Modeling & Control of Hybrid Systems

Chapter 2 — Modeling frameworks

e Many modeling frameworks for hybrid systems
= trade-off: modeling power <+ decision power, tractability

e Hybrid automata:

— very general, high modeling power, but low decision power

— analysis and control — computationally hard
(NP-hard, undecidable problems)
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e Computer simulation and verification tools: Modelica, HyTech,
KRONOS, Chi, 20-sim, UPPAAL, ...

+ simulation models can represent plant with high degree of
detail (high modeling power)

— computationally very demanding for large systems

— difficult to understand from simulation how behavior depends
on model parameters

e In this chapter: special classes of hybrid systems for which
tfractable analysis and control design techniques are available
(cf. next chapters)
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Overview

. Piecewise affine systems (PWA)

. Mixed Logical Dynamical systems (MLD)

. Linear Complementarity systems (LC)

. Extended Linear Complementarity systems (ELC)

. Max-Min-Plus-Scaling systems (MMPS)

. Equivalence of MLD, LC, ELC, PWA, and MMPS systems
. Timed automata

o N o O & WO N —

. Timed Petri nets
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1. Piecewise affine (PWA) systems

e PWA systems are described by
x(k+1) = Ax(k) +Bu(k) + fi [x(k)
y(k) = Cix(k) + Diu(k) + g u(k)

e Q,...,Qu: convex polyhedra (i.e., given by finite number of linear
iInequalities) in input/state space, non-overlapping interiors

[caniztw

e PWA can be used as approximation of nonlinear model
xX(k+1) = Ax(x(k),u(k))
y(k) = A5(x(k),u(k))
— “simplest” extension of linear systems that can still model

non-linear & non-smooth processes with arbitrary accuracy
+ are capable of handling hybrid phenomena
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Example of PWA model
Integrator with upper saturation:

{x(k) Fu(k) if x(k) +u(k)
1

)= it x(k) + u(k)

|
1

VoA

u(k)

hs mod.5




2. Mixed Logical Dynamical (MLD) systems
2.1 Preliminaries

e Boolean operators:
A (and), Vv (or), ~ (not), = (implies), < (iff), & (xor)

X1 Xl XKiNXo XiVXs ~Xi Xi= X Xie X Xi9Xs
T T T T F T T F
TF F T F F F T
F T F T T T F T
F F| F F T T T F

e Properties:
-X; = X, Is same as ~X; VX,
- X; = X, IS same as ~X, = ~X]

- X1 X5 IS same as (X1 — Xz) A\ (X2 — Xl)
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e Associate with literal X; logical variable o; € {0,1}:
— compound statement can be transformed into
linear integer program

e Examples:

*XiANX, equivalentto 0, =0,=1

*X; VX, equivalentto 6+ & > 1

* ~X; equivalentto 0, =0

* X, = X, equivalentto 6;— 0, <0
*X, < X, equivalentto 6,—6,=0
*X; 9 X, equivalentto 6, +6, =1

e For f:R"— R and x € 2" with 2" bounded, define

def def .
M = ma — min
xegf(x) " xe}%”f(x) hs_mod.7



e Equivalences:

*If(x) KOJA[0=1] trueiff f(x)—0 < —14+m(1-0)
W <0 [ = 1] true iff f<x><Ma
~|f(x) <0 t ff f(x) = €& (with € machine precision)
*1f(x) 0] =] 6: true iff f(x)>e+(m—e)6
: - _ e ) f(x) <M(1-9)
f(x) <0] < [0 =1] true iff {f(x) S et (m—g)d

e Product 0,0, can be replaced by auxiliary variable 0; = 0,0»:
(—8,+8; <0

=010, Isequivalentto < —-06,+6<0

01+ —03<1
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e 0 f(x) can be replaced by auxiliary real variable y = 6 f(x):

(y< M
y = mo
y < f(x) —m(1—9)
¥y = fx)—M(1-6)

y=0f(x) isequivalentto <
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2.2 Mixed logical dynamical (MLD) systems

o x(k+1)=Ax(k)+ Biu(k)+ B0 (k) + B3z(k)
y(k) = Cx(k) + Dyu(k) + D,6 (k) + D3z(k)
Ex(k) + Exu(k) + E36 (k) + Eqz(k) < gs,
o x(k) =[x (k) x,' (k)]" with x,(k) real-valued, x,(k) boolean
z(k): real-valued auxiliary variables
0 (k): boolean auxiliary variables

e Applications: PWA systems, systems with discrete inputs, quali-
tative inputs, bilinear systems, finite state machines

e Reference: A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407427,
March 1999.
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2.3 Example
e Consider PWA system:
0.8x(k) + u(k) if x(k) >0

wkr )= {O.Sx(k) Culk)  if x(k) <0
where x(k) € [—10,10] and u(k) € [—1,1]

e Associate binary variable 6 (k) to condition x(k) > 0
such that [6(k) = 1] < [x(k) > 0] or

