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Figure 1.3 (page 3)

The figure omits the goal and obstacle mentioned in the text (these elements are

shown later, in Figure 1.5). The correct figure is given here:

state (position)xk

action (step)uk

next state xk+1

r ,k+1 reward
Goal

Example 2.3 (page 26) and Example 2.4 (page 34)

The results in Table 2.2 are not obtained with the version of Q-iteration from Al-

gorithm 2.1, as stated in the text, but with an asynchronous version that employs

the most recently updated Q-values at each step of the computation. This version

replaces lines 3–5 of Algorithm 2.1 with the procedure:

Q← Qℓ

for every (x,u) do

Q(x,u)← ρ(x,u)+ γ maxu′Q( f (x,u),u′)
end for

Qℓ+1← Q
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Similarly, Tables 2.3, 2.5, and 2.6 are produced using asynchronous versions of,

respectively, Algorithms 2.2, 2.5, and 2.6. These versions are easily obtained by mod-

ifications similar to the one above, and are not given here. The computational cost

considerations and comparisons in the examples remain valid, but apply to the asyn-

chronous algorithm variants. (Since the synchronous variants given in the book are

less efficient, they would run in a larger number of iterations.)

Equation 3.50 (page 89): Q̂ĥℓ should be Qĥℓ

Section 4.5.4 (page 160): Car on the hill example

The terminal states were incorrectly handled in this example. In particular, the usual

fuzzy Q-iteration updates:

θℓ+1,[i, j]← ρ(xi,u j)+ γ max
j′

N

∑
i′=1

φi′( f (xi,u j))θℓ,[i′, j′]

were applied even when the next state f (xi,u j) was terminal, i.e., outside the domain

[−1,1]× [−3,3]. This, however, corresponds to – incorrectly – assigning non-zero

rewards to the terminal states. These rewards then propagate through the updates and

lead to overly large Q-values. The correct way to perform the updates is by explicitly

enforcing a zero Q-value in any terminal state:

θℓ+1,[i, j]← ρ(xi,u j)+

{
γ max j′∑

N
i′=1 φi′( f (xi,u j))θℓ,[i′, j′] if f (xi,u j) is non-terminal

0 if f (xi,u j) is terminal

The following results change due to this modification. Figure 4.14(b) changes to:
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Figure 4.15 changes to:
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(a) Performance.
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(b) Execution time.

Figure 4.16 changes to:
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The original discussion remains entirely valid, and these results are qualitatively

similar to the original ones. This is because the policies computed by fuzzy Q-

iteration remain almost unaffected by the change.

Page 196, line 5: γ = 0.95 should be γ = 0.98

Note that the policy in Figure 5.13(b) is near-optimal for γ = 0.95. Nevertheless, the

corresponding near-optimal policy for γ = 0.98:
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has the same structure, and the considerations after Figure 5.13 remain valid.


