
Corrections to
Reinforcement learning and dynamic
programming using function
approximators
Lucian Buşoniu, Robert Babuška, Bart De Schutter, and Damien Ernst

Taylor & Francis CRC Press 2010

Updated July 8, 2011

Figure 1.3 (page 3)

The figure omits the goal and obstacle mentioned in the text (these elements are

shown later, in Figure 1.5). The correct figure is given here:

state (position)xk

action (step)uk

next state xk+1

r ,k+1 reward
Goal

Example 2.3 (page 26) and Example 2.4 (page 34)

The results in Table 2.2 are not obtained with the version of Q-iteration from Al-

gorithm 2.1, as stated in the text, but with an asynchronous version that employs

the most recently updated Q-values at each step of the computation. This version

replaces lines 3–5 of Algorithm 2.1 with the procedure:

Q← Qℓ

for every (x,u) do

Q(x,u)← ρ(x,u)+ γ maxu′Q(f (x,u),u′)
end for

Qℓ+1← Q

1

2

Similarly, Tables 2.3, 2.5, and 2.6 are produced using asynchronous versions of,

respectively, Algorithms 2.2, 2.5, and 2.6. These versions are easily obtained by mod-

ifications similar to the one above, and are not given here. The computational cost

considerations and comparisons in the examples remain valid, but apply to the asyn-

chronous algorithm variants. (Since the synchronous variants given in the book are

less efficient, they would run in a larger number of iterations.)

Equation 3.50 (page 89): Q̂ĥℓ should be Qĥℓ

Section 4.5.4 (page 160): Car on the hill example

The terminal states were incorrectly handled in this example. In particular, the usual

fuzzy Q-iteration updates:

θℓ+1,[i, j]← ρ(xi,u j)+ γ max
j′

N

∑
i′=1

φi′(f (xi,u j))θℓ,[i′, j′]

were applied even when the next state f (xi,u j) was terminal, i.e., outside the domain

[−1,1]× [−3,3]. This, however, corresponds to – incorrectly – assigning non-zero

rewards to the terminal states. These rewards then propagate through the updates and

lead to overly large Q-values. The correct way to perform the updates is by explicitly

enforcing a zero Q-value in any terminal state:

θℓ+1,[i, j]← ρ(xi,u j)+

{
γ max j′∑

N
i′=1 φi′(f (xi,u j))θℓ,[i′, j′] if f (xi,u j) is non-terminal

0 if f (xi,u j) is terminal

The following results change due to this modification. Figure 4.14(b) changes to:

−1
−0.5

0
0.5

1

−2

0

2

−1

−0.5

0

0.5

1

pp’

Q
(p

,p
’,
 −

4
)

Figure 4.15 changes to:

3

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−0.2

−0.1

0

0.1

0.2

0.3

0.4

N’

S
c
o
re

optimized MFs, mean score

optimized MFs, 95% confidence bounds

optimal score

equidistant MFs, score

(a) Performance.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

−2

10
0

10
2

10
4

10
6

N’

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

optimized MFs, mean execution time

optimized MFs, 95% confidence bounds

equidistant MFs, execution time

(b) Execution time.

Figure 4.16 changes to:

−1
−0.5

0
0.5

1

−3

−2

−1

0

1

2

3
0

0.5

1

p
p’

φ
 (

p
,

p
’)

The original discussion remains entirely valid, and these results are qualitatively

similar to the original ones. This is because the policies computed by fuzzy Q-

iteration remain almost unaffected by the change.

Page 196, line 5: γ = 0.95 should be γ = 0.98

Note that the policy in Figure 5.13(b) is near-optimal for γ = 0.95. Nevertheless, the

corresponding near-optimal policy for γ = 0.98:

−2 0 2
−50

0

50

α [rad]

α
’
[r

a
d

/s
]

h(α,α’) [V]

−10

−5

0

5

10

has the same structure, and the considerations after Figure 5.13 remain valid.

