlinear system under fault: additive terms of system nominal behavior, uncertainties, and fault functions

nominal
$$y_k = Hx_k + v_k$$
 uncertainties fault

• w_k , v_k are two independent random variables

Problem Statement

- **1** In the presence of w_k , v_k with unknown distribution and no specific structure, can we detect a faulty parameter from uncertainties in a fairly enough general class of dynamical (nonlinear) system?
- If so, can we develop a formalize flexible framework for such a problem?

Residual Generator System Dynamics

(1) State estimator can be built such as:

Vał

$$\hat{x}_{k+1} = g(y_k, u_k) + \Lambda \left(\hat{x}_k - y_k \right)$$

(2) The residual dynamics obey the following equation:

$$r_{k+1} = y_{k+1} - \hat{x}_{k+1} = \Lambda r_k + \delta_k + \phi(x_k, u_k, f_k) := \Sigma(r_k, \delta_k, \phi(x_k, u_k, f_k))$$

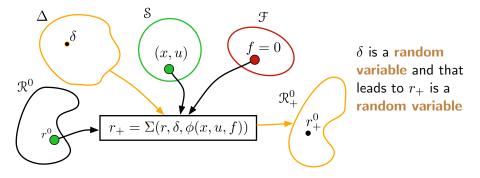
total fault fault fault fault parameter

 $\Rightarrow \delta_k$ represents all the sources of uncertainty (model and output):

$$\delta_{k+1} = \underline{g(x_k, u_k) - g(y_k, u_k)} + \underline{\eta(x_k, u_k, w_k)} + \underline{v_{k+1}}$$
effect of output model output output uncertainty uncertainty uncertainty on nominal dynamics uncertainty uncertainty (TUD) Probabilistic Set for Fault Detection May 24 - 26 (ACC 2017) 6 / 22

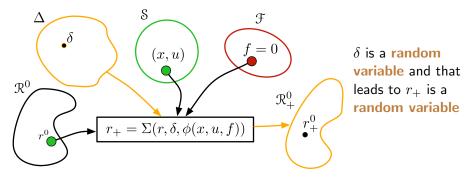
Set Based Threshold Design

 It is interesting to consider the set of healthy residuals that one can produce at next time



Set Based Threshold Design

 It is interesting to consider the set of healthy residuals that one can produce at next time



• We are therefore able to generate many samples of healthy residuals:

 $r^{0,(i)}_+ = \Sigma(r,\delta^{(i)},\phi(x,u,0)) \ , \qquad \delta^{(i)} \in \Delta$

A deterministic threshold should contain all possible healthy residuals

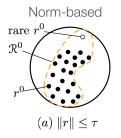
- **1** Residual Generation Setup
- **2** Residual Evaluation Frameworks
- **3** Simulation Study
- Occusion

Existing Approaches for Residual Evaluation

 Deterministic threshold sets are overly-conservative and limit performance; Using sets, we can easily visualize why this is true!

Existing Approaches for Residual Evaluation

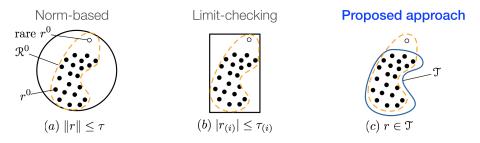
- Deterministic threshold sets are overly-conservative and limit performance; Using sets, we can easily visualize why this is true!
- Their shape may not be **tight** enough and they may be overly **influenced** by **large** and **rare** values of the uncertainty



Limit-checking

Proposed Residual Evaluation

- Deterministic threshold sets are overly-conservative and limit performance; Using sets, we can easily visualize why this is true!
- Their shape may not be **tight** enough and they may be overly **influenced** by **large** and **rare** values of the uncertainty



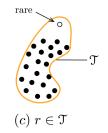
 We therefore proposed a probabilistic approach for determining set-based thresholds with shapes that can be as tight as desired

Proposed Probabilistic Threshold Set

Polynomial Level Sets

We define T (threshold set) as the *c*-superlevel set using a suitable parametrized indicator function *I*_T:

$$\mathfrak{T}_k := \{ r \in \mathbb{R}^n \mid \mathcal{I}_{\mathfrak{T}}(r, \theta_k) \ge c \}$$

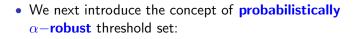


Proposed Probabilistic Threshold Set

Polynomial Level Sets

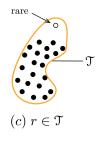
We define T (threshold set) as the *c*-superlevel set using a suitable parametrized indicator function *I*_T:

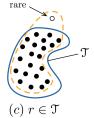
$$\mathfrak{T}_k := \{ r \in \mathbb{R}^n \mid \mathcal{I}_{\mathfrak{T}}(r, \theta_k) \ge c \}$$



$$\mathcal{V}(\mathcal{T}_+) := \mathbb{P}[r_+^0 \notin \mathcal{T}_+] \le 1 - \alpha$$

⇒ Then the **optimal threshold** is the **smallest** with a given **robustness probability**





(I): The optimal threshold problem can be formulated as:

$$\begin{cases} \min_{\theta,\gamma} & \gamma \\ \text{s.t.} & \text{vol } \mathcal{T} \leq \gamma & \longrightarrow \text{ min-volume constraint} \\ & \mathcal{V}(\mathcal{T}) \leq 1 - \alpha & \longrightarrow \text{ chance constraint} \end{cases}$$

.

(I): The optimal threshold problem can be formulated as:

$$\begin{cases} \min_{\theta, \gamma} & \gamma \\ \text{s.t.} & \text{vol } \mathcal{T} \leq \gamma & \longrightarrow \text{ min-volume constraint} \\ & \mathcal{V}(\mathcal{T}) \leq 1 - \alpha & \longrightarrow \text{ chance constraint} \end{cases}$$

(II): Next, the sensitivity w.r.t. faulty residuals can be maximized:

$$\begin{array}{ll} \displaystyle\max_{\theta} & \|\mathcal{T} - \mathcal{R}^{\mathcal{F}'}\|_{\infty} & \longrightarrow \text{ max-distance from faulty samples} \\ \text{s.t.} & \text{vol } \mathcal{T} \leq \gamma^* & \longrightarrow \text{ not worse than (I)} \\ & \mathcal{V}(\mathcal{T}) \leq 1 - \alpha & \longrightarrow \text{ chance constraint} \end{array}$$

.

(I): The optimal threshold problem can be formulated as:

$$\begin{cases} \min_{\theta, \gamma} & \gamma \\ \text{s.t.} & \text{vol } \mathcal{T} \leq \gamma & \longrightarrow \text{ min-volume constraint} \\ & \mathcal{V}(\mathcal{T}) \leq 1 - \alpha & \longrightarrow \text{ chance constraint} \end{cases}$$

(II): Next, the sensitivity w.r.t. faulty residuals can be maximized:

 $\begin{cases} \max_{\theta} & \|\mathfrak{T} - \mathfrak{R}^{\mathcal{F}'}\|_{\infty} \longrightarrow \text{max-distance from faulty samples} \\ \text{s.t.} & \text{vol } \mathfrak{T} \leq \gamma^* \longrightarrow \text{not worse than (I)} \\ & \mathcal{V}(\mathfrak{T}) \leq 1 - \alpha \longrightarrow \text{chance constraint} \end{cases}$

⇒ chance-constrained problems are non-convex and hard to solve

Sample Complexity in Cascade Setup

- We use **randomization technique** to obtain a tractable formulation by replacing the chance constraint with sample-based hard constraints
- How many samples are enough to provide equivalent properties?

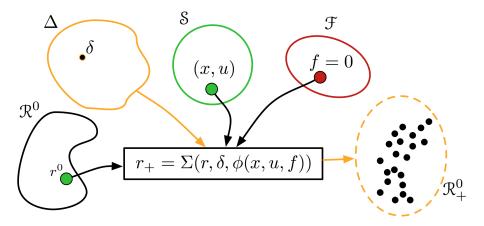
Theorem: Probabilistic Guarantee for Cascade Setup

Fix α , β , and determine $N \ge N(\alpha, \beta, \ell)$, then, the obtained threshold set is α -robust threshold set with high confidence level $1 - \beta$, in the average.