—mo (k) < x(k) —m
—(M+¢€)o(k) < —x(k)—¢
where M = —m = 10, and € is machine precision
e PWA system can be rewritten as
x(k+1)=1.60(k)x(k) — 0.8 x(k) + u(k) hs mod.11



e x(k+1)=1.606(k)x(k) —0.8x(k)+ u(k)

e Define new variable z(k) = 6 (k) x(k) or
z2(k) < Mo(k)
z(k) > mo(k
z(k) < x(k) —m(1 —0(k))
z(k) = x(k) —M (1 —0(k))

e PWA system now becomes
x(k+1) =1.6z(k) — 0.8x(k) + u(k)
subject to linear constraints above — MLD
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3. Linear Complementarity (LC) systems

e LC systems:

0 < v(k) L w(k) >0

o v(k), w(k): “complementarity variables” (real-valued)

e Applications: constrained mechanical systems, electrical networks
with ideal diodes, dynamical systems with PWA relations, variable-
structure systems, projected dynamical systems

e Examples: two-carts system, boost converter (continuous-time
LC systems)
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4. Extended Linear Complementarity (ELC) systems

e ELC systems:

x(k+1) =Ax(k) + Bju(k) + Bod (k) (1)
y(k) = Cx(k) 4+ Diu(k) + D,d (k) (2)
E1X(k) —I—Ezu(k) -+ E3d(k) < ey (3)
Y T (e~ Evxk) — Exulk) — Esd(k)),, = 0 @)
i=1jeo;

e d(k): real-valued auxiliary variable

e Condition (4) is equivalent to
| | (e4s— Eix(k) — Eyu(k) —Exd(k)), =0 foreachie {L,...,p}
JEO;i
— system of linear inequalities with p groups, in each group
at least one inequality should hold with equality hs mod.14



5. Max-Min-Plus-Scaling (MMPS) systems
e Max-min-plus-scaling expression:
f ::xi‘a‘maX(fkafl)‘min(fhﬁ)‘fk—'_ﬁ‘ﬁfk
with , B € R and f;, f; again MMPS expressions.
e Example: 5x; — 3x; + 7 4+ max(min(2x;, —8x,),x, — 3x3)
e MMPS systems:
x(k+1) = A (x(k),u(k),d(k))
y(k) = Ay (x(k),u(k), d( )
AM(x(k),u(k),d(k)) <
with 4., #,, #. MMPS expressions
e d(k): real-valued auxiliary variables
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5. Max-Min-Plus-Scaling (MMPS) systems (continued)

e Applications:

— discrete-event systems (also max-plus)

— traffic-signal controlled intersection

— railway networks

— manufacturing systems

— systems with soft & hard synchronization constraints
— logistic systems
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Example of MMPS system

e Integrator with upper saturation:

~Jx(k) +u(k) if x(k) +u(k)
=
y(k) = x(k)

can be recast as

VoA

|
1
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6. Equivalence of MLD, LC, ELC, PWA, and MMPS systems

Equivalence between model classes o7 and %:
for each model € .o7 there exists model € % with same input/output
behavior (+ vice versa)
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Equivalence of MLD, LC, ELC, PWA, and MMPS systems

e Each subclass has own advantages:

— stability criteria for PWA

— control and verification techniques for MLD

— control techniques for MMPS

— conditions of existence and uniqueness of solutions for LC

— transfer techniques from one class to other

e It depends on the application which class is best suited
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6.1 MLD and LC systems
Proposition Every MLD system can be written as LC system

e 0;(k) € {0,1} is equivalentto 0 < 9;(k) L 1 —0;(k) >0
— introduce auxiliary variable p(k) =[1 1 ... 1]" — &(k) with

0<8(k) L p(k) =0

e For constraint E\x(k) + E,u(k) + Es0 (k) + E4z(k) < gs, introduce
auxiliary variables g(k) = gs — E1x(k) — Eou(k) — E30 (k) — E4z(k) > 0
and r(k) = 0 with

0<qg(k) Lr(k)=0
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e For LC: all variables > 0
— split real-valued variable z(k) in “positive” and “negative part”:
z(k) =z (k) —z~ (k) with z(k) = max(0,z(k)), z~ (k) = max(0, —z(k))
or0<z (k) Lz (k) >0

e Results in LC system:

x(k+1) =Ax(k) + Biu(k) + |B, 0 B3 —Bs|w(k)
y(k) = Cx(k) 4+ Diu(k) + [D> 0 D3 —Ds|w(k)

p(k) e —1 0 0 O o0 (k)
(ol _ o Bl Bt . ESETATS
s(k) 0 00 0 1|z
\rqz)/ \ 0 J \oo 1 of \;((12/
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Proposition Every LC system can be written as MLD provided that
w(k) and v(k) are bounded

e LC complementarity condition 0 < v(k) Lw(k) > 0 implies that
for each i we have v;(k) =0, w;(k) >0 or v;(k) >0, wi(k) =0
e Introduce boolean vector o (k) such that
vilk) =0, wi(k) 20 + 0i(k)=1
vi(k) >0, wi(k) =0 < 06i(k)=0
e Can be achieved by introducing constraints
w(k) < M,,6 (k)
v(k) <M,([11...1]" =8(k))
w(k),v(k) >0

with M,,, M, diagonal matrices containing upper bounds on w(k),v(k)
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e Note: Upper bounds usually known in practice due to physical
reasons/insight.

e Finally results in MLD model

x(k+1) =Ax(k) + Bju(k) + Byz(k)
y(k) = Cx(k) + Diu(k) + Dz(k)

x(k) +

u(k) +

_Mw

v

M
0
O -
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6.2 LC and ELC systems
Proposition Every LC system can be written as ELC system

o v(k) Lw(k) is equivalent to Zv,-(k)w,-(k) =0
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6.3 PWA and MLD systems

Proposition Well-posed PWA system can be rewritten as MLD sys-
tem assuming that set of feasible states and inputs is bounded

e Cf. examples.

Proposition Completely well-posed MLD can be rewritten as PWA
o If 6(k) € {0, 1} — 2% possible combinations
e For each combination MLD constraint
Ex(k) + E>u(k) + E36 (k) + Eqz(k) < g5
defines polyhedral region in x/u/z space

e For each combination, z(k) is linear function of u(k) and x(k) due
to well-posedness + linearity of all constraints

e Results in linear state space model for each polyhedral region
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6.4 MMPS and ELC systems
Proposition The classes of MMPS and ELC systems coincide
MMPS C ELC

e Basic constructors for MMPS expressions fit ELC framework:

— Expressions of form f=ux;, f=«, f = fi+ fi, f = Bfi result in
linear equations

— [ =max(f, f;) = —min(—fi, — f;) can be rewritten as

f=fz0, f[=/iz20, (f=f)(f—Sf1)=0
— is ELC expression
e Two or more ELC systems can be combined into one large ELC
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6.4 MMPS and ELC systems (continued)
ELC C MMPS
e Linear equations are MMPS expressions (albeit without max or
min)
e Complementarity condition can be rewritten as
Vi, 3j € ¢; such that (es — Eix(k) — Eou(k) — Esd(k)) , = 0

\ -/

>0
So

I_ni(;l(e4 — Ex(k) — Eou(k) — Egd(k))j =0 foreach i
JEO;
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6.5 MLD and ELC systems
Proposition Every MLD system can be rewritten as ELC system
e Condition 6;(k) € {0,1} is equivalent to ELC conditions

—0;(k) <0
0i(k) < 1
0;(k)(1 —0i(k)) =0

e Note: condition 9;(k) € {0, 1} also equivalent to MMPS constraints
max(—o;(k), 0;(k) —1) =0
or
min(9;(k),1— 6;(k)) =0
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Proposition Every ELC system can be written as MLD system, pro-
vided that e, — E1x(k) — Eou(k) — Esd(k) s bounded

e Introduce conditions
(es); — (Evx(k) + Eou(k) + Esd(k)); < M;0j(k) for each j € ¢,
) 8i(k) <#oi—1
JEO;
with 6;(k) € {0,1} auxiliary variables,
and M; upper bound for (es — E\x(k) — Exu(k) — Exd(k))

e By last condition at least one 6,(k) is zero for some i € ¢;
— 1st inequality and ELC inequality (e4); — (E1x(k) + Eyu(k)
+Exd(k)); > 0 degenerate to equality condition for j = A

e Hence, (nonlinear) ELC complementarity condition can be re-

placed by above (linear) equations — MLD system
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6.6 Example

e Consider
[ 0.8x(k)+u(k) ifx(k)=0
*k+1) = { —0.8x(k)+u(k) if x(k) <0

with m < x(k) <M

e MLD:
x(k+1) = —0.8x(k) +u(k) + 1.6z(k)
—mo (k) < x(k) —m x(k) < (M+¢€)o(k)—¢&
z(k) < Mo(k) z(k) = mo(k)
z(k) < x(k) —m(1—0(k)) z(k) = x(k) —M(1—0(k))
with 6 (k) € {0,1}
e MMPS:

x(k+1)=—0.8x(k) + 1.6max(0,x(k)) + u(k) )