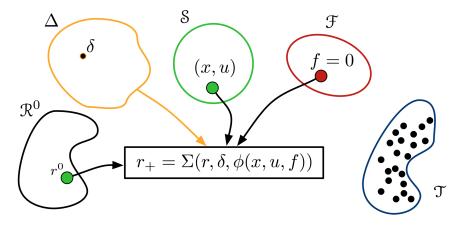
number of
samples
$$N(\alpha, \beta, \ell) := \min \left\{ N \in \mathbb{N} \mid d \sum_{i=0}^{\ell-1} \binom{N}{i} (1-\alpha)^i \alpha^{N-i} \leq \beta \right\}$$

required probability size of
of robustness solution indicator function
parameters desired level of desired level of
robustness confidence

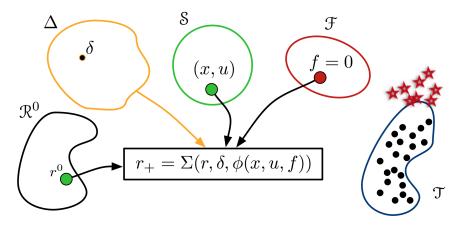
Generating Samples of Healthy Residuals



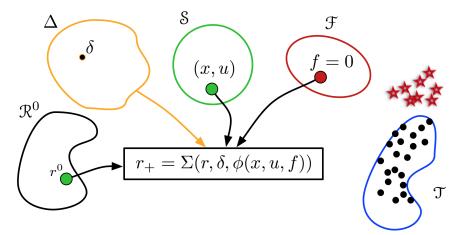
Proposed Cascade Framework — Visualization Minimizing Volume of Polynomial Level Set: Solution of Problem (I)



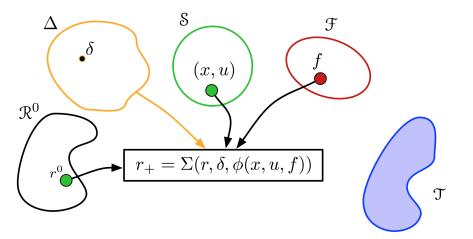
Determining of Faulty Residual Set



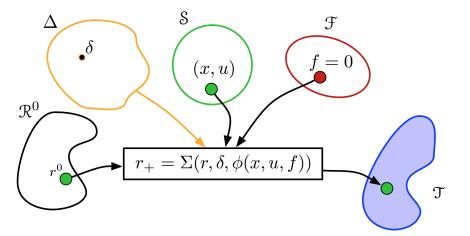
Proposed Cascade Framework — Visualization Maximizing Sensitivity w.r.t. Faulty Residual Set: Solution of Problem (II)



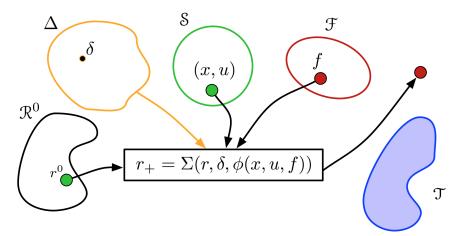
Implementation Scheme



Implementation Scheme: Healthy Residual



Implementation Scheme: Faulty Residual

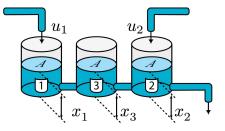


- **1** Residual Generation Setup
- Residual Evaluation Frameworks
- **3** Simulation Study
- Occusion

Benchmark Case Study: Three-Tank System¹

- Uncertainties source is model mismatch: tanks and pipes' cross section and outflow coefficient
- Fault classes: the first or second pump shut down, leakage in the first tank
- A fault corresponding to a reduction in the inflow provided by the first pump is introduced

classical nonlinear system used as a **benchmark in FDI**

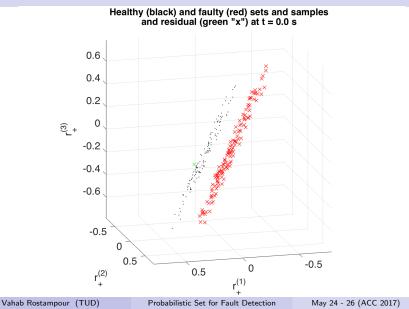


nominal dynamics can be easily written as a discrete-time nonlinear

Vahab Rostampour (TUD)

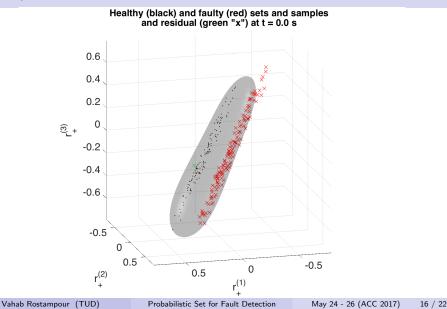
¹[R. Ferrari, et al. ACC 2008]