6.6 Example (continued)

e Consider
[ 0.8x(k)+u(k) ifx(k)=0
He+1) = { —0.8x(k) +u(k) if x(k) < 0
o LC:
x(k+1) =—0.8x(k) +u(k) + 1.6z(k)
0 < w(k) = —x(k)+2z(k) L z(k) >0
e ELC:

x(k+1)=—0.8x(k) +u(k) + 1.6d(k)
—d(k) <0, x(k)—d(k)<0, (x(k)—d(k))(—d(k)) =0
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7. Timed automata

e Timed automata involve simple continuous dynamics:

— all differential equations of form x =1

—all invariants, guards, etc. involve comparison of real-valued
states with constants (e.g., x=1,x <2, x>0, etc.)

e Timed automata are limited for modeling physical systems

e However, very well suited for encoding timing constraints such as

“event A must take place at least 2 seconds after event B and not
more than 5 seconds before event C”

e Applications: multimedia, Internet, audio protocol verification
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7.1 Rectangular sets

e Subset of R” set is called rectangular if it can be written as finite
boolean combination of constraints of form

xi<a, x;<b, x;=c, x;,=2d, x;>e
e Rectangular sets are “rectangles” or “boxes” in R" whose sides
are aligned with the axes, or unions of such rectangles/boxes
e Examples:
—{(x1,x) | (k1 Z0)A (] S2))A (2 =2 1) A (2 <2)}
= {(x,x2) | (1 = 0) A (2 =0)) V ((x1 = 0) A (xz >0))}
—empty set (e.g., @ ={(x1,x) | (x1 > 1) A (x; <0))}
e However, set {(x1,x;) | x; = 2x,} is not rectangular
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7.2 Timed automaton

e Timed automaton is hybrid automaton with following characteris-
tics:
— automaton involves differential equations of form x; =1

continuous variables governed by this differential equation are
called “clocks” or “timers”

— sets involved in definition of initial states, guards, and invari-
ants are rectangular sets

— reset maps involve either rectangular set, or may leave certain
states unchanged
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7.3 Example of timed automaton

X1:X2:O

xX1:=3Axy:=0
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8. Timed Petri nets
8.1 Petri nets
e Graphical representation: bipartite directed graph

— places (circles) — activities
—transitions (bars) — events, actions
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e marking — tokens are assigned to places
e execution of Petri net:

— transition enabled if all input places (°¢) contain at least 1 token
— enabled transition can fire:

x one token is removed from each input place (°*¢)
x one token is deposited in each output place (¢°)

P1 P2
—(e) —(0—
|14 3 s
A A =
P4 tz, |f3 Ds

e synchronization & choice
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8.2 Timed Petri nets
e Untimed Petri net describes order in which events can occuir,
but no timing

e Timed Petri — timing, transition should be executed within cer-
tain time interval after it becomes enabled

— discrete state variables (markings, mg(p))
— continuous state variables (arrival times, My(p))

® Mg(p) :=1{61,...,0,,( } With arrival times 6, < 6, < ... < 6,,,(,,) Of
mg(p) tokens in place p

e For each transition + we define interval [L(¢),U (z)]
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8.2 Timed Petri nets (continued)

e [ransition r becomes enabled at

max min Mg (p)
pEe®t

e Then transition + may fire at some time
0 € [maxminMy(p) + L(t), maxminMy(p) + U (t)]
pE°*t pE*t

provided ¢ is enabled during whole interval

e If enabling condition is still valid at final time of firing interval, then
transition is forced to fire

e Many technigues for untimed Petri nets can be extended to timed
Petri nets

e However, many problems are undecidable or NP-hard
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9. Summary

¢ Trade-off: modeling power < decision power
— focus on tractable classes of hybrid systems

e Piecewise affine systems (PWA)

e Mixed Logical Dynamical systems (MLD)

e Linear Complementarity systems (LC)

e Extended Linear Complementarity systems (ELC)

e Max-Min-Plus-Scaling systems (MMPS)

e Equivalence of MLD, LC, ELC, PWA, and MMPS systems
e Timed automata

e Timed Petri nets
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