(1) Healthy and Faulty Residual Samples

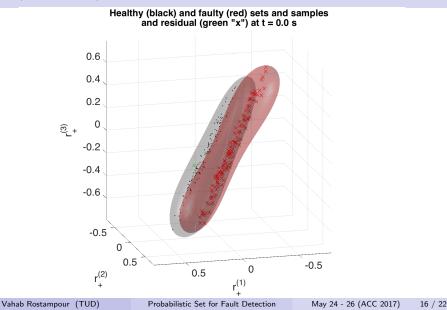


16 / 22

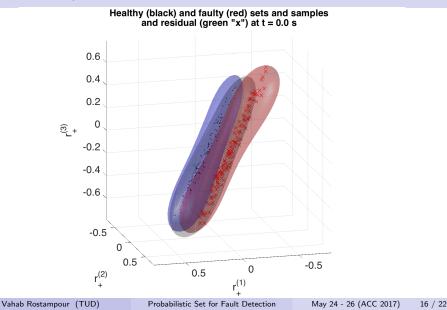
(2) Polynomial Threshold Set Found in Problem I



(3) Polynomial Faulty Residual Set Used in Problem II

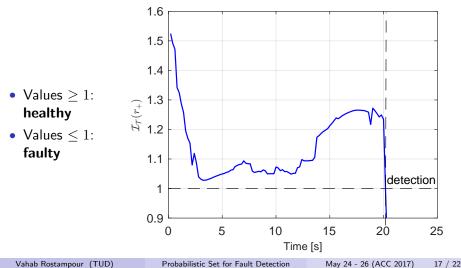


(4) Updated Polynomial Threshold Set Found in Problem II



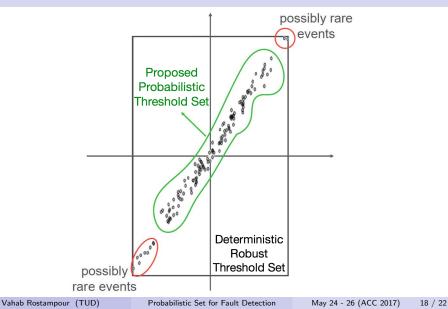
Results of Proposed Residual Evaluation

- Values of the proposed threshold set computed at the residual
- The fault is introduced at $T_f = 20s$ with sampling time $T_s = 0.1s$



Ratio of Volume of Threshold Sets

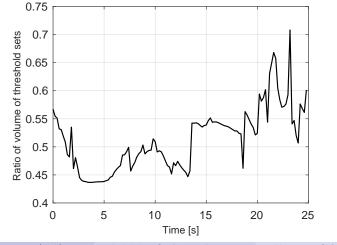
Polynomial vs. Rectangle



Ratio of Volume of Threshold Sets

Polynomial vs. Rectangle

Volume of proposed threshold is clearly smaller; higher detectability



- Residual Generation Setup
- Residual Evaluation Frameworks
- **3** Simulation Study
- **4** Conclusions

Concluding Remarks

Remarks:

- Developed a novel approach to the design of fault detection thresholds for uncertain nonlinear systems
 - **Pros:** desired level of **false-alarm** and achievable level of **missed-detection**; **theoretically proven achievements**
 - **Cons:** in case of time-varying uncertainty sources, it requires to generate the required residual samples at each time step; **computationally demanding**
- Provided a-priori probabilistic guarantees on the performance level of fault detection; this is an extension of the existing results to the cascade setup
- 3 Validated of the advantages of the proposed framework using simulation results on the well known three-tank benchmark

Concluding Remarks

Remarks:

- Developed a novel approach to the design of fault detection thresholds for uncertain nonlinear systems
 - **Pros:** desired level of **false-alarm** and achievable level of **missed-detection**; **theoretically proven achievements**
 - **Cons:** in case of time-varying uncertainty sources, it requires to generate the required residual samples at each time step; **computationally demanding**
- Provided a-priori probabilistic guarantees on the performance level of fault detection; this is an extension of the existing results to the cascade setup
- 3 Validated of the advantages of the proposed framework using simulation results on the well known three-tank benchmark

What comes next:

• Extending to fault isolation, identification, and tolerant control

Thank you for your attention!

Contact at: http://www.dcsc.tudelft.nl/~vrostampour/ v.rostampour@tudelft.nl

A Set Based Probabilistic Approach to Threshold Design for Optimal Fault Detection

Vahab Rostampour, Riccardo Ferrari, and Tamás Keviczky

Delft Center of Systems and Control Delft University of Technology

May 24 - 26, 2017 American Control Conference Seattle, WA, USA

